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PRINCIPAL EIGENVALUES FOR INDEFINITE WEIGHT
PROBLEMS IN ALL OF Rd

N. BEJHAJ RHOUMA

(Communicated by Juha M. Heinonen)

Abstract. We show the existence of principal eigenvalues of the problem
−4u = λgu in Rd where g is an indefinite weight function. The existence of a
continuous family of principal eigenvalues is demonstrated. Also, we prove the
existence of a principal eigenvalue for which the principal eigenfunction u→ 0
at ∞.

1. Introduction

In this paper, we consider the following eigenvalue problem with indefinite weight:

(P )
{
4u+ λgu = 0 in Rd in the distributional sense,
u > 0 on Rd

for the case d ≥ 3, where g is a function in K loc
d (Rd) that changes sign (i.e. g is

an indefinite weight). A principal eigenvalue of (P ) is a positive constant (λ0) for
which (P ) has a positive solution for λ = λ0.

Recently, a number of authors have investigated the existence of principal eigen-
values for (P ).

Brown, Cosner and Fleckinger in [5] showed that if d ≥ 3 and g is negative and
bounded away of from 0 near ∞, then (P ) has a principal eigenvalue. Brown and
Tertikas in [6] improved the result in [5] if g+ = max{g, 0} has a compact support.
When g is bounded and g+ ∈ L d

2 (Rd), the existence of one eigenvalue and infinitely
many other eigenvalues was proved by Allegretto in [1]. Zhiren Jin in [10] considered
the case when g is locally Hölder continuous on Rd. The author proved that if d ≥ 3,
g(x0) > 0 for some x0 ∈ Rd and if

∫
Rd
|g+(y)|

d
2 dy <∞, then there exists a continuous

family of principal eigenvalues for the problem (P ). Moreover, the author showed
that if in addition there exists p > d

2 such that
∫
Rd
|g(y)|p (1 + |y|2)2p−ddy <∞, then

(P ) has a principal eigenvalue (λ0) and a positive eigenfunction u(x) such that
u(x) ‖x‖d−2 → c0 for a nonnegative constant c0.

In our case, we do not give any assumption on the continuity and boundedness
for g and we will give a generalisation of the results cited above. In this paper, we
assume that g+ 6≡ 0, and we shall prove the following main results.
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Theorem 1.1. Let g ∈ KLoc
d (Rd) and let G(x, y) denote the Green function on

Rd. If ∥∥g+
∥∥
Rd = sup

x∈Rd

∫
Rd

G(x, y)g+(y)dy <∞,

then there exists λ∗ > 0 such that for all 0 < λ ≤ λ∗ there exists a positive
continuous solution for the problem (P ).

Theorem 1.2. Let g be in the Kato class Kd(Rd) such that g+ ∈ Ls(Rd) for
0 < s < d

2 . Then, there exists λ∗ > 0 such that for all 0 < λ ≤ λ∗ there exists a
continuous positive solution for the problem (P ).

Remark 1.1. Note that if g is bounded, then g ∈ Kd(Rd).

Theorem 1.3. Let g ∈ KLoc
d (Rd) such that

(G)

 ‖g
+‖Rd <∞,

lim‖x‖→∞(
∫
Rd

g+(y)

‖x−y‖d−2dy
) = 0.

Then, (P ) has a principal eigenvalue λ∗ > 0 such that the corresponding eigenfunc-
tion u satisfies lim‖x‖→∞ u(x) = 0.

Remark 1.2. Note that the conditions of Theorem 1.3 are less restrictive than the
conditions of Zhiren Jin [10], where the author imposed that g is locally Hölder
continuous such that g+ ∈ L d

2 and

(G′′)
∫
Rd

|g(y)|p (1 + ‖y‖2)2p−ddy <∞

for some p > d
2 . Indeed, any function in Lp (p > d

2 ) is in Kd(Rd) and we will
show in Proposition 3.4 that any function which satisfies the condition (G′′) lies in
Ls(Rd) for some s < d

2 and hence satisfies the condition (G). Moreover, we show
the following general statement:

Theorem 1.4. Let g be in the Kato class Kd(Rd) such that g+ ∈ Lq for some
q < d

2 . Then the result of Theorem 1.3 holds.

