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A GENERALIZATION OF FILLIMAN DUALITY

GREG KUPERBERG

(Communicated by John R. Stembridge)

Abstract. Filliman duality expresses (the characteristic measure of) a convex
polytope P containing the origin as an alternating sum of simplices that share
supporting hyperplanes with P . The terms in the alternating sum are given by
a triangulation of the polar body P ◦. The duality can lead to useful formulas
for the volume of P . A limiting case called Lawrence’s algorithm can be used
to compute the Fourier transform of P .

In this note we extend Filliman duality to an involution on the space of
polytopal measures on a finite-dimensional vector space, excluding polytopes
that have a supporting hyperplane coplanar with the origin. As a special case,
if P is a convex polytope containing the origin, any realization of P ◦ as a linear
combination of simplices leads to a dual realization of P .

1. Introduction

If P ⊂ Rd is a polytopal region, let [P ] denote the restriction of Lebesgue measure
to P . The measure [P ] can also be called the characteristic measure, by analogy
with the characteristic function. We consider measures rather than functions so
that if P and Q are two regions with disjoint interiors, then

[P ∪Q] = [P ] + [Q]

even if P and Q are not disjoint at the boundary. If P is convex and the origin lies
in its interior, then P admits a polar body P ◦. Say that a polytope P , convex or
not, is codegenerate if one of its facets is coplanar with the origin. Every noncode-
generate simplex ∆ admits a polar simplex ∆◦. Let T be a triangulation of P ◦ by
noncodegenerate simplices. In this circumstance Filliman [2] showed that

[P ] =
∑
∆∈T

(−1)σ(∆)[∆◦],

where σ(∆) is a certain sign function. This formula is called Filliman duality.
Figure 1 shows an example: a triangulation of a pentagon P and the dual realization
of P ◦ as a triangle with two smaller triangles subtracted.

Two special cases of Filliman duality are notable. First, if each simplex ∆ ∈ T
shares vertices with P ◦, then ∆◦ shares supporting hyperplanes with P . If P has few
vertices and many sides, then it is reasonable to compute its volume as the sum of
the volumes of the simplices in a triangulation. But if P has many vertices and few
sides, it is more efficient to use a triangulation of P ◦ via Filliman duality. Second,
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Figure 1. A triangulation of a pentagon and its Filliman dual.

if T is the cone of a triangulation of ∂P ◦, then as the apex of the cone converges
to the origin, each dual simplex ∆◦ with ∆ ∈ T converges to an affine orthant
emanating from a vertex of P . Thus we an express [P ] as an alternating sum of
such orthants. This limiting case of Filliman duality is called Lawrence’s algorithm
[4]. It is useful not only for finding the volume of P , but also for computing the
Fourier transform of [P ].

In this note we extend Filliman duality to an involution on noncodegenerate,
integral, polytope measures on Rd. More precisely, let A be the abelian group of
signed measures µ on Rd of the form

µ =
n∑
i=1

αi[Pi],

where each Pi is a noncodegenerate polytope and αi ∈ Z. If ∆ is a noncodegenerate
simplex, let σ(∆) be the number of supporting hyperplanes of ∆ that separate it
from the origin. Let D ⊂ A consist of measures of the form [∆].

Theorem 1. The involution Φ: D → D defined by

Φ([∆]) = (−1)σ(∆)[∆◦]

extends uniquely to an automorphism Φ: A → A.

The following corollary captures the original Filliman duality as part of the
involution Φ:

Corollary 2. If P is a convex polytope containing the origin in its interior and

[P ] =
n∑
i=1

αi[∆i]

for simplices ∆1, . . . ,∆n, then

[P ◦] =
n∑
i=1

(−1)σ(∆)αi[∆◦i ].

Note that our involution Φ is not the same as the Euler involution on the polytope
algebra defined by McMullen [6]. Nonetheless, the group A and the map Φ on it
are ultimately a disguised specialization of a known involution in valuation theory,
the polarity map on cones (see Section 4). Thus the real significance of Theorem 1
and its proof is not that it describes an essentially new involution, as the author
once thought, but rather that it relates three distinct constructions in combinatorial
geometry: Filliman duality, valuation theory, and the stellar subdivision theorem.
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2. Proof of Theorem 1

In this section we assume that all simplices and other polytopes are noncode-
generate except where noted.

