PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 131, Number 12, Pages 3747-3755 S 0002-9939(03)06967-3 Article electronically published on February 14, 2003

PRINCIPAL EIGENVALUES FOR INDEFINITE WEIGHT PROBLEMS IN ALL OF \mathbb{R}^d

N. BEJHAJ RHOUMA

(Communicated by Juha M. Heinonen)

ABSTRACT. We show the existence of principal eigenvalues of the problem $-\Delta u = \lambda g u$ in \mathbb{R}^d where g is an indefinite weight function. The existence of a continuous family of principal eigenvalues is demonstrated. Also, we prove the existence of a principal eigenvalue for which the principal eigenfunction $u \to 0$ at ∞ .

1. INTRODUCTION

In this paper, we consider the following eigenvalue problem with indefinite weight:

(P)
$$\begin{cases} \Delta u + \lambda g u = 0 \text{ in } \mathbb{R}^d \text{ in the distributional sense,} \\ u > 0 \text{ on } \mathbb{R}^d \end{cases}$$

for the case $d \geq 3$, where g is a function in $K_d^{loc}(\mathbb{R}^d)$ that changes sign (i.e. g is an indefinite weight). A principal eigenvalue of (P) is a positive constant (λ_0) for which (P) has a positive solution for $\lambda = \lambda_0$.

Recently, a number of authors have investigated the existence of principal eigenvalues for (P).

Brown, Cosner and Fleckinger in [5] showed that if $d \ge 3$ and g is negative and bounded away of from 0 near ∞ , then (P) has a principal eigenvalue. Brown and Tertikas in [6] improved the result in [5] if $g^+ = \max\{g, 0\}$ has a compact support. When g is bounded and $g^+ \in L^{\frac{d}{2}}(\mathbb{R}^d)$, the existence of one eigenvalue and infinitely many other eigenvalues was proved by Allegretto in [1]. Zhiren Jin in [10] considered the case when g is locally Hölder continuous on \mathbb{R}^d . The author proved that if $d \ge 3$, $g(x_0) > 0$ for some $x_0 \in \mathbb{R}^d$ and if $\int_{\mathbb{R}^d} |g^+(y)|^{\frac{d}{2}} dy < \infty$, then there exists a continuous family of principal eigenvalues for the problem (P). Moreover, the author showed that if in addition there exists $p > \frac{d}{2}$ such that $\int_{\mathbb{R}^d} |g(y)|^p (1 + |y|^2)^{2p-d} dy < \infty$, then (P) has a principal eigenvalue (λ_0) and a positive eigenfunction u(x) such that

 $|x|^{(r)}$ has a principal eigenvalue (λ_0) and a positive eigenfunction u(x) such that $u(x) ||x||^{d-2} \to c_0$ for a nonnegative constant c_0 .

In our case, we do not give any assumption on the continuity and boundedness for g and we will give a generalisation of the results cited above. In this paper, we assume that $g^+ \not\equiv 0$, and we shall prove the following main results.

©2003 American Mathematical Society

Received by the editors November 20, 2001 and, in revised form, June 25, 2002.

²⁰⁰⁰ Mathematics Subject Classification. Primary 31B20, 35J25, 35P05.

Key words and phrases. Indefinite weight, eigenvalue, Kato-class, Green function.

Theorem 1.1. Let $g \in K_d^{Loc}(\mathbb{R}^d)$ and let G(x, y) denote the Green function on \mathbb{R}^d . If

$$\left\|g^{+}\right\|_{\mathbb{R}^{d}} = \sup_{x \in \mathbb{R}^{d}} \int_{\mathbb{R}^{d}} G(x, y)g^{+}(y)dy < \infty,$$

then there exists $\lambda^* > 0$ such that for all $0 < \lambda \leq \lambda^*$ there exists a positive continuous solution for the problem (P).

Theorem 1.2. Let g be in the Kato class $K_d(\mathbb{R}^d)$ such that $g^+ \in L^s(\mathbb{R}^d)$ for $0 < s < \frac{d}{2}$. Then, there exists $\lambda^* > 0$ such that for all $0 < \lambda \leq \lambda^*$ there exists a continuous positive solution for the problem (P).

Remark 1.1. Note that if g is bounded, then $g \in K_d(\mathbb{R}^d)$.

