PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 131, Number 12, Pages 3913–3917 S 0002-9939(03)06969-7 Article electronically published on March 25, 2003

AN EXAMPLE OF A C-MINIMAL GROUP WHICH IS NOT ABELIAN-BY-FINITE

PATRICK SIMONETTA

(Communicated by Carl G. Jockusch, Jr.)

ABSTRACT. In 1996 D. Macpherson and C. Steinhorn introduced C-minimality as an analogue, for valued fields and some groups with a definable chain of normal subgroups with trivial intersection, of the notion of o-minimality. One of the open questions of that paper was the existence of a non abelian-by-finite C-minimal group. We give here the first example of such a group.

1. Introduction

The notion of o-minimality has undergone a very important development in recent years and has found many applications, for example in the study of expansions of real closed fields by analytic functions. Recall that o-minimal structures are totally ordered structures in which the parameter-definable subsets are finite unions of intervals with endpoints in the structure. More recently D. Macpherson and C. Steinhorn introduced C-minimality in [5] as a variant of the notion of o-minimality. In a C-minimal structure, a ternary relation, with some specific properties, the C-relation plays the role analogous to the order in an o-minimal structure: any parameter-definable subset is quantifier-free definable with formulae using just the C-relation and equality. Such relations arise naturally in valued groups and fields. Less developed than o-minimality for the moment, this notion has already led to some promising results (see [5] and [1]). It applies to expansions of algebraically closed valued fields ([4]), and may be expected to have a development in some ways analogous to o-minimality (see [1]). Some of the tools of stability can be developed in this context ([2], [3]). Notwithstanding, some basic questions remain: while, as in the o-minimal case, C-minimal fields are characterized, they are exactly the algebraically closed valued fields, C-minimal groups are far less understood than the o-minimal: we do not know which groups can be endowed with a C-minimal structure. There are many examples of abelian C-minimal groups (see [5], [7]) and it is easy to construct non-abelian C-minimal groups by adding a finite non-abelian group to an abelian C-minimal group as a direct summand. However, up to now, there have been no examples of non-abelian-by-finite C-minimal groups. In this paper we give such an example, the first one as far as I know, answering a

Received by the editors May 25, 2001 and, in revised form, July 25, 2002.

²⁰⁰⁰ Mathematics Subject Classification. Primary 03C60; Secondary 20F18.

Key words and phrases. C-minimal groups, C-minimality, o-minimality, algebraically closed valued fields, nilpotent groups.

question of D. Macpherson. While C-minimality is proved in general using a quantifier elimination result, our group is obtained as a reduct of some ring interpretable in an algebraically closed valued field, and we do not even know its theory. Note that a natural question that arises when studying algebraically closed valued fields is to determine which groups are interpretable in such a structure; our group will appear naturally in that context.

2.

The following definitions can be found in [5] (when we say "definable" we always mean "parameter-definable"):

- A C-structure is a structure (M,C) where C(x;y,z) is a ternary relation satisfying the following axioms:

 - $\begin{array}{l} -\overset{\circ}{\mathcal{C}}_{1}\colon\forall xyz\;(C(x;y,z)\longrightarrow C(x;z,y));\\ -\overset{\circ}{\mathcal{C}}_{2}\colon\forall xyz\;(C(x;y,z)\longrightarrow \neg C(y;x,z));\\ -\overset{\circ}{\mathcal{C}}_{3}\colon\forall xyzw\;[C(x;y,z)\longrightarrow (C(w;y,z)\vee C(x;w,z))]; \end{array}$
 - \mathcal{C}_4 : $\forall xy \exists z \ [x \neq y \longrightarrow (y \neq z \land C(x; y, z))].$
- An expansion $\mathbb{M} = (M, C, ...)$ of a C-structure (M, C) is C-minimal if for every elementary extension $\mathbb{M}' = (M', C, ...)$ of \mathbb{M} , any definable subset of M' is quantifier-free definable in (M',C), that is, by a quantifier-free formula of the language containing only the C-relation and the equality.
- A C-group is a structure $\mathbb{G} = (G, C, \cdot, ^{-1}, 1)$, where $(G, \cdot, ^{-1}, 1)$ is a group, C is a C-relation and \mathbb{G} satisfies:

$$\forall xyzuv \; (C(x;y,z) \longleftrightarrow C(uxv;uyv,uzv)).$$

A C-field is a structure $\mathbb{F} = (F, C, +, -, \cdot, 0, 1)$, where $(F, +, -, \cdot, 0, 1)$ is a field, and C is a C-relation for which both the additive group and the multiplicative group of \mathbb{F} are C-groups.

