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PERFECTLY NORMAL NON-METRIZABLE
NON-ARCHIMEDEAN SPACES
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(Communicated by Andreas Blass)

ABSTRACT. In this paper we prove the equivalence between the existence of
perfectly normal, non-metrizable, non-archimedean spaces and the existence of
“generalized Souslin lines”, i.e., linearly ordered spaces in which every collec-
tion of disjoint open intervals is o-discrete, but which do not have a o-discrete
dense set. The key ingredient is the observation that every first countable
linearly ordered space has a dense non-archimedean subspace.

These results are part of the Ph.D. thesis of the first author [Q1] produced
under the supervision of the second author. Publication was delayed for a variety
of reasons, but LOTS (of) experts have asked that they appear, even at this late
date.

Essentially the same question about linearly ordered spaces has been asked by
several authors; the following theorem establishes that equivalence and adds a new
version. Necessary definitions are presented immediately thereafter.

Theorem 1. The following are equivalent:

a) there is a perfectly normal non-archimedean non-metrizable space,

b) there is a perfect linearly ordered space which does not have a o-discrete
dense subspace,

c) there is a linearly ordered space in which every disjoint collection of convex
open sets is o-discrete, but which does not have a o-discrete dense subspace,

d) there is a linearly ordered space without isolated points which does not have
a o-discrete dense subspace, but every nowhere dense subspace of it does
have such a subspace.

Definition. A linearly ordered topological space or a LOTS is a space whose topol-
ogy can be induced by a linear order, taking the family of open rays as a subbase.

We shall denote an arbitrary LOTS by L.

Definition. A topological space is a generalized ordered space or a GO space if it
can be topologically embedded into a LOTS.
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Definition. A non-archimedean space, (X,T), is a space with a topological base
T which is a tree under the inclusion order.

Definition. Let T be a tree. The branch space of T is (X(T),T), where X(T) =
{bC T :bis a branch of T} and the basic open sets are determined by the nodes
of b, i.e., if t € b, then {b' € X(T') : t € b'} is a basic open set about b.

Definition. A family of sets of a space X is called o-discrete if it can be partitioned
into countably many discrete subfamilies.

Definition. A subset C of a LOTS is convez if (z,y) C C for any =,y € C.

Definition. L is called o-discrete cc (or o-dec) if its antichains of open sets are all
o-discrete.

Definition. L is called conver o-discrete cc (or convex o-dec) if its antichains of
convex open sets are all o-discrete.

Definition. A subspace is called o-discrete if it can be partitioned into countably
many closed discrete subspaces.

Definition. A subspace is called o-relatively-discrete if it can be partitioned into
countably many discrete subspaces.

Definition. X is called a Ky space [T] if it has a o-relatively-discrete dense sub-
space.

Definition. X is called a K|, space if it has a o-discrete dense subspace.

Clearly, o-dcc is a generalization of ccc, and both Ky and K| are generalizations
of separable. Surprisingly, there is an example of a LOTS which is K| (in fact
metrizable) but has an antichain of open sets which is not o-discrete [E]; however
we shall see that if a LOTS is KJ), it is convex o-dce. The following question is due
to S. Watson [W] Problem 107], [BDDGNRTW]:

Question. Is the existence of a LOTS which is o-dcc but not K| equivalent to the
existence of a Souslin tree?

We shall prove the answer is “yes”. In view of the example of [E] mentioned
above, the following variation of Watson’s question (which, he informs us, is what
he really meant) is natural:

Question. Is there a LOTS which is convex o-dcc but not K{?

We call such a LOTS a generalized Souslin line.

We call a perfectly normal non-metrizable non-archimedean space an archvillain.
Nyikos |[N| asked whether archvillains exist. In [T], [Q2] and [QT] the existence of
archvillains is discussed. The consistency of the existence of archvillains of size N,
but none of size Yy, is proved in [Q2], improving earlier results of [T].

The question of whether there is a perfect LOTS which is not Ky is due to
Maurice and van Wouwe (mentioned in [BL]). The fourth equivalent in Theorem 1
involves a natural but new concept.

