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ABSTRACT. We give three kinds of characterizations of the commutativity of
C*- algebras. The first is the one from operator monotone property of functions
regarded as the nonlinear version of Stinespring theorem, the second one is
the characterization of commutativity of local type from expansion formulae
of related functions and the third one is of global type from multiple positivity
of those nonlinear positive maps induced from functions.

There are several characterizations for the commutativity of C*-algebras. One
type is the well-known Stinespring theorem, that is, a C*-algebra A is commutative
if and only if every positive linear map from A to another C*-algebra B (or from B
to A) becomes completely positive. To be precise, A becomes commutative if and
only if every positive linear map to B becomes two-positive (and then automati-
cally completely positive). Note that this is the beginning of the long and fruitful
developments of understanding the matricial order structure of (noncommutative)
operator algebras (cf. [1]). Another type is based on an operator monotone function
such as aP for p > 1 on a C*-algebra, that is, a C*-algebra A is commutative if
and only if z? is operator monotone on A for some p > 1 (cf. |2, [3]). Very recently,
Wu in [6] gave another characterization for commutativity based on the function
expx. We observe that both 2P and exp x are monotone increasing functions on the
positive axis but not operator monotone on Ms, the matrix algebra of all complex
2 X 2 matrices.

Thus, regarding the problem of operator monotone functions as the counterpart
of a kind of nonlinear positive map we prove our first result (Theorem 1) that
includes all known previous results and corresponds the Stinespring theorem men-
tioned above. We then present a characterization of commutativity of local type
(Theorem 2) from expansion formulae of related functions, where just two positive
operators are concerned. The third result is the one from multiple positivity of non-
linear positive maps (Theorem 3) as another counterpart of Stinespring theorem
relative to nonlinear maps on A.

Throughout this article we assume that a C*-algebra A is unital. By an operator
monotone functon on a C*-algebra A we mean that it is monotone on the positive
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axis and induces an operator monotone function on A. We call a function f(x)
matrix monotone of order n if it induces a monotone function on the matrix algebra
M,,. Then it is well known that f(x) is operator monotone if and only if it is matrix
monotone of all orders.

We first illustrate a few generalized examples of monotone functions which are
not matrix monotone of order 2 as well as the exponential function together with
elementary proofs. We call the following function f(x) a generalized polynomial of
order t,,:

f(@) = apz'™ + -+ an_12™ + an,
where ¢, > tp—1 > --- > t; > 0. t, is its degree.

Proposition 1. Every generalized polynomial whose order is greater than 1 is not
matriz monotone of order 2 as well as the exponential function.

Proof. Write f(z) = apx!™ + -+ + ap_12" + ay,. Take a pair a, b such that a < b
in M. Then sa < sb for every positive number s. Thus if f(z) is monotone
we have f(sa) < f(sb) and f(sa)/s'» < f(sb)/s'». Letting s to infinity we have
apal™ < agbtn. As is well known, this is absurd whether oy is positive or negative.
We give here however a simple counterexample for completeness of our arguments.
At first, obviously we do not have the case ay < 0, and ay > 0. Now consider the

3

. 20 . . . .

matrices eg = % (11) and ag = ((2) 3 ) with ey < ag. Then since eg is a projection,
4

(" o

0 (3
shows that det|ag’ — ep’| < 0 because the function z
we obtain a contradiction.

For the exp function we also use the above examples of ey and ag. Namely in this
case, expeg = [ + (e — 1) Pa) = (3D DY o expag = (PF O
P P = 11) 7 \heemn) S Pao =1 :

exp %

) for every t > 1. But a straightfoward calculation
t

eot = eg, and agt = (

is convex for t > 1. Hence

Put t =exp i; then we have

det | exp ag — exp eg|

9 1 5 3 7 3
= exp-+e— —(exp- +exp—= +exp— +exp—)

4 2 2 2 4 4
1 1 1 1 1 1 1
= 5(2(exp 1)9 +2(exp 1)4 — (exp 1)10 — (exp 1)6 — (exp 1)7 — (exp 1)3)

1 ;
= —5(1510 =269 417 416 — 2" 1 #3)
1
= —§t3(t7 =20+t P -2t + 1)

1
= —§t3(t — DM+ D)+t +1)<0

since t = expi > 1. Thus expag cannot majorize exp eg. The proof is completed.
O

We are indebted to K. Minemura and T. Ito for the last of the above estimations.