Let $\mathbb{F} = (F, +, -, \cdot, 0, 1)$ be a field. From any non-trivial (Krull) valuation v from F to an ordered abelian group, we can define a C-relation on F by setting

$$C(x; y, z)$$
 iff $v(z - y) > v(z - x)$

and this makes $(\mathbb{F}, C) = (F, +, -, \cdot, 0, 1, C)$ into a C-field. Conversely, any C-field can be made into a valued field such that the C-relation and the valuation satisfy the relation above. It was shown in [5] and [1] that the C-minimal C-fields correspond to the algebraically closed valued fields. With the induced C-relation, the additive group and the multiplicative group of a C-minimal C-field \mathbb{F} are C-minimal groups.

Let $(\mathbb{F}, C) = (F, +, -, \cdot, 0, 1, C)$ be an algebraically closed C-field and v the corresponding valuation. We use the following notations (for basics on Krull valuations see [6]): Γ is the valuation group of (F,v), $A_v = \{x \in F \mid v(x) \geq 0\}$ the valuation ring and $M_v = \{x \in F \mid v(x) > 0\}$ its maximal ideal. For any $\gamma \in \Gamma$, $A_{\gamma} = \{x \in F \mid v(x) \geqslant \gamma\}$ and $M_{\gamma} = \{x \in F \mid v(x) > \gamma\}$. We also write $A_{\infty} = \{0\}$ where ∞ is the valuation of 0 (∞ does not belong to the group Γ and is greater than any element of Γ). The C-field (\mathbb{F}, C) being C-minimal, we can easily describe its definable subsets (see [5] for details): any definable subset of any structure elementarily equivalent to (\mathbb{F}, C) is a disjoint union of "truncated cones". A truncated cone in F can be described as a set

$$D = (a_0 + D_0) \setminus ((a_1 + D_1) \cup ... \cup (a_n + D_n))$$

where $a_0, ..., a_n$ are elements of F and $D_0, ..., D_n$ are equal either to F or to some A_{γ} , or to some M_{γ} , where $\gamma \in \Gamma \cup \{\infty\}$. We may assume that $a_1 + D_1, ..., a_n + D_n$ are disjoint subsets of $a_0 + D_0$. We allow the case where n = 0 and $D = a_0 + D_0$. Remember how these subsets are definable from the C-relation: if $v(u) = \gamma$, then $a + A_{\gamma} = \{x \in F \mid \neg C(x; a + u, a)\}$ and $a + M_{\gamma} = \{x \in F \mid C(a + u; x, a)\}$.

For any strictly positive γ , the ring $V_{\gamma} = A_v/A_{\gamma}$ can be endowed with the C-relation induced by C: for any $x,y,z\in A_v$, $C'(x+A_{\gamma};y+A_{\gamma},z+A_{\gamma})$ holds if and only if C(x;y,z) holds and $z-x\not\in A_{\gamma}$. Note that the last axiom for C-relations holds because the interval $[0,\gamma)$ in Γ has no last element since Γ is divisible. On the other hand, since \mathbb{V}_{γ} is not a domain, the compatibility of the C-relation with the product is no longer true. We will call the structure $(\mathbb{V}_{\gamma},C')=(V_{\gamma},+,-,\cdot,0,1,C')$ a C-ring, and denote by s_{γ} the canonical morphism from A_v to V_{γ} . Although C-minimality is not preserved in general by interpretations, we have

Lemma 2.1. For any strictly positive γ the C-ring $(\mathbb{V}_{\gamma}, C')$ is C-minimal.

Proof. Every definable subset of V_{γ} is the image by s_{γ} of a definable subset of A_v which is, by C-minimality of (\mathbb{F},C) , a disjoint union of truncated cones included in A_v . Obviously, the parameters used to define these truncated cones can be taken from A_v . It is easy to see that the image by s_{γ} of a truncated cone of A_v is a truncated cone of V_{γ} . We conclude that every definable subset of $(\mathbb{V}_{\gamma}, C')$ is a disjoint union of truncated cones.

