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SIMPLE AH-ALGEBRAS OF REAL RANK ZERO

HUAXIN LIN

(Communicated by David R. Larson)

Abstract. Let A be a unital simple AH-algebra with real rank zero. It is
shown that if A satisfies a so-called fundamental comparison property, then
A has tracial topological rank zero. Combining some previous results, it is
shown that a unital simple AH-algebra with real rank zero, stable rank one
and weakly unperforated K0(A) must have slow dimension growth.

1. Introduction

Tracial topological rank for C∗-algebras was introduced in [15] (see also [13]). It
is an attempt to formulate a new workable notion of rank for noncommutative C∗-
algebras. It turns out this rank works very well in classification of simple nuclearC∗-
algebras. In this short note we show that with the so-called fundamental comparison
property, one can give a fairly short and elementary proof that all unital simple
AH-algebra with real rank zero have tracial topological rank zero. Recall that an
AH-algebra has the form A = limnAn, where each An = PnMk(n)(C(Xn))Pn, each
Pn ∈ Mk(n)(C(Xn)) is a projection and Xn is a finite CW complex. It has been
shown that a unital simple AH-algebra with real rank zero and with slow dimension
growth has tracial topological rank zero. It was first shown in [7] (implicitly) that
if A = limnAn, where each An is a unital corner of Mk(n)(C(Xn)), where Xn

is assumed to be a finite CW complex with dimension no more than 3, then A
has tracial topological rank zero. Then, by a reduction theorem (see [6] and [9]),
this holds for any simple AH-algebra with slow dimension growth. The results
presented in this note show that one can certainly save the reduction step of Gong
and Dadarlat to achieve the necessary structural result, namely, simple AH-algebras
of slow dimension growth have tracial topological rank. This fact alone significantly
simplifies the proof of the classification of simple AH-algebras with real rank zero
and slow dimension growth (see [7], [6] and [9]). But the result in this note also gives
an abstract characterization of simple AH-algebras with real rank zero and slow
dimension growth. It is known that a unital simple C∗-algebra with real rank zero,
stable rank one and weakly unperforated K0-group has the so-called fundamental
comparison property (see [3] and Definition 1.1 below). It has been shown ([2])
that a unital simple AH-algebra with slow dimension growth and with real rank
zero has stable rank one and has weakly unperforated K0. But the converse was not
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known. This note establishes the converse. In particular, we show that if a unital
simple AH-algebra has real rank zero, stable rank one and weakly unperforated
K0, then it has slow dimension growth. Slow dimension growth is not only a
technical condition, it is a condition imposed on the structure of inductive limits,
i.e., how the AH-algebra is formed. Stable rank one and weakly unperforated K0

on the other hand are conditions on A itself and do not refer to how the inductive
limit should be formed. By a result in [4], a unital simple AH-algebra which
is approximately divisible has stable rank one as well as weakly unperforated K0-
group. Therefore the results in this note also shows that a unital simple AH-algebra
which is approximately divisible and its projections separate its traces has slow
dimension growth. We found that these abstract characterizations of the condition
of slow dimension growth are interesting and useful.

Definition 1.1. A C∗-algebra A is said to satisfy (Blackadar’s) fundamental com-
parison property if for any two projections p q ∈ Mk(A) (k = 1, 2, ...), τ(p) > τ(q)
for all traces τ of A implies that p & q, i.e., there is a partial isometry u ∈ Mk(A)
such that u∗u = q and uu∗ ≤ p.

One should note that here we use traces instead of quasitraces. For AH-algebras,
it is easy to see that every quasitrace is a trace.

Definition 1.2. Let A be a unital simple AH-algebra. We say that A has slow
dimension growth if A = limnAn, where An =

⊕l(n)
j=1 P(n,j)Mn(j)(X(n,j))P(n,j),

X(n,j) is a connected finite CW complex and

lim
n→∞

max
j
{

dimX(n,j)

rankP(n,j)
} = 0.

If dimX(n,j) is bounded, then A is said to have bounded dimension. If A has
bounded dimension, then A has slow dimension growth.

Let A be a C∗-algebra, G a subset of A and x ∈ A. In what follows we write
x ∈ε G if there is y ∈ B such that ‖x− y‖ < ε.

Definition 1.3. A simple unital C∗-algebra A is said to have tracial topological
zero (written TR(A) = 0) if for any ε > 0 and finite subset F ⊂ A containing a
nonzero a ∈ A+ there exists a finite-dimensional C∗-subalgebra B ⊂ A with 1B = p
such that

(1) ‖px− xp‖ < ε for all x ∈ F ,
(2) pxp ∈ε B for all x ∈ F and
(3) 1− p � q for some q ∈ aAa.

It is shown in [15] that a unital simple C∗-algebra A with TR(A) = 0 is qua-
sidiagonal, has real rank zero, stable rank one, and weakly unperforated K0(A). It
also has the Blackadar’s fundamental comparison property.