Definition. A LOTS without isolated points which is not K|, but in which every
nowhere dense subspace is KJ, is called a generalized Lusin line.
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One can also ask whether any of the four equivalent kinds of spaces in Theorem 1
exists with a point-countable base. Nyikos [N] asked this for a) and noted that the
Souslin line obtained from a Souslin tree in the usual way is one. Heath (mentioned
in [BL]) asked if there is a perfectly normal non-metrizable LOTS with a point-
countable base. This is also equivalent to the point-countable base version of the
question in Theorem 1.

Theorem 2. The following are equivalent:

a) there is an archvillain with a point-countable base,

b) there is a perfect LOTS with a point-countable base which is not Ky.

c) there is a generalized Souslin line with a point-countable base,

d) there is a generalized Lusin line with a point-countable base,

e) there is a perfectly normal non-metrizable LOTS with a point-countable
base.

It is not known whether it is consistent that there are no archvillains or even
none with point-countable bases. It is also not known whether the existence of an
archvillain implies the existence of one with a point-countable base. However, using
results from [QT], we shall prove

Theorem 3. If it is consistent that there is a supercompact cardinal, then it is
consistent that every archvillain includes one with a point-countable base.

1. THE EXISTENCE OF GENERALIZED SOUSLIN LINES

In this section we prove our main result — the equivalence of a) and ¢) of Theorem
1. Our task is made easier by the following result of Faber, which incidentally shows
b) and ¢) of Theorem 1 are equivalent.

Lemma 4 ([E] p. 38]). Let X be a GO space. Then the following are equivalent:
a) X is perfectly normal,
b) X is conver o-dcc,
c) every relatively discrete subspace of X is o-discrete in X.

Note that ¢) implies Ky and K|, are equivalent for perfect GO spaces. (Recall
all LOTS are hereditarily normal.)
It is now easy to prove

Proposition 5 ([P] in essence). An archvillain is a generalized Souslin line.

Proof. An archvillain is a perfectly normal non-archimedean space, hence a LOTS
[P]. It is not Ky (and hence not K{)) because K¢ perfectly normal non-archimedean
spaces are metrizable [T]. However it is convex o-dcc by Lemma 4. O

Proposition 6. FEvery generalized Souslin line includes an archvillain.
This will follow from the following useful result.

Theorem 7. FEvery first countable LOTS includes a dense non-archimedean sub-
space.

Proof. We perform a construction like the construction of a Souslin tree from a
Souslin line. We construct a tree of non-empty open intervals of L by recursion,
so that the branch space of T is dense in L. L may have isolated points, but
these are also open intervals, except for initial or final isolated points, which can
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conventionally be written as (00, a) or (b,00), so we will also consider them to be
open intervals. We form the Oth level Ty of the tree by taking the set of isolated
points of L and expanding it to a maximal disjoint collection of non-empty open
intervals of L. Then every t € Ty which is not isolated in fact contains no isolated
points. For each such non-isolated ¢, pick any point z(t) of ¢ which is not adjacent
to some other point of L.

For each such z(t), pick a strictly decreasing sequence of open intervals {(a,(
bn(t)) : m < w} included in ¢ and converging to z(t), i.e., a(t) < ... < an(t)
ant1(t) < z(t) < bpg1(t) < bp(t) < ... < b(t) and z(t) = sup{an(t) : n < w}
inf{an(t) : n < w}. We can do this because L is first countable and ¢ has no
isolated points. We call x(t) a centrepoint of t.

To construct level T7, if t was isolated, its successor is itself. If ¢ contained no iso-
lated points, we take the immediate successors of t to be (a(t), ag(t)), (ao(t), bo(t)),
(bo(t),b(t)). Then |JTi is dense in |JTp. To construct level T,,, n > 1, each iso-
lated point succeeds itself as do all elements except those of form (a,—1(t), bn—1(t)).
These are succeeded by (an—1(t), an(t)), (an(t), bn(t)), (bn(t), bp_1(t)).

At limit «, by construction, each branch will either have intersection empty, a
single point, or an interval (which may be an isolated point). The interiors of those
intervals will be the elements of level . We choose centrepoints for the non-isolated
open intervals as at level 0, and then continue the tree as we did for the finite levels.
We continue the construction until we get to a limit level where all branches have
empty or singleton intersection. Note that each element of the tree is either isolated
or contains a centrepoint, since it acquires one at the next limit level, if it did not
have one already.