To prove that $(\mathbb{V}_{\gamma}, C')$ is C-minimal we need to verify that every definable subset of every structure elementarily equivalent to $(\mathbb{V}_{\gamma}, C')$ is a disjoint union of truncated cones. But every such structure \mathbb{M} is an elementary substructure of an ultrapower $\mathbb{N}^{\#}$ of $(\mathbb{V}_{\gamma}, C')$, and such an ultrapower is interpretable by the same means in an algebraically closed C-field. Thus we can apply the preceding argument to $N^{\#}$, and every formula $\phi(\overline{a}, x)$ with parameters in M is equivalent in $N^{\#}$ to a formula $\psi(\overline{b}, x)$ (with parameters in N) where $\psi(\overline{y}, x)$ is a quantifier-free formula of the language containing only the C-relation and the equality. As \mathbb{M} is an elementary substructure $\mathbb{N}^{\#}$, we can find $\overline{c} \in M$ such that $\phi(\overline{a}, x)$ is equivalent in M to $\psi(\overline{c}, x)$.

From now on we assume that \mathbb{F} has characteristic p > 0.

We define a new operation on A_v : let T be an element of $M_v \setminus \{0\}$, for any $a, b \in A_v$,

$$a * b = a + b + Ta^p b.$$

This operation has the following properties (easy to verify and left to the reader): for $a, b, c \in A_v$,

- (i) for every positive γ , A_{γ} and M_{γ} are stable under *.
- (ii) $(a*b)*c = (a+b+Ta^pb)+c+T(a+b+Ta^pb)^pc = a+b+c+T(a^pb+a^pc+b^pc)+T^{p+1}a^{p^2}b^pc$ and $a*(b*c) = a+b+c+Tb^pc+Ta^p(b+c+Tb^pc) = a+b+c+T(a^pb+a^pc+b^pc)+T^2a^pb^pc.$
- (iii) a * 0 = 0 * a = a.
- (iv) $a * (-a + Ta^p a) = T^2 a^{2p+1}$ and $(-a + Ta^p a) * a = T^{p+1} a^{p^2 + p + 1}$.
- (v) $((-b+Tb^pb)*a)*b=a+T(a^pb-b^pa)+T^2d$, with $d \in A_v$.
- (vi) $(((-a+Ta^pa)*(-b+Tb^pb))*a)*b=T(a^pb-b^pa)+T^2d$, with $d \in A_v$.
- (vii) v(a*c-b*c) = v(c*a-c*b) = v(a-b).

Let γ be the valuation of T. From the properties above we deduce that * induces on $V_{2\gamma}$ a group law. By (iv), if $a \in A_v$, the inverse of $\overline{a} = a + A_{2\gamma}$ in $V_{2\gamma}$ is the element $\overline{a}^{-1} = -a + Ta^pa + A_{2\gamma}$. By (vii) this law is compatible with the C-relation defined in $V_{2\gamma}$: for every $a,b,c,d \in V_{2\gamma}$, $\mathbb{V}_{2\gamma} \models C'(a*d;b*d,c*d)$ if and only if $\mathbb{V}_{2\gamma} \models C'(a*a;b*d,c*d)$ if and only if $\mathbb{V}_{2\gamma} \models C'(a*a;b*d,c*d)$ be the C-group just defined. Clearly, any C-structure that is a reduct of a C-minimal structure is again C-minimal. As \mathbb{G} is a reduct of $(\mathbb{V}_{2\gamma},C')$, it is a C-minimal group.

Consider an element $a \in A_v$ and a strictly positive $\gamma \in \Gamma$. Define $Z_{(a,\gamma)} = \{x \in A_v \mid v(a^px - x^pa) \geqslant \gamma\}$. Its image by $s_{2\gamma}$ is the centralizer in \mathbb{G} of $a + A_{2\gamma}$.

Lemma 2.2. (i) if
$$v(a) \geqslant \gamma$$
, then $Z_{(a,\gamma)} = A_v$, (ii) if $\frac{\gamma}{p+1} \leqslant v(a) < \gamma$, then $Z_{(a,\gamma)} = A_{\frac{\gamma-v(a)}{p}}$,

(iii) if
$$0 \leqslant v(a) < \frac{\gamma}{p+1}$$
, then $Z_{(a,\gamma)} = \bigcup_{n \in \mathbb{F}_p}^p (na + A_{\gamma - pv(a)})$.