Theorem 1.3. Let $g \in K_d^{Loc}(\mathbb{R}^d)$ such that

(G)
$$\begin{cases} \|g^+\|_{\mathbb{R}^d} < \infty, \\ \lim_{\|x\| \to \infty} (\int_{\mathbb{R}^d} \frac{g^+(y)}{\|x-y\|^{d-2} dy}) = 0. \end{cases}$$

Then, (P) has a principal eigenvalue $\lambda^* > 0$ such that the corresponding eigenfunction u satisfies $\lim_{\|x\|\to\infty} u(x) = 0$.

Remark 1.2. Note that the conditions of Theorem 1.3 are less restrictive than the conditions of Zhiren Jin [10], where the author imposed that g is locally Hölder continuous such that $g^+ \in L^{\frac{d}{2}}$ and

$$(G'') \qquad \qquad \int_{\mathbb{R}^d} |g(y)|^p \left(1 + \|y\|^2\right)^{2p-d} dy < \infty$$

for some $p > \frac{d}{2}$. Indeed, any function in L^p $(p > \frac{d}{2})$ is in $K_d(\mathbb{R}^d)$ and we will show in Proposition 3.4 that any function which satisfies the condition (G'') lies in $L^s(\mathbb{R}^d)$ for some $s < \frac{d}{2}$ and hence satisfies the condition (G). Moreover, we show the following general statement:

Theorem 1.4. Let g be in the Kato class $K_d(\mathbb{R}^d)$ such that $g^+ \in L^q$ for some $q < \frac{d}{2}$. Then the result of Theorem 1.3 holds.

Theorem 1.5. Let $g \in K_d^{Loc}(\mathbb{R}^d)$ such that g^+ is a Green tight function in \mathbb{R}^d ; namely, g^+ is a Borel measurable function in \mathbb{R}^d satisfying that

The family
$$\left\{ \frac{g^+(.)}{\left\|.-y\right\|^{d-2}} \right\}$$
 is uniformly integrable

over \mathbb{R}^d with the parameter $y \in \mathbb{R}^d$. Then (P) has a principal eigenvalue λ^* and a positive eigenfunction u such that $\lim_{\|x\|\to\infty} u(x) = 0$.

Moreover, we prove the following statement:

Corollary 1.1. We suppose that $g^+(x) \leq \frac{1}{\|x\|^{\alpha}}$ for $\|x\|$ large and some $\alpha > 2$. Then there exists λ^* such that the problem (P) has a positive continuous eigenfunction such that $|u(x)| \leq c \|x\|^{2-d}$ for large $\|x\|$.

3748

3749

2. Preliminary

Next, we recall from [2] the following definition:

Definition 2.1. A function V is said to be in $K_d^{loc}(\mathbb{R}^d)$ if and only if, for every $R \ge 0$,

$$\lim_{r \to 0} (\sup_{\|x\| \le R} \int_{\|x-y\| \le r} G(x,y) |V(y)| dy) = 0.$$

A function V is said to be in $K_d(\mathbb{R}^d)$ if and only if

$$\lim_{v \to 0} (\sup_{x \in \mathbb{R}^d} \int_{\|x-y\| \le r} G(x,y) |V(y)| dy) = 0.$$

G(x,y) is the Green function associated to the Laplace operator and dy is the Lebesgue measure on \mathbb{R}^d .

Definition 2.2. For a bounded domain Ω in \mathbb{R}^d let $G^{\Omega}(x, y)$ be the Green function defined on $\Omega \times \Omega$. We define the kernel associated to V by

$$K_{\Omega}^{V} = \int_{\Omega} G^{\Omega}(., y) V(y) dy$$

and for every measurable function g, we define

$$K_{\Omega}^{V}g = K_{\Omega}(Vg) = \int_{\Omega} G^{\Omega}(., y)V(y)g(y)dy.$$

In this paper, we say that u = 0 on $\partial\Omega$ if $u(x_n) \to 0$ for every regular sequence (x_n) in Ω . Particularly, if Ω is regular, then $u(x_n) \to 0$ for every sequence (x_n) converging to $z \in \partial\Omega$.

As in [4], we denote by $S_b^V(\Omega)$ the set of bounded functions u such that $u + K_{\Omega}^V u$ is a superharmonic function in Ω . If V = 0, we will note $S_b^V(\Omega) = S_b(\Omega)$. Next, we recall the following definition (see [8]).

