PRINCIPAL EIGENVALUES FOR INDEFINITE WEIGHT PROBLEMS IN ALL OF \mathbb{R}^{d}

N. BEJHAJ RHOUMA

(Communicated by Juha M. Heinonen)

Abstract

We show the existence of principal eigenvalues of the problem $-\triangle u=\lambda g u$ in \mathbb{R}^{d} where g is an indefinite weight function. The existence of a continuous family of principal eigenvalues is demonstrated. Also, we prove the existence of a principal eigenvalue for which the principal eigenfunction $u \rightarrow 0$ at ∞.

1. Introduction

In this paper, we consider the following eigenvalue problem with indefinite weight:

$$
\begin{cases}\triangle u+\lambda g u=0 & \text { in } \mathbb{R}^{d} \text { in the distributional sense, } \tag{P}\\ u>0 & \text { on } \mathbb{R}^{d}\end{cases}
$$

for the case $d \geq 3$, where g is a function in $K_{d}^{l o c}\left(\mathbb{R}^{d}\right)$ that changes sign (i.e. g is an indefinite weight). A principal eigenvalue of (P) is a positive constant $\left(\lambda_{0}\right)$ for which (P) has a positive solution for $\lambda=\lambda_{0}$.

Recently, a number of authors have investigated the existence of principal eigenvalues for (P).

Brown, Cosner and Fleckinger in 5] showed that if $d \geq 3$ and g is negative and bounded away of from 0 near ∞, then (P) has a principal eigenvalue. Brown and Tertikas in [6] improved the result in [5] if $g^{+}=\max \{g, 0\}$ has a compact support. When g is bounded and $g^{+} \in L^{\frac{d}{2}}\left(\mathbb{R}^{d}\right)$, the existence of one eigenvalue and infinitely many other eigenvalues was proved by Allegretto in [1]. Zhiren Jin in [10] considered the case when g is locally Hölder continuous on \mathbb{R}^{d}. The author proved that if $d \geq 3$, $g\left(x_{0}\right)>0$ for some $x_{0} \in \mathbb{R}^{d}$ and if $\int_{\mathbb{R}^{d}}\left|g^{+}(y)\right|^{\frac{d}{2}} d y<\infty$, then there exists a continuous family of principal eigenvalues for the problem (P). Moreover, the author showed that if in addition there exists $p>\frac{d}{2}$ such that $\int_{\mathbb{R}^{d}}|g(y)|^{p}\left(1+|y|^{2}\right)^{2 p-d} d y<\infty$, then (P) has a principal eigenvalue $\left(\lambda_{0}\right)$ and a positive eigenfunction $u(x)$ such that $u(x)\|x\|^{d-2} \rightarrow c_{0}$ for a nonnegative constant c_{0}.

In our case, we do not give any assumption on the continuity and boundedness for g and we will give a generalisation of the results cited above. In this paper, we assume that $g^{+} \not \equiv 0$, and we shall prove the following main results.

[^0]Theorem 1.1. Let $g \in K_{d}^{L o c}\left(\mathbb{R}^{d}\right)$ and let $G(x, y)$ denote the Green function on \mathbb{R}^{d}. If

$$
\left\|g^{+}\right\|_{\mathbb{R}^{d}}=\sup _{x \in \mathbb{R}^{d}} \int_{\mathbb{R}^{d}} G(x, y) g^{+}(y) d y<\infty
$$

then there exists $\lambda^{*}>0$ such that for all $0<\lambda \leq \lambda^{*}$ there exists a positive continuous solution for the problem (P).