Proof. (i) is obvious. Write x=ta with $v(t)\geqslant -v(a)$. Then x belongs to $Z_{(a,\gamma)}$ if and only if $v(t-t^p)\geqslant \gamma-(p+1)v(a)$. If $\gamma-(p+1)v(a)\leqslant 0$ and $v(a)<\gamma$, this means that $pv(t)\geqslant \gamma-(p+1)v(a)$ and $pv(x)\geqslant \gamma-v(a)$ and proves (ii). We now prove (iii): if $\gamma-(p+1)v(a)>0$, then t can be written t=n+t' where $n\in \mathbb{F}_p$, the field with p elements, and $t'\in M_v$. Thus $v(t^p-t)=v(t'^p-t')=v(t')$ so x belongs to $Z_{(a,\gamma)}$ if and only if $v(t')\geqslant \gamma-(p+1)v(a)$.

If $\alpha \in [0, 2\gamma)$, where $\gamma = v(T)$, we call G_{α} the image of A_{α} by $s_{2\gamma}$. Clearly G_{α} is a subgroup of \mathbb{G} . We conclude by:

Theorem 2.3. The group \mathbb{G} is a C-minimal group that is not abelian-by-finite. Moreover \mathbb{G} is a nilpotent group of class 2 and of exponent p if p is odd and 4 if p=2.

Proof. By the preceding lemma, the set of elements of $V_{2\gamma}$ whose centralizer is of finite index in \mathbb{G} is equal to G_{γ} . Since G_{γ} is not of finite index in \mathbb{G} , the group \mathbb{G} is not abelian-by-finite. It is easy to see that its center is G_{γ} and its derived subgroup is also G_{γ} . Therefore \mathbb{G} is a nilpotent group of class 2. Finally, computing by induction the n^{th} power of $a \in A_v$, we find the formula $a*a*...*a = na + T(\frac{n(n-1)}{2}a^{p+1})$ modulo $A_{2\gamma}$.

The valuation v induces a map $v_{2\gamma}$ from $V_{2\gamma}$ to the ordered set $[0,2\gamma) \cup \{\infty\}$ defined by $v_{2\gamma}(a+A_{2\gamma})=v(a)$ if $v(a)<2\gamma$, and $v_{2\gamma}(A_{2\gamma})=\infty$. This map is what we called in [7] a group valuation, and the C-group $\mathbb G$ belongs to the class of what we called valued C-groups: the C-relation in $\mathbb G$ can be defined from the valuation $v_{2\gamma}$ by

$$C'(x; y, z)$$
 iff $v_{2\gamma}(zy^{-1}) > v_{2\gamma}(zx^{-1})$.

In [8] we prove that every C-minimal valued C-group is nilpotent-by-finite and that every connected (i.e. without proper definable subgroups of finite index) C-minimal valued C-group of finite exponent is nilpotent. The C-group $\mathbb G$ defined above is nilpotent of class 2 and we do not have examples of C-minimal valued groups of nilpotent class greater than 2.

References

- [1] D. Haskell, H. D. Macpherson, Cell decomposition of C-minimal structures, Annals of Pure and Applied Logic 66 (1994), 113-162. MR 95d:03059
- [2] D. Haskell, E. Hrushovski, H. D. Macpherson, Definable sets in algebraically closed valued fields. Part I: elimination of imaginaries, submitted.
- [3] A. A. Ivanov, H. D. Macpherson, Strongly determined types, Annals of Pure and Applied Logic 99 (1999), 197-230. MR 2000j:03050
- [4] L. Lipshitz, Z. Robinson, One-dimensional fibers of rigid subanalytic sets, J. Symbolic Logic 63 (1998), 83-88. MR 98m:32049
- [5] H. D. Macpherson, C. Steinhorn, On variants of o-minimality, Annals of Pure and Applied Logic 79 (1996), 165-209. MR 97e:03050
- [6] P. Ribenboim, The Theory of Classical Valuations, Springer, Berlin 1998. MR 2000d:12007
- [7] P. Simonetta, Abelian C-minimal groups, Annals of Pure and Applied Logic 110 (2001), 1-22. MR ${\bf 2002g}$:03083
- [8] P. Simonetta, On non-abelian C-minimal groups, to appear in Annals of Pure and Applied Logic.

Equipe de Logique Mathématique, Université de Paris VII, 2, place Jussieu - case $7012,\,75251$ Paris cedex $05,\,\mathrm{France}$

 $E\text{-}mail\ address: \verb|simbaud@logique.jussieu.fr||\\$