Definition 2.3. We say that the operator $I + K_{\Omega}^{V}$ is positive-invertible if the operator $I + K_{\Omega}^{V} : B_{b}(\Omega) \to B_{b}(\Omega)$ is invertible and for every function $s \in S_{b}^{+}(\Omega)$, we have $(I + K_{\Omega}^{V})^{-1} s \ge 0$.

Without loss of generality, set $g = g_1 - g_2$ with $g_2 > 0$, $g_1 > m > 0$.

Since Kg_1 is a strict potential in Ω , then by Theorem 4.1 in [8], for any $\lambda > 0$ there exists a unique principal eigenvalue $\zeta(\lambda, \Omega) > 0$ and a continuous eigenfunction $u_{\lambda} > 0$ on Ω such that

$$\Xi(\lambda,\Omega) \quad \begin{cases} \Delta u_{\lambda} - \lambda g_2 u_{\lambda} + \zeta(\lambda,\Omega) g_1 u_{\lambda} = 0 \text{ in } \Omega \text{ in the distributional sense,} \\ u_{\lambda} > 0 & \text{ in } \Omega, \\ u_{\lambda} = 0 & \text{ on } \partial\Omega. \end{cases}$$

Using a result in [3], the function $\lambda \to \zeta(\lambda, \Omega)$ is continuous and for some $0 < \lambda < \mu$, we have $\zeta(\lambda, \Omega) - \lambda > 0 > \zeta(\mu, \Omega) - \mu$, whence $\zeta(\lambda, \Omega) = \lambda$ for some λ . If $\lambda(\Omega) = \inf \{\lambda > 0 : \zeta(\lambda, \Omega) = \lambda\}$, then $\lambda(\Omega)$ is a principal eigenvalue for

$$E(\lambda, \Omega) \quad \begin{cases} \Delta u + \lambda g u = 0 \text{ in } \Omega \text{ in the distributional sense,} \\ u > 0 \text{ in } \Omega, \\ u = 0 \text{ in } \partial \Omega. \end{cases}$$

Remark 2.1. The map $\lambda \to \lambda(\Omega)$ is decreasing. Indeed, let $\Omega_1 \subset \Omega$ and set $\alpha = \lambda(\Omega_1), \beta = \lambda(\Omega)$. Then, using Theorem 3.5 in [8], we obtain $\alpha = \zeta(\alpha, \Omega_1) \ge \zeta(\alpha, \Omega)$. Since for λ small we have $\lambda < \zeta(\lambda, \Omega)$, we get the existence of $\omega \le \alpha$ such that $\omega = \zeta(\omega, \Omega)$ which yields that $\beta \le \alpha$.

3. Construction of solutions of (P)

Let $g = g^+ - g^-$ where $g^+(x) = \max\{g(x), 0\}$ and $g^-(x) = \max\{-g(x), 0\}$. We suppose that $\|g^+\|_{\mathbb{R}^d} < \infty$. Note that if G^{Ω} denotes the Green function on Ω , then

$$K_{\Omega}g^{+} = \int_{\Omega} G^{\Omega}(., y)g^{+}(y)dy \le c(d) \left\|g^{+}\right\|_{\mathbb{R}^{d}}$$

where c(d) is a constant depending only on the dimension d.

We see that if u_{λ} is a solution of $E(\lambda, \Omega)$ with $||u_{\lambda}||_{\infty} = 1$, then

$$\lambda(\Omega) = \frac{u_{\lambda} + \lambda(\Omega) K_{\Omega} g^{-}(u)}{K_{\Omega} g^{+}(u)} \ge \frac{u_{\lambda}}{c(d) \|g^{+}\|_{\mathbb{R}^{d}}}$$

Hence

$$\lambda(\Omega) \ge \frac{1}{c(d) \left\|g^+\right\|_{\mathbb{R}^d}}.$$

By Remark 2.1, since the map $\Omega \to \lambda(\Omega)$ is decreasing, then

$$\lambda^* = \inf_{\Omega \subset \mathbb{R}^d} \lambda(\Omega) > 0$$

3.1. **Proof of Theorem 1.1.** Next, let $0 < \mu \leq \lambda^*$. Then for all bounded domains $\Omega \subset \mathbb{R}^d$ we have $\mu < \lambda(\Omega)$.