Theorem 1.2. Let g be in the Kato class $K_{d}\left(\mathbb{R}^{d}\right)$ such that $g^{+} \in L^{s}\left(\mathbb{R}^{d}\right)$ for $0<s<\frac{d}{2}$. Then, there exists $\lambda^{*}>0$ such that for all $0<\lambda \leq \lambda^{*}$ there exists a continuous positive solution for the problem (P).
Remark 1.1. Note that if g is bounded, then $g \in K_{d}\left(\mathbb{R}^{d}\right)$.
Theorem 1.3. Let $g \in K_{d}^{\text {Loc }}\left(\mathbb{R}^{d}\right)$ such that

$$
\left\{\begin{array}{l}
\left\|g^{+}\right\|_{\mathbb{R}^{d}}<\infty \tag{G}\\
\lim _{\|x\| \rightarrow \infty}\left(\int_{\mathbb{R}^{d}} \frac{g^{+}(y)}{\|x-y\|^{d-2} d y}\right)=0
\end{array}\right.
$$

Then, (P) has a principal eigenvalue $\lambda^{*}>0$ such that the corresponding eigenfunction u satisfies $\lim _{\|x\| \rightarrow \infty} u(x)=0$.

Remark 1.2. Note that the conditions of Theorem 1.3 are less restrictive than the conditions of Zhiren Jin [10], where the author imposed that g is locally Hölder continuous such that $g^{+} \in L^{\frac{d}{2}}$ and

$$
\int_{\mathbb{R}^{d}}|g(y)|^{p}\left(1+\|y\|^{2}\right)^{2 p-d} d y<\infty
$$

for some $p>\frac{d}{2}$. Indeed, any function in $L^{p}\left(p>\frac{d}{2}\right)$ is in $K_{d}\left(\mathbb{R}^{d}\right)$ and we will show in Proposition 3.4 that any function which satisfies the condition $\left(G^{\prime \prime}\right)$ lies in $L^{s}\left(\mathbb{R}^{d}\right)$ for some $s<\frac{d}{2}$ and hence satisfies the condition (G). Moreover, we show the following general statement:

Theorem 1.4. Let g be in the Kato class $K_{d}\left(\mathbb{R}^{d}\right)$ such that $g^{+} \in L^{q}$ for some $q<\frac{d}{2}$. Then the result of Theorem 1.3 holds.

Theorem 1.5. Let $g \in K_{d}^{\text {Loc }}\left(\mathbb{R}^{d}\right)$ such that g^{+}is a Green tight function in \mathbb{R}^{d}; namely, g^{+}is a Borel measurable function in \mathbb{R}^{d} satisfying that

$$
\text { The family }\left\{\frac{g^{+}(.)}{\|\cdot-y\|^{d-2}}\right\} \text { is uniformly integrable }
$$

over \mathbb{R}^{d} with the parameter $y \in \mathbb{R}^{d}$. Then (P) has a principal eigenvalue λ^{*} and a positive eigenfunction u such that $\lim _{\|x\| \rightarrow \infty} u(x)=0$.

Moreover, we prove the following statement:
Corollary 1.1. We suppose that $g^{+}(x) \leq \frac{1}{\|x\|^{\alpha}}$ for $\|x\|$ large and some $\alpha>2$. Then there exists λ^{*} such that the problem (P) has a positive continuous eigenfunction such that $|u(x)| \leq c\|x\|^{2-d}$ for large $\|x\|$.

2. Preliminary

Next, we recall from [2] the following definition:
Definition 2.1. A function V is said to be in $K_{d}^{\text {loc }}\left(\mathbb{R}^{d}\right)$ if and only if, for every $R \geq 0$,

$$
\lim _{r \rightarrow 0}\left(\sup _{\|x\| \leq R} \int_{\|x-y\| \leq r} G(x, y)|V(y)| d y\right)=0
$$

A function V is said to be in $K_{d}\left(\mathbb{R}^{d}\right)$ if and only if

$$
\lim _{r \rightarrow 0}\left(\sup _{x \in \mathbb{R}^{d}} \int_{\|x-y\| \leq r} G(x, y)|V(y)| d y\right)=0
$$

$G(x, y)$ is the Green function associated to the Laplace operator and $d y$ is the Lebesgue measure on \mathbb{R}^{d}.
Definition 2.2. For a bounded domain Ω in \mathbb{R}^{d} let $G^{\Omega}(x, y)$ be the Green function defined on $\Omega \times \Omega$. We define the kernel associated to V by

$$
K_{\Omega}^{V}=\int_{\Omega} G^{\Omega}(., y) V(y) d y
$$

and for every measurable function g, we define

$$
K_{\Omega}^{V} g=K_{\Omega}(V g)=\int_{\Omega} G^{\Omega}(., y) V(y) g(y) d y
$$

In this paper, we say that $u=0$ on $\partial \Omega$ if $u\left(x_{n}\right) \rightarrow 0$ for every regular sequence $\left(x_{n}\right)$ in Ω. Particularly, if Ω is regular, then $u\left(x_{n}\right) \rightarrow 0$ for every sequence $\left(x_{n}\right)$ converging to $z \in \partial \Omega$.