Let X be the set of isolated points of L together with the set of centrepoints.
Since the basic open sets of the branch space (X, T') are of form X Nt, where t € T'
is an open interval of L, (X, T) is dense in L. Suppose I = (a,b) is an open interval
of L; we shall prove that I includes some element of T, for if not, we will find
a non-isolated open interval included in the intersection of a cofinal branch of T,
violating our construction. If I contains any isolated points, then it includes an
element of Tj, so assume it has no isolated points.

At level 0, I will meet some element of Tj since Tp is a maximal antichain. Let
t = (z,y) € Top such that I Nt # 0. Let I’ = (a,b) N (z,y). Supposing I does
not include ¢, then either I = I’ or I’ = (x,b) or I’ = (a,y). Suppose I’ = (a,y),
t.e., ¥ < a < y < b. The other cases are similar. We proceed with I’. Let v be
the height of T. For a < 7, assume that I’ is included in some element of Tg,
for each 3 < . We claim that I’ is included in some element of T, as well. But
then {t € T: ¢t D I'} is a branch of length v with intersection neither empty nor
singleton, a contradiction.

To prove the claim, consider first the case a = 3 + 1. So there is a tg =
(zg,yp) € Tp with I' C tg. If tzg € T,, we are done; otherwise t3 was cut into
(3, an), (n,br), (bn,ys) at level a. Since I’ C tg, I’ must meet at least one of
these. We are supposing I’ does not include any of them. If I’ is not included
in any of them either, we will reach a contradiction. Suppose, for example, that
I'N(bp,ys) #0. If b, € I', then a < by, <y < yg. Soy < yg, else I’ D (by, yg).
Then x < b, < y < yg. But this contradicts that (x,y) and (b,,ys) are either
disjoint or one includes the other, since T is a tree. If, on the other hand, yg € I,
then b, < a < yg <y. But I’ C tg, so y < yg, a contradiction.

t),
<
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The case when I' N (zg,a,) # 0 is similar to the first case, so suppose I' N
(an,bn) #0. If a, < a < b, <yg, then y < yg else (by,,y3) C (a,y). Similarly, y >
by, else (an,bn) D I'. So ap, < a <b, <y <yg. But z < a,so by treeness, z < a,.
Again by treeness, zg < z. Thus 23 <z < a, < a < b, <y < yg. But (23,y3)
is on a later level of the tree than (x,y), so if (x3,y3) D (z,v), (z3,y8) = (z,y), a
contradiction.

The other cases are similar.

If v is a limit ordinal such that for each 8 < «, tg = (x3,y3) € T such that
tg DI, then I' C (\{tg : B < a}. So the intersection of the chain {tg: 8 < a}
is a non-empty non-singleton convex set. Hence, we have put an antichain of
open intervals at the ath level which is maximal in the intersection. So there is a
t' = (z',y') € T, such that ¢ NI’ # (. As in the successor case, we conclude some
member of T}, includes I’.

Thus, every open interval includes some element of 1" and therefore contains at
least one centrepoint. Therefore X is dense in L. O

We can now easily prove Proposition 6.

Proof. Given a generalized Souslin line L, let X be a dense non-archimedean sub-
space. L is perfectly normal, so X is. We claim X is not metrizable. If it were,
it would be Ky. Then L would be Ky. By Lemma 4 it would then be K, a
contradiction. (I

Note. A previous version of this paper claimed Theorem 7 without the restriction
of first countability. We are grateful to A. Jones for providing a counterexample
1J].

2. 0-DCC VERSUS CONVEX 0-DC

Since separability implies the countable chain condition, one might expect K,
to imply o-dcc. It doesn’t but we do have

Lemma 8 ([BL]). K§ GO spaces are perfectly normal, hence convex o-dcc.
Lemma 8 yields a characterization of metrizability in non-archimedean spaces:
Theorem 9. A non-archimedean space is metrizable iff it is K.

Proof. A perfectly normal non-archimedean space is metrizable iff it is K|, [T]. As
noted earlier, K is equivalent to K|, for perfect GO spaces. O

Let us also mention the characterization in [BL] of metrizability in GO spaces:

Proposition 10. A GO space is metrizable iff it is K and has a point-countable
base.

The Sorgenfrey line shows that the latter condition cannot be dropped.

As we said above, K|j does not imply o-dcc, and hence o-dcc and convex o-dec
are not equivalent. There is an example in [E]; we give a non-archimedean one.
Note every metrizable space is K|) and perfectly normal.