Next, we claim that $\mu < \zeta(\mu, \Omega)$. Indeed, assume that $\mu > \zeta(\mu, \Omega)$. By using that for λ small we have $\lambda < \zeta(\lambda, \Omega)$, we get the existence of $\lambda \in]0, \mu[$ such that $\lambda = \zeta(\lambda, \Omega)$ which is impossible by the definition of $\lambda(\Omega)$. Hence, by Theorem 3.8 in [8], the operator $(I - \mu K_{\Omega}^{g})$ is positive-invertible and for every $f \in C(\partial\Omega)$ there exists a function u_f satisfying

$$\begin{cases} \Delta u_f + \mu g u_f = 0 \quad \text{in } \Omega, \\ u_f = f \qquad \text{on } \partial \Omega \end{cases}$$

Moreover $u_f > 0$ on the set $\{f > 0\}$.

Let B_n be the ball centered at origin with radius n, n = 1, 2, ... Then for each $n \in \mathbb{N}^*$, the boundary value problem

$$(P_n) \qquad \qquad \left\{ \begin{array}{l} \Delta u_n + \mu g u_n = 0 \quad \text{in } B_n, \\ u_n = n \qquad \text{on } \partial B_n \end{array} \right.$$

has a solution $u_n > 0$ on B_n . We normalize $u_n(x)$ by setting $u_n(0) = 1$. Then

(3.1)
$$\begin{cases} \Delta u_n + \mu g u_n = 0 \text{ in } B_n, \\ u_n > 0 & \text{ on } B_n, \\ u_n(0) = 1. \end{cases}$$

By Harnack's inequality for positive solutions of elliptic equations (see [2]), we see that for any compact set Ω on \mathbb{R}^d , there are constants N and M (where M depends only on Ω , μ and g, N depends only on Ω) such that

$$0 < u_n \leq M$$
 on Ω for $n \geq N$.

Then it is clear that $(u_n)_n$ has a subsequence which converges to a continuous nonnegative function u on any compact subset of \mathbb{R}^d .

Therefore

$$\begin{cases} \Delta u + \mu g u = 0 \text{ in } \mathbb{R}^d, \\ u \ge 0 & \text{ on } \mathbb{R}^d, \\ u(0) = 1. \end{cases}$$

Now, by an application of the minimum principle in [7], we get that u > 0 in every bounded domain of \mathbb{R}^d and hence u > 0 on \mathbb{R}^d .

3.2. **Proof of Theorem 1.2.** Since $g^+ \in K_d(\mathbb{R}^d)$, then there exists $\delta > 0$ such that

$$\sup_{x \in \mathbb{R}^d} \int_{\|x-y\| \le \delta} \frac{g^+(y)}{\|x-y\|^{d-2}} dy \le 1.$$

Hölder's inequality implies

$$\int_{\mathbb{R}^{d}-B(x,\delta)} \frac{g^{+}(y)}{\|x-y\|^{d-2}} dy \leq \left\|g^{+}\right\|_{s} \left(\int_{\mathbb{R}^{d}-B(x,\delta)} \frac{1}{\|x-y\|^{(d-2)s'}} dy\right)^{\frac{1}{s'}}$$
$$= |B_{1}| \left\|g^{+}\right\|_{s} \left(\int_{\delta}^{\infty} r^{d-1-s'(d-2)} ds\right)^{\frac{1}{s'}}$$
$$= |B_{1}| \left\|g^{+}\right\|_{s} \delta^{2-\frac{d}{s}}.$$

The result now follows from Theorem 1.1.

3.3. **Proof of Theorem 1.3.** For each $k \in \mathbb{N}^*$, let us denote by $\lambda_k = \lambda(B_k)$ and by ω_k the principle eigenfunction to the problem

$$E(\lambda, B_k) \qquad \begin{cases} \bigtriangleup u + \lambda_k g u = 0 & \text{in } B_k, \\ u > 0 & \text{on } B_k, \\ u = 0 & \text{on } \partial B_k. \end{cases}$$

The functions ω_k are chosen such that $\|\omega_k\|_{\infty} = 1$. Next, let $\overline{\omega} = \lambda_1 \int_{\mathbb{R}^d} G(x, y) g^+(y) dy$. Thus

$$\begin{cases} \Delta \overline{\omega} = -\lambda_1 g^+, \\ \lim_{\|x\| \to \infty} \overline{\omega}(x) = 0 \end{cases}$$