As in [4], we denote by $S_{b}^{V}(\Omega)$ the set of bounded functions u such that $u+K_{\Omega}^{V} u$ is a superharmonic function in Ω. If $V=0$, we will note $S_{b}^{V}(\Omega)=S_{b}(\Omega)$. Next, we recall the following definition (see 8]).
Definition 2.3. We say that the operator $I+K_{\Omega}^{V}$ is positive-invertible if the operator $I+K_{\Omega}^{V}: B_{b}(\Omega) \rightarrow B_{b}(\Omega)$ is invertible and for every function $s \in S_{b}^{+}(\Omega)$, we have $\left(I+K_{\Omega}^{V}\right)^{-1} s \geq 0$.

Without loss of generality, set $g=g_{1}-g_{2}$ with $g_{2}>0, g_{1}>m>0$.
Since $K g_{1}$ is a strict potential in Ω, then by Theorem 4.1 in [8], for any $\lambda>0$ there exists a unique principal eigenvalue $\zeta(\lambda, \Omega)>0$ and a continuous eigenfunction $u_{\lambda}>0$ on Ω such that

$$
\Xi(\lambda, \Omega)\left\{\begin{array}{lc}
\triangle u_{\lambda}-\lambda g_{2} u_{\lambda}+\zeta(\lambda, \Omega) g_{1} u_{\lambda}=0 \text { in } \Omega \text { in the distributional sense, } \\
u_{\lambda}>0 & \text { in } \Omega \\
u_{\lambda}=0 & \text { on } \partial \Omega
\end{array}\right.
$$

Using a result in [3] the function $\lambda \rightarrow \zeta(\lambda, \Omega)$ is continuous and for some $0<$ $\lambda<\mu$, we have $\zeta(\lambda, \Omega)-\lambda>0>\zeta(\mu, \Omega)-\mu$, whence $\zeta(\lambda, \Omega)=\lambda$ for some λ. If $\lambda(\Omega)=\inf \{\lambda>0: \zeta(\lambda, \Omega)=\lambda\}$, then $\lambda(\Omega)$ is a principal eigenvalue for

$$
E(\lambda, \Omega) \quad\left\{\begin{array}{l}
\triangle u+\lambda g u=0 \text { in } \Omega \text { in the distributional sense, } \\
u>0 \text { in } \Omega \\
u=0 \text { in } \partial \Omega
\end{array}\right.
$$

Remark 2.1. The map $\lambda \rightarrow \lambda(\Omega)$ is decreasing. Indeed, let $\Omega_{1} \subset \Omega$ and set $\alpha=$ $\lambda\left(\Omega_{1}\right), \beta=\lambda(\Omega)$. Then, using Theorem 3.5 in [8], we obtain $\alpha=\zeta\left(\alpha, \Omega_{1}\right) \geq \zeta(\alpha, \Omega)$. Since for λ small we have $\lambda<\zeta(\lambda, \Omega)$, we get the existence of $\omega \leq \alpha$ such that $\omega=\zeta(\omega, \Omega)$ which yields that $\beta \leq \alpha$.