Theorem 1.5. Let g ∈ KLoc
d (Rd) such that g+ is a Green tight function in Rd;

namely, g+ is a Borel measurable function in Rd satisfying that

The family

{
g+ (.)

‖.− y‖d−2

}
is uniformly integrable

over Rd with the parameter y ∈ Rd. Then (P ) has a principal eigenvalue λ∗ and a
positive eigenfunction u such that lim‖x‖→∞ u(x) = 0.

Moreover, we prove the following statement:

Corollary 1.1. We suppose that g+ (x) ≤ 1
‖x‖α for ‖x‖ large and some α > 2.

Then there exists λ∗ such that the problem (P ) has a positive continuous eigenfunc-
tion such that |u (x)| ≤ c ‖x‖2−d for large ‖x‖.
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2. Preliminary

Next, we recall from [2] the following definition:

Definition 2.1. A function V is said to be in K loc
d (Rd) if and only if, for every

R ≥ 0,

lim
r→0

( sup
‖x‖≤R

∫
‖x−y‖≤r

G(x, y)|V (y)|dy) = 0.

A function V is said to be in Kd(Rd) if and only if

lim
r→0

( sup
x∈Rd

∫
‖x−y‖≤r

G(x, y)|V (y)|dy) = 0.

G(x, y) is the Green function associated to the Laplace operator and dy is the
Lebesgue measure on Rd.

Definition 2.2. For a bounded domain Ω in Rd let GΩ(x, y) be the Green function
defined on Ω× Ω. We define the kernel associated to V by

KV
Ω =

∫
Ω

GΩ(., y)V (y)dy

and for every measurable function g, we define

KV
Ω g = KΩ(V g) =

∫
Ω

GΩ(., y)V (y)g(y)dy.

In this paper, we say that u = 0 on ∂Ω if u(xn)→ 0 for every regular sequence
(xn) in Ω. Particularly, if Ω is regular, then u(xn) → 0 for every sequence (xn)
converging to z ∈ ∂Ω.

As in [4], we denote by SVb (Ω) the set of bounded functions u such that u+KV
Ω u

is a superharmonic function in Ω. If V = 0, we will note SVb (Ω) = Sb(Ω). Next, we
recall the following definition (see [8]).

Definition 2.3. We say that the operator I + KV
Ω is positive-invertible if the

operator I +KV
Ω : Bb (Ω)→ Bb(Ω) is invertible and for every function s ∈ S+

b (Ω),
we have (I +KV

Ω )−1s ≥ 0.

Without loss of generality, set g = g1 − g2 with g2 > 0, g1 > m > 0.
Since Kg1 is a strict potential in Ω, then by Theorem 4.1 in [8], for any λ > 0

there exists a unique principal eigenvalue ζ(λ,Ω) > 0 and a continuous eigenfunc-
tion uλ > 0 on Ω such that

Ξ(λ,Ω)

 4uλ − λg2uλ + ζ(λ,Ω)g1uλ = 0 in Ω in the distributional sense,
uλ > 0 in Ω,
uλ = 0 on ∂Ω.

Using a result in [3], the function λ → ζ(λ,Ω) is continuous and for some 0 <
λ < µ, we have ζ(λ,Ω) − λ > 0 > ζ(µ,Ω) − µ, whence ζ(λ,Ω) = λ for some λ. If
λ(Ω) = inf {λ > 0 : ζ(λ,Ω) = λ}, then λ(Ω) is a principal eigenvalue for

E(λ,Ω)


4u+ λgu = 0 in Ω in the distributional sense,
u > 0 in Ω,
u = 0 in ∂Ω.
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Remark 2.1. The map λ → λ(Ω) is decreasing. Indeed, let Ω1 ⊂ Ω and set α =
λ(Ω1), β = λ(Ω). Then, using Theorem 3.5 in [8], we obtain α = ζ(α,Ω1) ≥ ζ(α,Ω).
Since for λ small we have λ < ζ(λ,Ω), we get the existence of ω ≤ α such that
ω = ζ(ω,Ω) which yields that β ≤ α.