2. The results

We present the following results:

Theorem 2.1. Let A be a unital simple AH-algebra of real rank zero. If A satisfies
the fundamental comparison property, then TR(A) = 0.
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Theorem 2.2. Let A be a unital simple AH-algebra of real rank zero. Then the
following are equivalent:

(a) A has fundamental comparison property;
(b) A has stable rank one and weakly unperforated K0(A);
(c) A has slow dimension growth.
(d) TR(A) = 0.

Proof. It follows from [3] that (a) ⇔ (b) and it follows from [2] that (c) ⇒ (b). By
[15], (d) implies (a) and (b). It follows from Theorem 2.1 that (a) implies (d). It
remains to show that (d) and (b) imply (c). Since A is an AH-algebra, A satisfies
the so-called Universal Coefficient Theorem. It follows from 4.3 (and 4.4) of [14]
that A is pre-classifiable. Since TR(A) = 0, by [15] (or from (b) and [19]) K0(A)
satisfies the Riesz decomposition property. It follows from 3.7 in [14] and 4.18 in
[7] that A is isomorphic to unital AH-algebra with bounded dimension. Thus (d)
implies (c). �

Remark 2.3. In the proof of (d)⇒ (c) we used the results in classification of simple
nuclear C∗-algebras. We can use a more general result in [17] instead of [14].
Given a weakly unperforated simple ordered group G with the Riesz property and
a countable abelian group F, one should note that it is straightforward to construct
a unital simple AH-algebra A = limnAn with An = PnMk(n)(C(Xn))Pn, where Xn

is a finite CW complex with dimXn ≤ 3 and TR(A) = 0 such that K0(A) = G and
K1(A) = F. One does not need to use KK-theory but uses standard construction
of topological spaces such as attaching a disk to a circle (via degree n map) and
suspension of the resulting spaces. The construction then follows closely from a
construction of Goodearl [10].

We will present two consequences at the end of this note.

Definition 2.4. Let In be the n-dimensional unit cube. Fix k > 0. A 1/k-frame
Ω of In is a closed subset In which is a union of hyperplanes (intersecting with In)
satisfying the following:

Ω = X1 × In−1 ∪ I ×X2 × In−2 ∪ · · · ∪ In−1 ×Xn,

where Xi = {ti0, ti1, ti2, ..., tik+2} with ti0 = 0 and tik+2 = 1 such that 1/2k < |tij −
tij+1| < 1/k, j = 0, 1, ..., k + 1. Let d > 0. Define

Ωd = {x ∈ In : dist(x,Ω) ≤ d}.

A 1/k-frame is called standard if each Xi = {0, 1/(k+ 1), 2/(k + 1), ..., 1}.

The proof of the following is standard.

Proposition 2.5. Fix k > 0, 1/8k > d > 0 and a 1/k-frame Ω of In. Let N >
max{(8k)2, 8/d} be a positive integer. There is η > 0 and finitely many (1/k)-
frames {Ω1, ...,ΩL} satisfying the following:

(i) Ω4η
i ⊂ Ωd/2, i = 1, 2, ..., L,

(ii) for any 1/k-frame Ω0 with Ω4/N
0 ⊂ Ωd/2, there is Ωj with 1 ≤ j ≤ L such

that

Ωηj ⊂ Ω1/N
0 .
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Lemma 2.6. Let k > 0, 1/8k > d > 0 and Ω a 1/k-frame of In. For any σ > 0,
there exists an integer N > (8k)2 such that, for any normalized Borel measure µ
on In, there is a (1/k)-frame Ω0 which satisfies:

(a) Ω2/N
0 ⊂ Ωd/2 and

(b) µ(Ω1/N
0 ) < σ/2.

Proof. Let δ = min{d, σ). To save notation without loss of generality, we may
assume that k > 2 and Xi = {0, 1/(k + 2), 2/(k + 2), ..., 1} for each i. Choose an
integer L > 2n(k + 2)/δ. Consider L disjoint close sub-intervals J (i,j)

1 , ..., J
(i,j)
L of

[(j/k+ 2)− δ/8, (j/k+ 2) + δ/8] each of which has length δ/16L. Put F (1, j,m) =
J

(1,j)
m × In−1, ..., F (n, j,m) = In−1 × J (n,j)

m (m = 1, ..., L). For each i and j, there
is at least one of F (i, j,m) that has measure no more than 1/L. We may assume
that µ(F (i, j, 1)) ≤ 1/L. Set F =

⋃n
i=1

⋃k+2
j=1 F (i, j, 1). Then µ(F ) ≤ n(k + 2)/L <

δ/2 < σ/2. Choose N > 64L/δ. We note that there is a 1/k frame Ω0 ⊂ F such
that Ω1/N

0 ⊂ F. It is also clear that (a) holds. �

The following is taken from 3.2 of [12] (see also 4.4 of [8]).