We will consider signed polytopes in order to absorb the sign that appears in
duality for simplices. A signed polytope P is a polytope together with a formal
sign, either + or −. Characteristic measures on signed polytopes are defined by the
rule [−P ] = −[P ]. If ∆ ⊂ Rd is a simplex with positive sign, we define

∆∗ = (−1)σ(∆)∆◦, (−∆)∗ = −(∆∗).

Also we recall the definition of ∆◦. If ∆ has vertices v0, . . . , vd, then ∆◦ is bounded
by the hyperplanes Hv0 , . . . , Hvd , where for any vector v, Hv is defined as

Hv = {w|〈w, v〉 = 1}.
Let B be the abelian group freely generated by simplex measures [∆]. By sum-

ming the terms of each element in B, we obtain a homomorphism π : B → A. It is
surjective because every polytopal region can be tiled by simplices. The involution
Φ extends tautologically to B. Theorem 1 then asserts that Φ preserves kerπ. In
order to prove this we first give a characterization of the kernel. The characteriza-
tion depends on a refinement of the stellar subdivision due to M. H. A. Newman
[5], [7].

Theorem 3 (Newman). Any two triangulations of a polytope P ⊂ Rd are equivalent
under stellar moves applied on edges.

Corollary 4. The kernel kerπ is generated by the relators

[∆]− [∆1]− [∆2],

where ∆ is a simplex tiled by two simplices ∆1 and ∆2.

Proof. Let I be the subgroup of B generated by the relators. Clearly I ⊆ kerπ; we
wish to show that kerπ ⊆ I. Assume a general linear dependence of simplices

(1)
n∑
i=1

αi[∆i] = 0

in A. Equivalent, in B,
n∑
i=1

αi[∆i] ∈ kerπ.

The union of the simplices,

P =
n⋃
i=1

∆i,

is a compact polytopal region in Rd. It admits a triangulation T that refines each
simplex ∆i. Let Ti be the restriction of T to the simplex ∆i. By Theorem 3, the
triangulation Ti can be obtained from the tautological triangulation of ∆i by itself
by stellar moves applied to edges. A stellar move on some edges e can be effected by
dividing each simplex containing e into two simplices, the geometric move captured
by the relator. Therefore

[∆i]−
∑

∆∈Ti

[∆] ∈ I



3896 GREG KUPERBERG

in B. At the same time, equation (1) implies that

n∑
i=1

αi
∑

∆∈Ti

[∆] = 0

in B, since each simplex in T must be covered a total of 0 times. Therefore kerπ ⊆ I,
as desired. �

Remark. Call the move of dividing a simplex into two an elementary dissection. An
interesting fact closely related to Corollary 4 is that any two simplicial dissections
of a polytopal region are connected by elementary dissections.

Proof of Theorem 1. In light of Corollary 4, we only need to check that Φ preserves
an elementary dissection of a simplex. If v0, v1, . . . , vd are the vertices of a simplex
∆, we let the word v0v1 · · · vd denote ∆ if

v1 − v0, v2 − v0, . . . , vd − v0

is a positive basis of Rd, and otherwise we let it denote −∆. If wi is the vertex of
∆∗ opposite to the hyperplane Hvi , it follows that

∆∗ = (−1)dw0w1 · · ·wd.

Suppose that x1, x2, and x3 are three collinear points in V , and suppose that
v0, . . . , vd−2 are d− 1 other points affinely independent from any two of x0, x1 and
x2. Then

(2) [v0 · · · vd−2x1x2] + [v0 · · · vd−2x2x3] + [v0 · · · vd−2x3x1] = 0

expresses an elementary dissection. Applying (−1)dΦ to both sides produces

(3) [w0w1 · · ·wd−2y2y1] + [w0w1 · · ·wd−2y3y2] + [w0w1 · · ·wd−2y1y3] = 0.

Here each point wi lies in the hyperplanes Hvj for i 6= j and in the hyperplanes
Hxj for all j. Each point yi lies in the hyperplane Hvj for all j and in the hyperplane
Hxi . Evidently equation (3) is the same equation up to sign as equation (2).
Figure 2 shows an example. �

Figure 2. An elementary dissection and its dual.
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3. Proof of Corollary 2 and examples

Corollary 2 follows immediately from Theorem 1 and the following proposition.

Proposition 5. If P ⊂ Rd is a convex polytope that strictly contains the origin,
then Φ([P ]) = [P ∗], the polar body of P .