3. Construction of solutions of (P)

Let $g=g^{+}-g^{-}$where $g^{+}(x)=\max \{g(x), 0\}$ and $g^{-}(x)=\max \{-g(x), 0\}$. We suppose that $\left\|g^{+}\right\|_{\mathbb{R}^{d}}<\infty$. Note that if G^{Ω} denotes the Green function on Ω, then

$$
K_{\Omega} g^{+}=\int_{\Omega} G^{\Omega}(., y) g^{+}(y) d y \leq c(d)\left\|g^{+}\right\|_{\mathbb{R}^{d}}
$$

where $c(d)$ is a constant depending only on the dimension d.
We see that if u_{λ} is a solution of $E(\lambda, \Omega)$ with $\left\|u_{\lambda}\right\|_{\infty}=1$, then

$$
\lambda(\Omega)=\frac{u_{\lambda}+\lambda(\Omega) K_{\Omega} g^{-}(u)}{K_{\Omega} g^{+}(u)} \geq \frac{u_{\lambda}}{c(d)\left\|g^{+}\right\|_{\mathbb{R}^{d}}}
$$

Hence

$$
\lambda(\Omega) \geq \frac{1}{c(d)\left\|g^{+}\right\|_{\mathbb{R}^{d}}}
$$

By Remark 2.1 since the map $\Omega \rightarrow \lambda(\Omega)$ is decreasing, then

$$
\lambda^{*}=\inf _{\Omega \subset \mathbb{R}^{d}} \lambda(\Omega)>0
$$

3.1. Proof of Theorem 1.1, Next, let $0<\mu \leq \lambda^{*}$. Then for all bounded domains $\Omega \subset \mathbb{R}^{d}$ we have $\mu<\lambda(\Omega)$.

Next, we claim that $\mu<\zeta(\mu, \Omega)$. Indeed, assume that $\mu>\zeta(\mu, \Omega)$. By using that for λ small we have $\lambda<\zeta(\lambda, \Omega)$, we get the existence of $\lambda \in] 0, \mu[$ such that $\lambda=\zeta(\lambda, \Omega)$ which is impossible by the definition of $\lambda(\Omega)$. Hence, by Theorem 3.8 in [8], the operator $\left(I-\mu K_{\Omega}^{g}\right)$ is positive-invertible and for every $f \in C(\partial \Omega)$ there exists a function u_{f} satisfying

$$
\begin{cases}\triangle u_{f}+\mu g u_{f}=0 & \text { in } \Omega \\ u_{f}=f & \text { on } \partial \Omega .\end{cases}
$$

Moreover $u_{f}>0$ on the set $\{f>0\}$.
Let B_{n} be the ball centered at origin with radius $n, n=1,2, \ldots$. Then for each $n \in \mathbb{N}^{*}$, the boundary value problem

$$
\begin{cases}\triangle u_{n}+\mu g u_{n}=0 & \text { in } B_{n} \tag{n}\\ u_{n}=n & \text { on } \partial B_{n}\end{cases}
$$

has a solution $u_{n}>0$ on B_{n}. We normalize $u_{n}(x)$ by setting $u_{n}(0)=1$. Then

$$
\left\{\begin{array}{l}
\triangle u_{n}+\mu g u_{n}=0 \text { in } B_{n}, \tag{3.1}\\
u_{n}>0 \\
u_{n}(0)=1 .
\end{array}\right.
$$

By Harnack's inequality for positive solutions of elliptic equations (see [2]), we see that for any compact set Ω on \mathbb{R}^{d}, there are constants N and M (where M depends only on Ω, μ and g, N depends only on Ω) such that

$$
0<u_{n} \leq M \text { on } \Omega \text { for } n \geq N
$$

Then it is clear that $\left(u_{n}\right)_{n}$ has a subsequence which converges to a continuous nonnegative function u on any compact subset of \mathbb{R}^{d}.

Therefore

$$
\begin{cases}\triangle u+\mu g u=0 & \text { in } \mathbb{R}^{d}, \\ u \geq 0 & \text { on } \mathbb{R}^{d}, \\ u(0)=1 . & \end{cases}
$$

Now, by an application of the minimum principle in [7], we get that $u>0$ in every bounded domain of \mathbb{R}^{d} and hence $u>0$ on \mathbb{R}^{d}.
3.2. Proof of Theorem 1.2, Since $g^{+} \in K_{d}\left(\mathbb{R}^{d}\right)$, then there exists $\delta>0$ such that

$$
\sup _{x \in \mathbb{R}^{d}} \int_{\|x-y\| \leq \delta} \frac{g^{+}(y)}{\|x-y\|^{d-2}} d y \leq 1 .
$$