By Remark 2.1, the sequence λ_k is decreasing. Hence on B_k , we have

$$\Delta(\omega_k - \overline{\omega}) = -\lambda_k g \omega_k + \lambda_1 g^+ = \lambda_1 g^+ (1 - \omega_k) + \lambda_k g^- \omega_k + (\lambda_1 - \lambda_k) g^+ \omega_k \geq 0.$$

Since $\omega_k \leq \overline{\omega}$ on ∂B_k , we get $\omega_k \leq \overline{\omega}$ on B_k . Thus, we can choose a subsequence of $(\omega_k)_k$ which converges uniformly on every compact of \mathbb{R}^d to a nonnegative function w such that

 $\triangle \omega + \lambda^* q \omega = 0 \quad \text{in } \mathbb{R}^d$

and satisfying

$$0 \le \omega \le \overline{\omega}.$$

Since g^+ satisfies the condition (G), we get that $\lim_{\|x\|\to\infty} \overline{\omega} = 0$.

Next, we prove the following lemma.

Lemma 3.1. $\omega > 0$ on \mathbb{R}^d .

Proof. Let $x_k \in B_k$ such that $\omega_k(x_k) = 1$ and suppose that $||x_k|| \to \infty$. Thus, we get

$$1 = \omega_k(x_k) \le \overline{\omega}(x_k) \to 0.$$

Consequently, we can assume that there exists $x_0 \in \mathbb{R}^d$ such that $x_0 = \lim_{k \to \infty} x_k$. Let k_0 be such that $x_k \in B_{k_0}$ for all $k \in \mathbb{N}$. Since

$$\omega_k = \lambda_k \int\limits_{B_k} G^{B_k}(\cdot, y) g(y) \omega_k(y) dy$$

we conclude that the family $\{\omega_k : k \in \mathbb{N}\}$ is equicontinuous and hence

$$\omega(x_0) = \lim_{k \to \infty} \omega_k(x_k) = 1$$

Then, it follows that $\omega > 0$ on \mathbb{R}^d .

3.4. **Proof of Theorem 1.4.** We recall the following theorem (Theorem 1.8 in [12]).

Theorem 3.2. Let μ be a positive Radon measure on \mathbb{R}^d and let f be nonnegative and μ -measurable. Then

$$\int_{\mathbb{R}^d} d\mu = \int_0^\infty \mu\{x : f(x) > t\} dt.$$

Thus, we get the following lemma.

Lemma 3.3. Let μ be a positive Radon measure on \mathbb{R}^d and $x \in \mathbb{R}^d$. Then

$$\int_{\|x-y\| \ge \eta} \frac{d\mu(y)}{\|x-y\|^{d-2}} dy \le (d-2) \int_{\eta}^{\infty} r^{1-d} \mu(B(x,r)) dr.$$

Proof. Using Fubini's Theorem and Theorem 3.2, we obtain

$$\int_{\|x-y\| \ge \eta} \frac{d\mu(y)}{\|x-y\|^{d-2}} dy = (d-2) \int_{0}^{\infty} r^{1-d} \mu(B(x,r) \mathbf{1}_{\{\|x-y\| \ge \eta\}}) dr$$
$$\leq (d-2) \int_{\eta}^{\infty} (\int_{\|x-y\| < r} r^{1-d} d\mu(y)) dr$$
$$\leq (d-2) \int_{\eta}^{\infty} r^{1-d} \mu(B(x,r)) dr.$$

Next, we give the proof of Theorem 1.4.

Since $g^+ \in L^q(\mathbb{R}^d)$, there exists $k \ge 0$ such that for every $x \in \mathbb{R}^d$ and $r \ge 0$, we have

(3.2)
$$\int_{B(x,r)} g^{+}(y) dy \le k \left\| g^{+} \right\|_{q} r^{d\frac{q-1}{q}}.$$