Proof. We first assume that any d vertices of P are linearly independent, or equiv-
alently affinely independent from the origin. Let T be a triangulation of P with no
vertices in the interior of P . We claim, first, that any point w in the interior of P ∗

is covered by the dual of exactly one simplex. A unique simplex ∆0 ∈ T contains
the origin. The inclusions 0 ∈ ∆0 ⊂ P imply that ∆∗0 ⊃ P ∗, so ∆∗ covers w. If
∆ ∈ T is another simplex, then there exists a vertex v of ∆ which is separated
from the origin by the opposite face of ∆. It follows that ∆∗ is separated from
the origin by the hyperplane Hv. Since v is also a vertex of P,Hv is a supporting
hyperplane of P ∗. Therefore Hv separates ∆∗ from P ∗ and ∆∗ does not contain w.
This establishes the first claim.

We claim, second, that if w is the exterior of P ∗, there exists a triangulation T
of P such that w is not covered by ∆∗ for any ∆ ∈ T . There exists a vertex v of
P such that the hyperplane Hv separates w from P ∗. Let T be a fan triangulation
all of whose simplices contain v. If ∆ ∈ T , then Hv separates ∆ from w, as
desired. The two claims together with Theorem 1 establish the proposition under
the independence assumption on P .

Finally we assume that P is arbitrary. The argument so far establishes the
proposition for the polytope P − v for a dense set of vectors v in the interior of P .
Namely v can be any point that does not lie on a hyperplane affinely spanned by
vertices of P . But if v is in the interior of P , then P − v has a noncodegenerate
triangulation whether or not v lies on such a hyperplane. It follows that Φ([P − v])
varies continuously in a neighborhood of v. Thus the truth of the proposition for
a dense set of v implies its truth for all v in the interior of P . In particular, the
proposition holds for v = 0. �

We conclude with two examples of polygonal regions in the plane and their im-
ages under Φ. Figure 3 shows the dual of a square with corners (1,−1), (3,−1), (1, 1),
and (3, 1). The dual is a negative measure in the interior of a kite shape. Finally
Figure 4 shows the dual of a square with corners (1, 1), (1, 2), (2, 1), and (2, 2). The
dual is the difference (in the sense of signed measures) between two triangles with
disjoint interiors.

Figure 3. A square offset to the right and its dual.
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Figure 4. A square offset diagonally and its dual.

4. Involutions on cones

In response to the first version of this article, Alexander Barvinok suggested
that Theorem 1 is related to the fact that the polarity involution Π on spherical
convex polytopes extends to a valuation. In this section we show, in outline, that
Φ becomes a restriction of Π after suitably mapping measures on Rd to functions
on the sphere Sd.

Let C be the abelian group of integer-valued functions on Sd spanned by the
characteristic functions of closed (or equivalently open) spherical polytopes of any
dimension ≤ d. If P ⊂ Sd is closed and convex, then it admits a polar dual

P ◦ = {x|∀y ∈ P, 〈x, y〉 ≥ 0},
where the inner product uses the defining embedding Sd ⊂ Rd+1. Also, if P ⊂ Sd,
let χP be the characteristic function of P . The following result in combinatorial
geometry is known but unattributed (see Barvinok [1] and Lawrence [3]):

Theorem 6. The polarity map

XP 7→ χP◦

extends to an involution Π: C → C.

Now identify Rd with the open upper hemisphere in Sd by stereographic projec-
tion. Let D ⊂ C be the set of those functions f such that:

(1) f is supported in Rd,
(2) f ◦ σ is defined using noncodegenerate polytopes, and
(3) f ◦ σ is radially left-continuous as a function on Rd, meaning that for all

v ∈ Rd,
lim
t→1−

(f ◦ σ)(tv) = (f ◦ σ)(v).

It is not hard to show that the class D is spanned by (the characteristic functions
of) closed convex polytopes with the origin in their interiors. Thus D is invariant
under the polarity involution Π.

It is also not hard to show that every measure µ ∈ A, if interpreted as an element
of L1(Rd), is represented by a unique radially left-continuous function f ∈ D. This
identifies A with D. Again, because D is spanned by closed convex polytopes
with the origin in their interiors. Because both maps Φ and Π are the polarity
transformation on this class, the two maps are identified as well.

Note that the class D extends to a slightly larger class D spanned by all convex
polytopes P in the closed upper hemisphere in Sd which contain the origin (not nec-
essarily in the interior). The class D is also invariant under the polarity involution
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Π. Indeed D is the closure of D with respect to a natural topology on C, namely
the one induced by the Hausdorff topology on closed subsets of Sd. Moreover Π is
continuous with respect to this topology. Thus the restriction of Π to D expresses
all codegenerate limiting cases of Filliman duality, such as Lawrence’s algorithm.
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