Hölder's inequality implies

$$
\begin{aligned}
\int_{\mathbb{R}^{d}-B(x, \delta)} \frac{g^{+}(y)}{\|x-y\|^{d-2}} d y & \leq\left\|g^{+}\right\|_{s}\left(\int_{\mathbb{R}^{d}-B(x, \delta)} \frac{1}{\|x-y\|^{(d-2) s^{\prime}}} d y\right)^{\frac{1}{s^{\prime}}} \\
& =\left|B_{1}\right|\left\|g^{+}\right\|_{s}\left(\int_{\delta}^{\infty} r^{d-1-s^{\prime}(d-2)} d s\right)^{\frac{1}{s^{\prime}}} \\
& =\left|B_{1}\right|\left\|g^{+}\right\|_{s} \delta^{2-\frac{d}{s}}
\end{aligned}
$$

The result now follows from Theorem 1.1
3.3. Proof of Theorem 1.3. For each $k \in \mathbb{N}^{*}$, let us denote by $\lambda_{k}=\lambda\left(B_{k}\right)$ and by ω_{k} the principle eigenfunction to the problem

$$
E\left(\lambda, B_{k}\right) \quad\left\{\begin{array}{l}
\triangle u+\lambda_{k} g u=0 \text { in } B_{k} \\
u>0 \quad \text { on } B_{k}, \\
u=0 \quad \text { on } \partial B_{k}
\end{array}\right.
$$

The functions ω_{k} are chosen such that $\left\|\omega_{k}\right\|_{\infty}=1$.
Next, let $\bar{\omega}=\lambda_{1} \int_{\mathbb{R}^{d}} G(x, y) g^{+}(y) d y$. Thus

$$
\left\{\begin{array}{c}
\Delta \bar{\omega}=-\lambda_{1} g^{+} \\
\lim _{\|x\| \rightarrow \infty} \bar{\omega}(x)=0
\end{array}\right.
$$

By Remark 2.1 the sequence λ_{k} is decreasing. Hence on B_{k}, we have

$$
\begin{aligned}
\triangle\left(\omega_{k}-\bar{\omega}\right) & =-\lambda_{k} g \omega_{k}+\lambda_{1} g^{+} \\
& =\lambda_{1} g^{+}\left(1-\omega_{k}\right)+\lambda_{k} g^{-} \omega_{k}+\left(\lambda_{1}-\lambda_{k}\right) g^{+} \omega_{k} \\
& \geq 0
\end{aligned}
$$

Since $\omega_{k} \leq \bar{\omega}$ on ∂B_{k}, we get $\omega_{k} \leq \bar{\omega}$ on B_{k}. Thus, we can choose a subsequence of $\left(\omega_{k}\right)_{k}$ which converges uniformly on every compact of \mathbb{R}^{d} to a nonnegative function w such that

$$
\triangle \omega+\lambda^{*} g \omega=0 \quad \text { in } \mathbb{R}^{d}
$$

and satisfying

$$
0 \leq \omega \leq \bar{\omega}
$$

Since g^{+}satisfies the condition (G), we get that $\lim _{\|x\| \rightarrow \infty} \bar{\omega}=0$.

Next, we prove the following lemma.
Lemma 3.1. $\omega>0$ on \mathbb{R}^{d}.
Proof. Let $x_{k} \in B_{k}$ such that $\omega_{k}\left(x_{k}\right)=1$ and suppose that $\left\|x_{k}\right\| \rightarrow \infty$. Thus, we get

$$
1=\omega_{k}\left(x_{k}\right) \leq \bar{\omega}\left(x_{k}\right) \rightarrow 0
$$

Consequently, we can assume that there exists $x_{0} \in \mathbb{R}^{d}$ such that $x_{0}=\lim _{k \rightarrow \infty} x_{k}$. Let k_{0} be such that $x_{k} \in B_{k_{0}}$ for all $k \in \mathbb{N}$. Since

$$
\omega_{k}=\lambda_{k} \int_{B_{k}} G^{B_{k}}(\cdot, y) g(y) \omega_{k}(y) d y
$$

we conclude that the family $\left\{\omega_{k}: k \in \mathbb{N}\right\}$ is equicontinuous and hence

$$
\omega\left(x_{0}\right)=\lim _{k \rightarrow \infty} \omega_{k}\left(x_{k}\right)=1
$$