Lemma 2.7. Let A be a unital C∗-algebra and φ : C(X)→ A be a homomorphism,
where X is a compact metric space. For any ε > 0 and any finite subset F ⊂ C(X),
there is δ > 0 such that if

(1) S1, S2, ..., Sn are disjoint open subsets of X such that dist(x, x′) < δ for any
x, x′ ∈ Si (i = 1, ..., n);

(2) λi ∈ Si, i = 1, 2, ..., n;
(3) pi is a projection in Her(ai), where ai = φ(xi) and xi ∈ C(X)+ such that

xi(t) = 0 if t 6∈ Si;
(4) yf = (1 −

∑n
i=1 pi)φ(f)(1 −

∑n
i=1 pi),

then

‖φ(f)− (yf +
n∑
i=1

f(λi)pi)‖ < ε and ‖(1−
n∑
i=1

pi)φ(f)− φ(f)(1 −
n∑
i=1

pi)‖ < ε

for all f ∈ F .

Proof of Theorem 2.1. Write A = limn(An, φn). Fix a finite subset F ⊂ A, ε > 0
and a ∈ A+ \ {0}. Without loss of generality, we may assume that there is a finite
subset G ⊂ A1 such that φ1,∞(G) = F . To save notation, we may further assume
that F and G are in the unit balls of A and A1, respectively. We will show that,
for any nonzero a ∈ A+, there is a finite-dimensional C∗-subalgebra C ⊂ A with
1C = p such that

(1) ‖px− xp‖ < ε,
(2) pxp ∈ε C for all x ∈ F and
(3′) 1− p is equivalent to a projection in Her(a).
Since RR(A) = 0, there is a nonzero projection q ∈ Her(a). Thus, we may

replace a by a projection q, and so we may replace (3′) by
(3) τ(1 − p) < σ for all τ ∈ T (A), where σ > 0 is previously given.
Let p1, ..., pm be central projections of A1. By considering each

φ1,∞(pi)Aφ1,∞(pi),

we can reduce the general case to the case in which A1 = PMl(C(X))P, where X
is a connected finite CW complex.
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We first consider the case that A1 = Ml(C(X)). If (1), (2) and (3) can be
established for the case that A1 = C(X), then it is clear that (1), (2) and (3) can
be established for the case that A1 = Ml(C(X)). Therefore we reduce to the case
in which A1 = C(X).

So let A1 = C(X). There is an integer n such that X ⊂ In. There is a surjective
map ψ : C(In)→ C(X). We may further assume that G ⊂ C(In).

Now we choose δ in Lemma 2.7 for ε/2 and the finite subset G with X = In.
We will apply Lemma 2.6 and Proposition 2.5. Fix k > 0 so that 1/k < δ/4,

d = 1/(8k + 1) and a standard 1/k-frame Ω of In. Let N be in Lemma 2.6 for the
above k, d and σ. Let η > 0 be in Proposition 2.5 and Ω1, ...,ΩL be finitely many
1/k-frames of In satisfying (i) and (ii) in Proposition 2.5.

Let 1 ≥ fi ≥ 0 be in C(In) such that fi(t) = 1 on Ωη/2i and fi(t) = 0 on
X \Ωηi , i = 1, 2, ..., L. Since RR(A) = 0, there are mutually orthogonal projections
{pi,1, ..., pi,l(i)} ⊂ A such that

‖φ1,∞(fi)−
l(i)∑
s=1

λ(i, s)pi,s‖ < σ/16

for all 1 ≤ i ≤ L, where 0 ≤ λ(i, s) ≤ 1 are positive numbers. By choosing a large
m, there are, for each i, mutually orthogonal projections {qi,1, ..., qi,l(i)} ⊂ Am such
that

‖φ1,∞(fi)−
l(i)∑
s=1

λ(i, s)φm,∞(qi,s)‖ < σ/8

for all 1 ≤ i ≤ L. For an even larger m, we may assume that

‖φ1,m(fi)−
l(i)∑
s=1

λ(i, s)qi,s‖ < σ/4, 1 ≤ i ≤ L.(e 2.1)

We may assume that Am = PMK(C(Y ))P, where P ∈MK(C(Y )) is a projection
and Y is a disjoint union of Y1, Y2, ..., YJ , where each Yj is a connected finite CW
complex (1 ≤ j ≤ J). Let yj ∈ Yj and let τj = tr ◦ pyj ◦ φ1,m, j = 1, 2, ..., J, where
tr is the the normalized trace on Ms(j) and pyj is the point-evaluation at yj . Let
Pj = P |Yj , s(j) be its rank and let µj be the normalized measure induced by τj .