3. Construction of solutions of (P )

Let g = g+ − g− where g+(x) = max{g(x), 0} and g−(x) = max{−g(x), 0}. We
suppose that ‖g+‖Rd <∞. Note that if GΩ denotes the Green function on Ω, then

KΩg
+ =

∫
Ω

GΩ(., y)g+(y)dy ≤ c(d)
∥∥g+

∥∥
Rd

where c(d) is a constant depending only on the dimension d.
We see that if uλ is a solution of E(λ,Ω) with ‖uλ‖∞ = 1, then

λ(Ω) =
uλ + λ(Ω)KΩg

−(u)
KΩg+(u)

≥ uλ
c(d) ‖g+‖Rd

.

Hence

λ(Ω) ≥ 1
c(d) ‖g+‖Rd

.

By Remark 2.1, since the map Ω→ λ(Ω) is decreasing, then

λ∗ = inf
Ω⊂Rd

λ(Ω) > 0.

3.1. Proof of Theorem 1.1. Next, let 0 < µ ≤ λ∗. Then for all bounded domains
Ω ⊂ Rd we have µ < λ(Ω).

Next, we claim that µ < ζ(µ,Ω). Indeed, assume that µ > ζ(µ,Ω). By using
that for λ small we have λ < ζ(λ,Ω), we get the existence of λ ∈]0, µ[ such that
λ = ζ(λ,Ω) which is impossible by the definition of λ(Ω). Hence, by Theorem 3.8
in [8], the operator (I − µKg

Ω) is positive-invertible and for every f ∈ C(∂Ω) there
exists a function uf satisfying{

4uf + µguf = 0 in Ω,
uf = f on ∂Ω.

Moreover uf > 0 on the set {f > 0}.
Let Bn be the ball centered at origin with radius n, n = 1, 2, .... Then for each

n ∈ N∗, the boundary value problem

(Pn)
{
4un + µgun = 0 in Bn,
un = n on ∂Bn

has a solution un > 0 on Bn. We normalize un(x) by setting un(0) = 1. Then

(3.1)

 4un + µgun = 0 in Bn,
un > 0 on Bn,
un(0) = 1.

By Harnack’s inequality for positive solutions of elliptic equations (see [2]), we see
that for any compact set Ω on Rd, there are constants N and M (where M depends
only on Ω, µ and g, N depends only on Ω) such that

0 < un ≤M on Ω for n ≥ N.
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Then it is clear that (un)n has a subsequence which converges to a continuous
nonnegative function u on any compact subset of Rd.

Therefore  4u+ µgu = 0 in Rd,
u ≥ 0 on Rd,
u(0) = 1.

Now, by an application of the minimum principle in [7], we get that u > 0 in
every bounded domain of Rd and hence u > 0 on Rd.

3.2. Proof of Theorem 1.2. Since g+ ∈ Kd(Rd), then there exists δ > 0 such
that

sup
x∈Rd

∫
‖x−y‖≤δ

g+(y)

‖x− y‖d−2
dy ≤ 1.

Hölder’s inequality implies

∫
Rd−B(x,δ)

g+(y)

‖x− y‖d−2
dy ≤

∥∥g+
∥∥
s

(
∫

Rd−B(x,δ)

1

‖x− y‖(d−2)s′
dy)

1
s′

= |B1|
∥∥g+

∥∥
s

(

∞∫
δ

rd−1−s′(d−2)ds)
1
s′

= |B1|
∥∥g+

∥∥
s
δ2− ds .