Then, it follows that $\omega>0$ on \mathbb{R}^{d}.
3.4. Proof of Theorem 1.4. We recall the following theorem (Theorem 1.8 in [12]).
Theorem 3.2. Let μ be a positive Radon measure on \mathbb{R}^{d} and let f be nonnegative and μ-measurable. Then

$$
\int_{\mathbb{R}^{d}} d \mu=\int_{0}^{\infty} \mu\{x: f(x)>t\} d t
$$

Thus, we get the following lemma.
Lemma 3.3. Let μ be a positive Radon measure on \mathbb{R}^{d} and $x \in \mathbb{R}^{d}$. Then

$$
\int_{\|x-y\| \geq \eta} \frac{d \mu(y)}{\|x-y\|^{d-2}} d y \leq(d-2) \int_{\eta}^{\infty} r^{1-d} \mu(B(x, r) d r
$$

Proof. Using Fubini's Theorem and Theorem 3.2 we obtain

$$
\begin{aligned}
\int_{\|x-y\| \geq \eta} \frac{d \mu(y)}{\|x-y\|^{d-2}} d y & =(d-2) \int_{0}^{\infty} r^{1-d} \mu\left(B(x, r) 1_{\{\|x-y\| \geq \eta\}}\right) d r \\
& \leq(d-2) \int_{\eta}^{\infty}\left(\int_{\|x-y\|<r} r^{1-d} d \mu(y)\right) d r \\
& \leq(d-2) \int_{\eta}^{\infty} r^{1-d} \mu(B(x, r) d r
\end{aligned}
$$

Next, we give the proof of Theorem 1.4.
Since $g^{+} \in L^{q}\left(\mathbb{R}^{d}\right)$, there exists $k \geq 0$ such that for every $x \in \mathbb{R}^{d}$ and $r \geq 0$, we have

$$
\begin{equation*}
\int_{B(x, r)} g^{+}(y) d y \leq k\left\|g^{+}\right\|_{q} r^{d \frac{q-1}{q}} \tag{3.2}
\end{equation*}
$$

Let $0<\eta<M$ and $x \in \mathbb{R}^{d}$ such that $\|x\|>M$. Using the last lemma and (3.2) we get

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}} \frac{g^{+}(y)}{\|x-y\|^{d-2}} d y \leq \int_{\|x-y\| \leq \eta} \frac{g^{+}(y)}{\|x-y\|^{d-2}} d y+(d-2) \int_{\eta}^{\infty}\left(\int_{B(x, r)} g^{+}(y) d y\right) \frac{d r}{r^{d-1}} \\
& \quad \leq \int_{\|x-y\| \leq \eta} \frac{g^{+}(y)}{\|x-y\|^{d-2}} d y+C\left(\int_{\eta}^{M} \int_{B(x, r)}^{\infty} g^{+}(y) d y \frac{d r}{r^{d-1}}+\int_{M}^{\infty} r^{d \frac{q-1}{q}} \frac{d r}{r^{d-1}}\right) \\
& \leq \int_{\|x-y\| \leq \eta} \frac{g^{+}(y)}{\|x-y\|^{d-2}} d y \\
& \quad+C\left(\left(\eta^{2-\frac{d}{q}}-M^{2-\frac{d}{q}}\right)\left(\int_{\|y\| \geq\|x\|-M}\left(g^{+}\right)^{q}(y) d y\right)^{\frac{1}{q}}+\frac{1}{M^{\frac{d}{q}-2}}\right)
\end{aligned}
$$

for some positive constant C.
Finally, let $\epsilon>0$. We choose, then, η and M such that $C \frac{1}{M^{\frac{d}{q}-2}}<\frac{\epsilon}{3}$ and

$$
\sup _{x \in \mathbb{R}^{d}} \int_{\|x-y\| \leq \eta} \frac{g^{+}(y)}{\|x-y\|^{d-2}} d y<\frac{\epsilon}{3}
$$