3752

Let $0 < \eta < M$ and $x \in \mathbb{R}^d$ such that ||x|| > M. Using the last lemma and (3.2) we get

$$\begin{split} \int_{\mathbb{R}^d} \frac{g^+(y)}{\|x-y\|^{d-2}} dy &\leq \int_{\|x-y\| \leq \eta} \frac{g^+(y)}{\|x-y\|^{d-2}} dy + (d-2) \int_{\eta}^{\infty} (\int_{B(x,r)} g^+(y) dy) \frac{dr}{r^{d-1}} \\ &\leq \int_{\|x-y\| \leq \eta} \frac{g^+(y)}{\|x-y\|^{d-2}} dy + C(\int_{\eta}^M \int_{B(x,r)} g^+(y) dy \frac{dr}{r^{d-1}} + \int_M^{\infty} r^{d\frac{q-1}{q}} \frac{dr}{r^{d-1}}) \\ &\leq \int_{\|x-y\| \leq \eta} \frac{g^+(y)}{\|x-y\|^{d-2}} dy \\ &+ C((\eta^{2-\frac{d}{q}} - M^{2-\frac{d}{q}})(\int_{\|y\| \geq \|x\| - M} (g^+)^q(y) dy)^{\frac{1}{q}} + \frac{1}{M^{\frac{d}{q}-2}}) \end{split}$$

for some positive constant C.

Finally, let $\epsilon > 0$. We choose, then, η and M such that $C \frac{1}{M^{\frac{d}{q}-2}} < \frac{\epsilon}{3}$ and

$$\sup_{x \in \mathbb{R}^d} \int_{\|x-y\| \le \eta} \frac{g^+(y)}{\|x-y\|^{d-2}} dy < \frac{\epsilon}{3}.$$

Let $A \ge 0$ such that

$$C(\eta^{2-\frac{d}{q}} - M^{2-\frac{d}{q}}) (\int_{\|y\| \ge A} (g^+(y))^q dy)^{\frac{1}{q}} < \frac{\epsilon}{3}.$$

Thus, for $||x|| \ge A + M$, we get

$$C(\eta^{2-\frac{d}{q}} - M^{2-\frac{d}{q}}) (\int_{\|y\| \ge \|x\| - M} (g^+(y))^q dy)^{\frac{1}{q}} < \frac{\epsilon}{3}.$$

Hence, g^+ satisfies the condition (G).

Next, we prove the following statement

Proposition 3.4. Let g be a measurable function such that $g^+ \neq 0$ and

(G'')
$$\int_{\mathbb{R}^d} |g(y)|^p (1 + ||y||^2)^{2p-d} dy < \infty$$

for some $p > \frac{d}{2}$. Then, g is in the Kato-class $K_d(\mathbb{R}^d)$ and there exists $q < \frac{d}{2}$ such that $g^+ \in L^q$.

Proof. By (G''), we get that $g \in L^p$ for $p > \frac{d}{2}$, which implies by a result in [2] that $g \in K_d(\mathbb{R}^d)$. Now, since $p > \frac{d}{2}$, we get that $\frac{dp}{4p-d} < \frac{d}{2}$. Let $\frac{dp}{4p-d} < q < \frac{d}{2}$. Using the fact that $\frac{q}{p} < 1$ and the Hölder inequality we get

$$\int_{\mathbb{R}^d} |g|^q \le \left(\int_{\mathbb{R}^d} |g|^p \left(1 + \|y\|^2\right)^{2p-d} dy\right)^{\frac{1}{p}} \left(\int_{\mathbb{R}^d} \frac{dy}{\left(1 + \|y\|^2\right)^{\frac{(2p-d)q}{p-q}}}\right)^{\frac{p-q}{p}} \le C\left(\int_{0}^{\infty} \frac{r^{d-1} dr}{\left(1 + r^2\right)^{\frac{(2p-d)q}{p-q}}}\right)^{\frac{p-q}{p}}.$$

Using the assumptions on p and q, we get that $g \in L^q$.

3.5. Proof of Theorem 1.5.

Definition 3.5. A Borel function k in \mathbb{R}^d is called Green-bounded if and only if

$$\|k\|_{\mathbb{R}^d} = \sup_{x \in \mathbb{R}^d} \int_{\mathbb{R}^d} \frac{|k(y)|}{\|x - y\|^{d-2}} dy < \infty.$$

Definition 3.6. A Borel function k in \mathbb{R}^d is called Green-tight if and only if

$$k \in K_d^{Loc}(\mathbb{R}^d)$$
 and $\lim_{M \to \infty} \left(\sup_{x \in \mathbb{R}^d} \int_{\|y\| \ge M} \frac{|k(y)|}{\|x - y\|^{d-2}} dy \right) = 0.$

Remark 3.1. Any Green-tight function is Green-bounded.