If we make use of the operator monotone property of the log function, we can
deduce from monotone assumption for exp the monotone property of the function
xt for any t > 1. To discuss on a C*-algebra, this will also considerably shorten
the proof in [6], where Wu reduces his whole proof to the monotone property of
the function 22 and uses the old Ogasawara’s result [2]. On the matrix algebra M,
however, we prefer the above elementary approach.
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Now we state the monotone function version of the Stinespring theorem in the
following theorem.

Theorem 1. Let A be a C*-algebra. The following are equivalent:

(1) A is commutative;

(2) every continuous monotone function on the positive axis becomes operator
monotone on A; and

(3) there exists a continuous monotone function on the positive axis which is not
matrixz monotone of order 2 but operator monotone on A.

Proof. We first recall that a C*-algebra A is commutative if and only if every
irreducible representation of A is 1-dimensional. We shall show our proof along
this line.

From the above proposition, we see that the assertion (2) implies (3).

(3) = (1) Let 7 be an irreducible representation of A on a Hilbert space H.
If there is a two dimensional projection e € B(H), we have by [4] Theorem 4.18]
that m(A)e = B(H)e, hence en(A)e = eB(H)e = B(eH). The latter is naturally
isomorphic to the matrix algebra My. Put B = {a € A : w(a)e = en(a)}; then by
definition B is a C*-subalgebra of A. Now for every self-adjoint operator b € B(H),
there is a self-adjoint element a € A such that 7(a)e = be by the same theorem
cited above. If b leaves the subspace eH invariant, then b commutes with e and 7(a)
commutes with e as well. Therefore, the map: a — 7(a)e is a *-homomorphism
from B onto B(eH). Let ¢,d € B(eH) be two positive elements such that ¢ < d.
Then by an elementary way, we can find positive elements a,b € B satisfying a < b
and m(a) = ¢ and 7(b) = d.

Now let f be a monotone function in assertion (3); then we have that 7(f(a)) =
f(m(a)) = f(c) and w(f(b)) = f(d). Hence, f becomes a monotone function on
Ms, a contradiction. Thus every irreducible representation of A has to be one
dimensional and A is commutative.

For the implications from (1) to (2), it is enough to notice that when A is
commutative a point evaluation ¢, for a point x in the spectrum of A commutes
with function operations of the above class as in the case of *-homomorphisms.
Thus every continuous monotone function on the positive axis becomes a monotone
operator function on the C*-algebra A. O

Next we give a characterization of commutativity of local type from the point of
view of expansion formulae of relevant functions, where no C*-algebras are around.
Namely we have the following.

Theorem 2. Let a and b be bounded positive linear operators on a Hilbert space.
Then the following assertions are equivalent:

(1) ab = ba;

(2) exp(a + tb) = expaexptb for every positive number t;

(3) (a+tb)" = a™ +na b+ - +na(th)" 1 + (tb)" for every positive number
t and for every positive integer n, that is, the expansion follows the usual formula;
and

(4) (a+1tb)" = a™ +na™ b+ +na(th)" = + (tb)" for every positive number
t and for some positive integers n = 2.