Let $A \geq 0$ such that

$$
C\left(\eta^{2-\frac{d}{q}}-M^{2-\frac{d}{q}}\right)\left(\int_{\|y\| \geq A}\left(g^{+}(y)\right)^{q} d y\right)^{\frac{1}{q}}<\frac{\epsilon}{3}
$$

Thus, for $\|x\| \geq A+M$, we get

$$
C\left(\eta^{2-\frac{d}{q}}-M^{2-\frac{d}{q}}\right)\left(\int_{\|y\| \geq\|x\|-M}\left(g^{+}(y)\right)^{q} d y\right)^{\frac{1}{q}}<\frac{\epsilon}{3}
$$

Hence, g^{+}satisfies the condition (G).
Next, we prove the following statement
Proposition 3.4. Let g be a measurable function such that $g^{+} \not \equiv 0$ and

$$
\int_{\mathbb{R}^{d}}|g(y)|^{p}\left(1+\|y\|^{2}\right)^{2 p-d} d y<\infty
$$

for some $p>\frac{d}{2}$. Then, g is in the Kato-class $K_{d}\left(\mathbb{R}^{d}\right)$ and there exists $q<\frac{d}{2}$ such that $g^{+} \in L^{q}$.

Proof. By $\left(G^{\prime \prime}\right)$, we get that $g \in L^{p}$ for $p>\frac{d}{2}$, which implies by a result in [2] that $g \in K_{d}\left(\mathbb{R}^{d}\right)$. Now, since $p>\frac{d}{2}$, we get that $\frac{d p}{4 p-d}<\frac{d}{2}$. Let $\frac{d p}{4 p-d}<q<\frac{d}{2}$. Using the fact that $\frac{q}{p}<1$ and the Hölder inequality we get

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}|g|^{q} & \leq\left(\int_{\mathbb{R}^{d}}|g|^{p}\left(1+\|y\|^{2}\right)^{2 p-d} d y\right)^{\frac{1}{p}}\left(\int_{\mathbb{R}^{d}} \frac{d y}{\left(1+\|y\|^{2}\right)^{\frac{(2 p-d) q}{p-q}}}\right)^{\frac{p-q}{p}} \\
& \leq C\left(\int_{0}^{\infty} \frac{r^{d-1} d r}{\left(1+r^{2}\right) \frac{(2 p-d) q}{p-q}}\right)^{\frac{p-q}{p}} .
\end{aligned}
$$

Using the assumptions on p and q, we get that $g \in L^{q}$.

3.5. Proof of Theorem 1.5,

Definition 3.5. A Borel function k in \mathbb{R}^{d} is called Green-bounded if and only if

$$
\|k\|_{\mathbb{R}^{d}}=\sup _{x \in \mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{|k(y)|}{\|x-y\|^{d-2}} d y<\infty
$$

Definition 3.6. A Borel function k in \mathbb{R}^{d} is called Green-tight if and only if

$$
k \in K_{d}^{L o c}\left(\mathbb{R}^{d}\right) \quad \text { and } \quad \lim _{M \rightarrow \infty}\left(\sup _{x \in \mathbb{R}^{d}} \int_{\|y\| \geq M} \frac{|k(y)|}{\|x-y\|^{d-2}} d y\right)=0 .
$$

Remark 3.1. Any Green-tight function is Green-bounded.
Remark 3.2. Note that if there exists $\alpha>2$ and $c \geq 0$ such that $|k(x)| \leq \frac{c}{\|x\|^{\alpha}}$ for $\|x\|$ large, then k is Green-tight. In fact we prove the following statement.
Proposition 3.7. Let k be a Borel function in $\mathbb{R}^{d}(d \geq 3)$. Suppose that k is in $K_{d}^{L o c}$ and there exists a number L and a positive function $\varphi(r)$ on $[L, \infty[$ with $\int_{L}^{\infty} \frac{\varphi(r)}{r} d r<\infty$ such that for all $\|x\| \geq L$