The result now follows from Theorem 1.1.

3.3. Proof of Theorem 1.3. For each k ∈ N∗, let us denote by λk = λ(Bk) and
by ωk the principle eigenfunction to the problem

E(λ,Bk)


4u + λkgu = 0 in Bk,
u > 0 on Bk,
u = 0 on ∂Bk.

The functions ωk are chosen such that ‖ωk‖∞ = 1.
Next, let ω = λ1

∫
Rd
G(x, y)g+(y)dy. Thus{

4ω = −λ1g
+,

lim‖x‖→∞ ω(x) = 0.

By Remark 2.1, the sequence λk is decreasing. Hence on Bk, we have

4(ωk − ω) = −λkgωk + λ1g
+

= λ1g
+(1− ωk) + λkg

−ωk + (λ1 − λk)g+ωk

≥ 0.

Since ωk ≤ ω on ∂Bk, we get ωk ≤ ω on Bk. Thus, we can choose a subsequence of
(ωk)k which converges uniformly on every compact of Rd to a nonnegative function
w such that

4ω + λ∗gω = 0 in Rd

and satisfying
0 ≤ ω ≤ ω.

Since g+ satisfies the condition (G), we get that lim‖x‖→∞ ω = 0.
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Next, we prove the following lemma.

Lemma 3.1. ω > 0 on Rd.

Proof. Let xk ∈ Bk such that ωk(xk) = 1 and suppose that ‖xk‖ → ∞. Thus, we
get

1 = ωk(xk) ≤ ω(xk)→ 0.
Consequently, we can assume that there exists x0 ∈ Rd such that x0 = limk→∞ xk.
Let k0 be such that xk ∈ Bk0 for all k ∈ N. Since

ωk = λk

∫
Bk

GBk(·, y)g(y)ωk(y)dy

we conclude that the family {ωk : k ∈ N} is equicontinuous and hence

ω(x0) = lim
k→∞

ωk(xk) = 1.

Then, it follows that ω > 0 on Rd. �
3.4. Proof of Theorem 1.4. We recall the following theorem (Theorem 1.8 in
[12]).

Theorem 3.2. Let µ be a positive Radon measure on Rd and let f be nonnegative
and µ-measurable. Then ∫

Rd

dµ =

∞∫
0

µ{x : f(x) > t}dt.

Thus, we get the following lemma.

Lemma 3.3. Let µ be a positive Radon measure on Rd and x ∈ Rd. Then∫
‖x−y‖≥η

dµ(y)

‖x− y‖d−2
dy ≤ (d− 2)

∞∫
η

r1−dµ(B(x, r)dr.

Proof. Using Fubini’s Theorem and Theorem 3.2, we obtain∫
‖x−y‖≥η

dµ(y)

‖x− y‖d−2
dy = (d− 2)

∞∫
0

r1−dµ(B(x, r)1{‖x−y‖≥η})dr

≤ (d− 2)

∞∫
η

(
∫

‖x−y‖<r

r1−ddµ(y))dr

≤ (d− 2)

∞∫
η

r1−dµ(B(x, r)dr.

�
Next, we give the proof of Theorem 1.4.
Since g+ ∈ Lq(Rd), there exists k ≥ 0 such that for every x ∈ Rd and r ≥ 0, we

have

(3.2)
∫

B(x,r)

g+(y)dy ≤ k
∥∥g+

∥∥
q
rd

q−1
q .
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Let 0 < η < M and x ∈ Rd such that ‖x‖ > M . Using the last lemma and (3.2)
we get∫

Rd

g+(y)

‖x− y‖d−2
dy ≤

∫
‖x−y‖≤η

g+(y)

‖x− y‖d−2
dy + (d− 2)

∞∫
η

(
∫

B(x,r)

g+(y)dy)
dr

rd−1

≤
∫

‖x−y‖≤η

g+(y)