Example. There is a metrizable non-archimedean space which has a non-o-discrete
antichain of open sets.
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Proof. Consider the Baire space of weight k,x an uncountable cardinal, X =
Bk)={x: x: w — k}. For z = (x,), y = (yn) € B(r), the distance
d(z,y) is defined to be 1, where k € w is least such that z(k) # y(k). Let 2 € X
such that z(n) =0, Vn < w. Let Vo, ={y € X : yln =2z|n,y(n) = a} for a < k
and n < w. Let Uy, = ({Van : n <w}, for a < k. For o, 8 < K, Uy NUg = 0.
And for a < k, x € U,. Therefore, the family {U, : a < k} is a disjoint family,

and any subfamily with more than one element is not discrete. O

Now we answer Watson’s question by proving

Theorem 11. Any Souslin line (i.e., a ccc non-separable LOTS) is o-dcc but not
K{; any o-dec non-K LOTS includes a Souslin line.

Proof. A Souslin line is hereditarily Lindel6f, hence perfectly normal. It is not
separable, but its discrete subspaces are countable, so it is not K.
To prove the other half, it is convenient to note the following useful lemma;:

Lemma 12. If there is a generalized Souslin line, there is one with no K|, intervals.

Proof. The argument is from [T], Theorem 4.2. Let L be a generalized Souslin
line and let A be a maximal antichain of open Ky subspaces. Then [JA is Ky so

L—|JAis as desired. (Note it’s a LOTS since it’s perfectly normal non-archimedean
Pl =

Now, given a non- K, o-deec LOTS L, we pass to the open subspace L’ constructed
in Lemma 12. Note L’ is o-dcc. Pick an « € L' and {z,, : n < w} converging to
x. Pick disjoint open intervals I(n) containing x,, x ¢ I,. Claim some I,, is ccc.
Suppose not. Let {A,, : & < w;) be an antichain in I,,. Let V,, = (J{Ana : n < w}.
{va 1 a < wi} is disjoint but is not o-discrete since z € V,, for all a. Since I,, is
cce but not K, it is not separable and hence is a Souslin line. O

3. GENERALIZED LUSIN LINES

We next establish the remaining equivalence in Theorem 1 by proving

Lemma 13. An archvillain includes a generalized Lusin line; a generalized Lusin
line is an archvillain.

Proof. An archvillain includes a generalized Souslin line, and by Lemma 12 includes
an archvillain L without any K intervals. Claim L is generalized Lusin. It suffices
to prove nowhere dense subspaces of L are K. But in [QT] we prove

Lemma 14. Nowhere dense subspaces of archvillains are metrizable.

But metrizable spaces are K. g

The other direction of Lemma 13 is almost immediate: by Lemma 4, it suffices
to prove that if D is a relatively discrete subspace of a generalized Lusin line L, it
is o-discrete. Since L has no isolated points, D is nowhere dense, hence K. But
then so is D. 0
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4. ARCHVILLAINS WITH POINT-COUNTABLE BASES

Since the property of having a point-countable base is hereditary, the reader will
observe that our proofs of the various parts of Theorem 1 actually establish the
equivalence of the first four clauses of Theorem 2 as well.

The remaining equivalence follows from Theorem 7. ]

To prove Theorem 3, we recall

Lemma 15 ([QT]). If it is consistent that there is a supercompact cardinal, then
it is consistent that there is a model in which every archvillain has an archvillain
subspace of size Ny.

The model is the Lévy or Mitchell collapse of the supercompact to Ny. The
subspace X is not K|, so is not separable; archvillains are perfect LOTS, so first
countable; taking a left-separated dense subspace of X of type w;, we obtain the
required archvillain with a point-countable base. O

On the other hand,

Theorem 16. If it is consistent that there is an inaccessible cardinal, it is con-
sistent that there is an archvillain such that no archvillain subspace of it has a
point-countable base.

Proof. In [Q2], from the assumption that there is an inaccessible cardinal, a model
is constructed in which there is an Ny-Souslin line which is an archvillain, but in
which there are no archvillains of weight < N;. Since the line has hereditary Lindel6f
number N1, a point-countable base of the subspace would have to be of cardinality
< Ny, so the subspace could not be an archvillain. O

In conclusion, we thank the referee for greatly simplifying several of our proofs
and finding errors in an earlier version.
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