$$
|k(x)| \leq \frac{\varphi(\|x\|)}{\|x\|^{2}} .
$$

Then k is Green-tight.
For the proof see [14.
3.6. Proof of Corollary 1.1, Let $\bar{\omega}$ be the function defined in the proof of Theorem 1.3 Thus, using the results of [11] if $g^{+}(x) \leq \frac{1}{\|x\|^{\alpha}}$ for $\|x\|$ large and some $\alpha>2$, then

$$
\bar{\omega}(x)=\lambda_{1} \int_{B_{1}} G(x, y) g^{+}(y) d y \leq C\|x\|^{2-d}
$$

for large $\|x\|$ where C is a positive constant. Since the solution ω defined in the previous section is such that $\omega \leq \bar{\omega}$, we get the desired proof.

References

[1] L. Allegretto: Principal eigenvalues for indefinite weight elliptic problems in \mathbb{R}^{N}. Proc. Amer. Math. Soc., 116 (1992), 701-706. MR 93a:35114
[2] M. Aizenman and B. Simon: Brownian motion and Harnack inequality for schrödinger operator. Comm. Pure Appl. Math., 35 (1982), 209-273. MR 84a:35062
[3] N. Belhaj Rhouma and M. Mosbah: On the existence of positive eigenvalues for linear and nonlinear equations with indefinite weight. Appl. Anal., 81 (2002), 615-625.
[4] A. Boukricha, W. Hansen and H. Hueber: Continuous of the generalized Schrödinger equation and perturbation of harmonic spaces. Expo. Math., 5 (1987), 97-135. MR 88g:31019
[5] K.J. Brown, C. Cosner and J. Flekinger: Principal eigenvalues for problems with indefinite weight functions on \mathbb{R}^{N}. Proc. Amer. Math. Soc., 109 (1990), 147-155. MR 90m:35140
[6] K.J. Brown and A. Tertikas: The existence of principal eigenvalues for problem with indefinite weight functions on \mathbb{R}^{N}. Proc. Royal Soc. Edinburgh., 123 A (1993), 561-569. MR 94i:35136
[7] W. Hansen: Valeurs propres pour l'opérateurs de schrödinger. Séminaire de Théorie de Potentiel 9. Lecture Notes in Math., 1393 (1989), 117-134.
[8] W. Hansen and H. Hueber: Eigenvalues in Potential theory. J. Diff. Equ., 73 (1988), 133-152.
[9] P. Hess and T. Kato: On some linear and nonlinear eigenvalue problems with an indefinite weight functions. Comm. Par. Diff. Equ., 5, (1980). 999-1030. MR 81m:35102
[10] Z. Jin: Principal eigenvalues with indefinite weight functions. Trans. Amer. Math. Soc., 349 (1997), 1945-1959. MR 97h:35056
[11] Y.Li and W.M. Ni: On conformal scalar curvature equations in \mathbb{R}^{N}. Duke Math J., 57 (1988) 895-924. MR 90a:58187
[12] J. Maly and W.P. Ziemer: Fine Regularity of Solutions of Elliptic Partial Differential equations. Amer. Math. Soc., Mathematical Surveys and Monographs. V 51. MR 98h:35080
[13] A. Manes and A.M. Micheletti: Un' estesione delle teoria variaziaonale classica degli autovalori per operatori elliptici del secondo ordine. Boll. Un. Mat. Italiana., 7 (1973), 285-301. MR 49:9402
[14] Z. Zhao: On the existence of positive solutions of nonlinear elliptic equations. A probalistic potential theory approach. Duke. Math. J., 69, (2), (1993), 247-258. MR 94c:35090

Institut Préparatoire aux Études D’Ingénieurs de Tunis, 2, rue Jawaherlel Nehru, 1008 Montfleury, Tunis, Tunisia

E-mail address: Nedra.BelHajRhouma@ipeit.rnu.tn

[^0]: Received by the editors November 20, 2001 and, in revised form, June 25, 2002.
 2000 Mathematics Subject Classification. Primary 31B20, 35J25, 35P05.
 Key words and phrases. Indefinite weight, eigenvalue, Kato-class, Green function.