‖x− y‖d−2
dy + C(

M∫
η

∫
B(x,r)

g+(y)dy
dr

rd−1
+

∞∫
M

rd
q−1
q

dr

rd−1
)

≤
∫

‖x−y‖≤η

g+(y)

‖x− y‖d−2
dy

+ C((η2− dq −M2− dq )(
∫

‖y‖≥‖x‖−M

(g+)q(y)dy)
1
q +

1

M
d
q−2

)

for some positive constant C.
Finally, let ε > 0. We choose, then, η and M such that C 1

M
d
q
−2

< ε
3 and

sup
x∈Rd

∫
‖x−y‖≤η

g+(y)

‖x− y‖d−2
dy <

ε

3
.

Let A ≥ 0 such that

C(η2− dq −M2− dq )(
∫

‖y‖≥A

(g+(y))qdy)
1
q <

ε

3
.

Thus, for ‖x‖ ≥ A+M , we get

C(η2− dq −M2−dq )(
∫

‖y‖≥‖x‖−M

(g+(y))qdy)
1
q <

ε

3
.

Hence, g+ satisfies the condition (G).
Next, we prove the following statement

Proposition 3.4. Let g be a measurable function such that g+ 6≡ 0 and

(G′′)
∫
Rd

|g(y)|p (1 + ‖y‖2)2p−ddy <∞

for some p > d
2 . Then, g is in the Kato-class Kd(Rd) and there exists q < d

2 such
that g+ ∈ Lq.
Proof. By (G′′), we get that g ∈ Lp for p > d

2 , which implies by a result in [2] that
g ∈ Kd(Rd). Now, since p > d

2 , we get that dp
4p−d <

d
2 . Let dp

4p−d < q < d
2 . Using

the fact that q
p < 1 and the Hölder inequality we get∫

Rd

|g|q ≤ (
∫
Rd

|g|p (1 + ‖y‖2)2p−ddy)
1
p (
∫
Rd

dy

(1 + ‖y‖2)
(2p−d)q
p−q

)
p−q
p

≤ C(

∞∫
0

rd−1dr

(1 + r2) (2p−d)q
p−q

)
p−q
p .
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Using the assumptions on p and q, we get that g ∈ Lq. �

3.5. Proof of Theorem 1.5.

Definition 3.5. A Borel function k in Rd is called Green-bounded if and only if

‖k‖Rd = sup
x∈Rd

∫
Rd

|k(y)|
‖x− y‖d−2

dy <∞.

Definition 3.6. A Borel function k in Rd is called Green-tight if and only if

k ∈ KLoc
d

(
Rd
)

and lim
M→∞

sup
x∈Rd

∫
‖y‖≥M

|k(y)|
‖x− y‖d−2

dy

 = 0.

Remark 3.1. Any Green-tight function is Green-bounded.

Remark 3.2. Note that if there exists α > 2 and c ≥ 0 such that |k(x)| ≤ c
‖x‖α for

‖x‖ large, then k is Green-tight. In fact we prove the following statement.

Proposition 3.7. Let k be a Borel function in Rd(d ≥ 3). Suppose that k is
in KLoc

d and there exists a number L and a positive function ϕ(r) on [L,∞[ with
∞∫
L

ϕ(r)
r dr <∞ such that for all ‖x‖ ≥ L

|k(x)| ≤ ϕ(‖x‖)
‖x‖2

.

Then k is Green-tight.

For the proof see [14].

3.6. Proof of Corollary 1.1. Let ω be the function defined in the proof of The-
orem 1.3. Thus, using the results of [11] if g+ (x) ≤ 1

‖x‖α for ‖x‖ large and some
α > 2, then

ω(x) = λ1

∫
B1

G(x, y)g+(y)dy ≤ C ‖x‖2−d

for large ‖x‖ where C is a positive constant. Since the solution ω defined in the
previous section is such that ω ≤ ω, we get the desired proof.
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