We now fix j. Let Bj = φm,∞(Pj)Aφm,∞(Pj). By applying Lemma 2.6 and
Proposition 2.5, there is a 1/k-frame such that Ω0,j such that

µj(Ω
1/N
0,j ) < σ/2 and Ω2/N

0j ⊂ Ωd/2.

Therefore by Proposition 2.5, there is an i(j) such that

Ωηi(j) ⊂ Ω1/N
0j .

It follows that τj(fi(j)) < σ/2. Let τξ = tr ◦ pξ ◦ φ1,m, where ξ is any other point
on Yj . Since Yj is connected, each τξ(qi,j) = τj(qi,j). By (e 2.1) this implies that
τξ(fi(j)) < σ/2 + σ/2 = σ for all ξ ∈ Yj . Since for any tracial state τBj on Bj there
is a normalized measure µ on Yj such that τBj (fi(j)) =

∫
Yj
τξ(fi(j))dµ, we conclude

that τBj (fi(j)) < σ.

Let In \ Ωη/16 =
⋃K
i=1 Oi, where Oi are mutually disjoint open subsets with

diameter < δ. Let 0 ≤ hi, h
′
i ≤ 1 be in C0(Oi) ⊂ C(In) such that hi(t) = 1 on

Oi ∩ (In \ Ωη/2) and hi(t) = 0 in Ωη/4; h′i(t) = 1 if Oi ∩ (In \ Ωη/4) and h′i(t) = 0
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in Ωη/8. Note that hih′i = hi. Since RR(Bi) = 0, by [5] there is a projection
ei ∈ Her(φ1,∞(h′i)) such that eiφi,∞(hi) = φi,∞(hi). Let Qj =

∑K
i=1 ei. Then

1Bj −Qj ≤ φ1,∞(fi(j)).
It follows from Lemma 2.7 and 1Bj −Qj ≤ φ1,∞(fi(j)) that
(i) ‖Qjx− xQj‖ < ε, for all x ∈ φ1,∞(G),
(ii) QjxQj ∈ε Cj , where Cj is the finite-dimensional C∗-algebras generated by

e1, ..., eK ,
(iii) τ(1Bj −Qj) ≤ στ(1Bj ) for all tracial states τ on A.
Applying this to each j, we obtain a finite-dimensional C∗-subalgebra C ⊂ A

with 1C = p such that
(1) ‖pz − zp‖ < ε,
(2) pzp ∈ε C for all z ∈ φ1,∞(G) and
(3) τ(1 − p) < σ for all τ ∈ T (A).
Now we consider the case in which A1 = PMl(C(X))P. By 8.12 of [11] (see

also 6.10.3 of [1]), there is K and a projection Q ∈ MK(PMl(C(X))P ) such that
QMK(PMl(C(X))P )Q ∼= ML(C(X)) for some L. Let e = 1A1 be identified with a
projection in ML(C(X)). Let F1 = {e} ∪ F . If (1), (2) and (3) can be established
for the case in which A1 = ML(C(X)), then (1), (2) and (3) can be established in
φ1,∞(Q)MK(A)φ1,∞(Q) for F1 and ε/32 < 1/64. In particular, ‖pe− ep‖ < ε/32
and pep ∈ε/32 C. Thus there is a projection p′ ∈ eφ1,∞(Q)MK(A)φ1,∞(Q)e = A
such that ‖p′ − pep‖ < ε/16. There is a projection q ∈ C such that ‖q− p′‖ < ε/8.
There is a unitary u ∈ A such that ‖u − 1‖ < ε/4 such that u∗qu = p′. Set
C1 = u∗(qCq)u. Then C1 is a finite-dimensional C∗-subalgebra and 1C1 = p′.
Moreover, since ‖(e− p′)− (e− pep)‖ < ε/16, e− p′ is equivalent to a projection in
1− p. Now we have

(1) ‖p′x− xp′‖ < ε/4,
(2) p′xp′ ∈ε/2 C1

(3) τ(e− p′) < σ for all τ ∈ T (A). �

Remark 2.8. It is perhaps the right time to point out to the reader that Villadsen
gave an example of a simple unital AH-algebra with stable rank one which does
not have weakly unperforated K0 (see [18]). In particular, it does not have slow
dimension growth.

Corollary 2.9. Let A be a unital simple AH-algebra. The following are equivalent:
(i) A is approximately divisible and projections in A separate the traces,
(ii) TR(A) = 0,
(iii) A has slow dimension growth and projections in A separate the traces,
(iv) A has real rank zero, stable rank one and weakly unperforated K0(A).

From a more recent result in [17], we have the following:

Corollary 2.10. Let A be a unital separable simple C∗-algebra. Then the following
are equivalent:

(i) A is an AH-algebra with stable rank one, real rank zero and with weakly
unperforated K0(A);

(ii) A is a C∗-algebra in N with TR(A) = 0.
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