Proof. We note that the implications from (1) to other assertions and from (3) to
(4) are trivial.
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(2) = (1) Note first that expaexptb = exptbexpa. Hence exp(—tb)expa =
expaexp(—tb). Thus, this commutativity holds for all real number s. Take a
positive number A; then

/ exp(—s(A+b))dsexpa = expa/ exp(—s(A +b))ds,
0 0

hence, (A+b)"texpa = expa(A+b)~L. It follows that exp a(\+b) = (A +b) expa.
Thus, letting A — 0, we have (expa)b = b(expa). Next, note that for arbitrary
positive numbers s and ¢, exp(sa + tb) = (exp(a + t/sb))® = (expaexpt/sb)® =
(expt/sbexpa)®, and then exp(sa + tb) = exp saexptb = exptbexp sa. Therefore,
by the above argument we see that (exp sa)b = b(exp sa) for every positive s, which
implies that ab = ba.

(4) = (1) Let g(t) = (a +tb)". Then we have

g(t) = a"+nta" o+t lab T L
= a4+ ntha™ 4ty g

by the assumption and the self-adjointness of g(t) because both a and b are positive.
It follows that ab”~! = b™'a, which implies that ab = ba. O

Corollary 1. Let A be a C*-algebra. The following are equivalent:

(1) A is commutative;

(2) exp (a+b) = expaexpb for every pair of positive elements a,b € A;

(3) (a+b)" = a"+na" " 1b+---+nab” "t +b" for every pair of positive elements
a,b € A and for every positive integer n; and

(4) (a+b)" = a"+na""1b+---+nab" "t +b" for every pair of positive elements
a,b € A and for some positive integers n > 2.

We may similarly show that A is commutative if and only if o™ — 0" =
n
(@ —b)(Y_ a®'b'~1) for every pair of positive elements a,b € A and for every
i=1
n
positive integer n if and only if a™ — b" = (a — b)(> a® b~ 1) for every pair of
i=1
positive elements a,b € A and for some positive integers n > 2.

Now as we have mentioned above, it would be interesting to investigate the
meaning of degree of positivity even for nonlinear positive mappings; that is, how
their degrees are concerned with the structure of C*-algebras. Since we are dis-
cussing here a quite limited situation, namely about positive mappings induced
from functions, we start from this point.

Recall first that a linear map ¢ from A to B is two-positive if it induces a positive
map from A® M to B ® Mo, that is, if ¢ : (ai;) — (¢(ai;)) is positive. Now if we
simply apply this definition for a continuous function f(z) we have to be necessarily
involved in the meaning of the expression f(a) for a general element a of a C*-
algebra A. If we assume f as an entire function we may simply avoid this trouble.
Therefore, in order to investigate the multiple positivity of mappings coming from
functions in general, the starting point itself has to involve some discussions. Thus,
since we are concerned with the characterizations of the commutativity, so far we
are restricted here only to those functions of z™ and expx. We say that they
become two-positive functions on a C*-algebra A, if their entry-wise actions on a
2x 2 positive matrix in A ® My also become a positive matrix. Then, we have
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Theorem 3. Let A be a C*-algebra. The following are equivalent:
(1) A is commutative;
(2) expx is two-positive on A;
(3) a™ is two-positive for some integer n > 2 on A; and
(4) ™ is two-positive for every positive integer n on A.

Proof. (2)==(1) We recall that if a is an invertible positive element in A, then

(&)

is positive if and only if b > c*a~'c. Let a,b € A such that a < b; then

a a
a b
is positive. By assumption (2), we have that
expa expa
expa expb
is positive, which implies that expb > exp aexp(—a)expa = expa. It follows that
exp x is operator monotone on A. Thus A is commutative by Theorem 1.
Similarly we may prove that (3) implies (1) by inducing that =™ is monotone on
A. That (4) implies (3) is clear.
Conversely, let A be commutative; we can easily prove that (4) holds. In fact,

for integer n, let (a;;) € A ® M be positive. Then ((a;;)™) is the Schur product of
n-copies of (a;;), and thus is positive since A is commutative. Now we have

(expai;) = () G > —i((aig)").
n=0 n=0
Hence (2) holds. The proof is complete. O

We note that if either ™ or exp z is two-positive, then A is commutative. Thus
they become completely positive. That is, A is commutative if and only if either
" for some integer n > 2 or exp x is completely positive on A.
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