Remark 3.2. Note that if there exists $\alpha > 2$ and $c \ge 0$ such that $|k(x)| \le \frac{c}{\|x\|^{\alpha}}$ for $\|x\|$ large, then k is Green-tight. In fact we prove the following statement.

Proposition 3.7. Let k be a Borel function in \mathbb{R}^d $(d \ge 3)$. Suppose that k is in K_d^{Loc} and there exists a number L and a positive function $\varphi(r)$ on $[L, \infty[$ with $\int_L^{\infty} \frac{\varphi(r)}{r} dr < \infty$ such that for all $||x|| \ge L$

$$|k(x)| \le \frac{\varphi(||x||)}{||x||^2}.$$

Then k is Green-tight.

For the proof see [14].

3.6. **Proof of Corollary 1.1.** Let $\overline{\omega}$ be the function defined in the proof of Theorem 1.3. Thus, using the results of [11] if $g^+(x) \leq \frac{1}{\|x\|^{\alpha}}$ for $\|x\|$ large and some $\alpha > 2$, then

$$\overline{\omega}(x) = \lambda_1 \int_{B_1} G(x, y) g^+(y) dy \le C \left\|x\right\|^{2-d}$$

for large ||x|| where C is a positive constant. Since the solution ω defined in the previous section is such that $\omega \leq \overline{\omega}$, we get the desired proof.

References

- L. Allegretto: Principal eigenvalues for indefinite weight elliptic problems in ℝ^N. Proc. Amer. Math. Soc., **116** (1992), 701-706. MR **93a**:35114
- [2] M. Aizenman and B. Simon: Brownian motion and Harnack inequality for schrödinger operator. Comm. Pure Appl. Math., 35 (1982), 209-273. MR 84a:35062
- [3] N. Belhaj Rhouma and M. Mosbah: On the existence of positive eigenvalues for linear and nonlinear equations with indefinite weight. Appl. Anal., 81 (2002), 615–625.
- [4] A. Boukricha, W. Hansen and H. Hueber: Continuous of the generalized Schrödinger equation and perturbation of harmonic spaces. Expo. Math., 5 (1987), 97-135. MR 88g:31019
- [5] K.J. Brown, C. Cosner and J. Flekinger: Principal eigenvalues for problems with indefinite weight functions on R^N. Proc. Amer. Math. Soc., 109 (1990), 147-155. MR 90m:35140
- [6] K.J. Brown and A. Tertikas: The existence of principal eigenvalues for problem with indefinite weight functions on R^N. Proc. Royal Soc. Edinburgh., 123 A (1993), 561-569. MR 94i:35136
- [7] W. Hansen: Valeurs propres pour l'opérateurs de schrödinger. Séminaire de Théorie de Potentiel 9. Lecture Notes in Math., 1393 (1989), 117-134.

- [8] W. Hansen and H. Hueber: Eigenvalues in Potential theory. J. Diff. Equ., 73 (1988), 133-152.
- P. Hess and T. Kato: On some linear and nonlinear eigenvalue problems with an indefinite weight functions. Comm. Par. Diff. Equ., 5, (1980). 999-1030. MR 81m:35102
- Z. Jin: Principal eigenvalues with indefinite weight functions. Trans. Amer. Math. Soc., 349 (1997), 1945-1959. MR 97h:35056
- [11] Y.Li and W.M. Ni: On conformal scalar curvature equations in \mathbb{R}^N . Duke Math J., 57 (1988) 895-924. MR 90a:58187
- [12] J. Maly and W.P. Ziemer: Fine Regularity of Solutions of Elliptic Partial Differential equations. Amer. Math. Soc., Mathematical Surveys and Monographs. V 51. MR 98h:35080
- [13] A. Manes and A.M. Micheletti: Un' estesione delle teoria variaziaonale classica degli autovalori per operatori elliptici del secondo ordine. Boll. Un. Mat. Italiana., 7 (1973), 285-301. MR 49:9402
- [14] Z. Zhao: On the existence of positive solutions of nonlinear elliptic equations. A probalistic potential theory approach. Duke. Math. J., 69, (2), (1993), 247-258. MR 94c:35090

Institut Préparatoire aux Études d'Ingénieurs de Tunis, 2, rue Jawaherlel Nehru, 1008 Montfleury, Tunis, Tunisia

E-mail address: Nedra.BelHajRhouma@ipeit.rnu.tn