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A NOTE ON THE ISOPERIMETRIC INEQUALITY

JANI ONNINEN

(Communicated by Juha M. Heinonen)

Abstract. We show that the sharp integral form on the isoperimetric inequal-

ity holds for those orientation-preserving mappings f ∈ W
n2
n+1
loc (Ω,Rn) whose

Jacobians obey the rule of integration by parts.

1. Introduction

The familiar geometric form of the isoperimetric inequality reads as

(1) nn−1ωn−1|U |n−1 ≤ |∂U |n,

where |U | stands for the volume of a domain U ⊂ Rn and |∂U | is its (n − 1)-
dimensional surface area. Now, if f : Br → U is a diffeomorphism of a ball Br =
B(x0, r) ⊂ Rn onto U , then |U | =

∣∣∣∫Br J(x, f) dx
∣∣∣ and |∂U | ≤

∫
∂Br
|D]f(x)| dx.

Here D]f(x) stands for the cofactor matrix of the differential matrix Df(x). In this
way, we obtain what is known as the integral form of the isoperimetric inequality,
namely

(2)
∣∣∣∣∫
Br

J(x, f) dx
∣∣∣∣ ≤ I(n)

(∫
∂Br

|D]f(x)| dx
) n
n−1

with I(n) = (n n−1
√
ωn−1)−1. Above, we used the operator norm of the cofactor

matrix, defined by |D]f(x)| = sup{|D]f(x)h| : |h| = 1}.
Reshetnyak proved in [14] the sharp Hölder-continuity for a mapping of bounded

distortion by extending certain ideas of Morrey’s [10]. This required him to prove
the isoperimetric inequality (2) for a mapping in the Sobolev classW 1,n [15] (see also
[2, Theorem 4.5.9 (31)]). Reshetnyak’s proof is based on integration by parts as are
the related proofs given in [11], [12] by Müller et al. One can check using a standard
approximation argument that it suffices to prove the isoperimetric inequality (2) for
all smooth mappings. The sharp constant I(n) in inequality (2) plays a very crucial
role in Reshetnyak’s argument (also see [6, Chapter 7.7]). The Sobolev regularity
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W 1,n cannot be substantially relaxed. Indeed, the mapping

(3) f(x) =
x

|x| log
(
e

|x|

)
belongs to

⋂
p<nW

1,p(B(0, 1),Rn) but (2) fails for all 0 < r < 1.
For example in non-linear elasticity (see [1], [16] and [12]) it is natural to as-

sume that the Jacobians of the mappings in consideration are positive a.e., because
a deformation of an elastic body should be orientation preserving. Recently, a
generalization of mappings of bounded distortion, the theory of mappings of fi-
nite distortion, with subexponentially distortion has emerged, partially motivated
by non-linear elasticity. We refer the interested reader to the monograph [6] by
Iwaniec and Martin. The assumptions of this theory imply that f ∈ W 1,1

loc (Ω,Rn),
J(x, f) ≥ 0 a.e.,

(4) |Df |n ∈ LPloc(Ω)

where

the function t→ P (t
n
n+1 ) is increasing for large values of t,(5) ∫ ∞

1

P (t)
t2

dt =∞(6)

and P is an Orlicz-function (see [6, Chapter 4.12]). One can improve example (3)
and find, for each given function P for which the integral (6) converges, a radial
stretching f so that (4) holds and (2) fails ([9]). We proved in [5] that, under
the above assumptions, the isoperimetric inequality holds, with some constant,
depending only on the dimension n. In this paper, we will give a simple limiting
argument to show that, under the above assumptions, the isoperimetric inequality
(2) holds with the sharp constant I(n). Actually this is a simple case of our more
general theorem.

Let f ∈ W 1, n
2

n+1
loc (Ω,Rn). We say that the Jacobian J(·, f) of f obeys the rule of

integration by parts if the equation

(7)
∫

Ω

ϕ(x)J(x, f) dx = −
∫

Ω

fi(x)J(x, f1, ..., fi−1, ϕ, fi+1, ..., fn) dx

is valid for every test function ϕ ∈ C∞0 (Ω) and each index i = 1, ..., n. Under the

assumption f ∈ W 1, n
2

n+1
loc (Ω,Rn), different choices of indices i yield the same value of

the integral; see [3]. It is important to note that the right-hand side is well defined

for mappings lying in the Sobolev space W
1, n

2
n+1

loc (Ω,Rn) and so equation (7) implies,
when the Jacobian does not change the sign, that

(8) J(·, f) ∈ L1
loc(Ω).

As an example, the Jacobian of an orientation-preserving mapping (i.e. J(·, f) ≥ 0
a.e.) in the class W 1,1

loc (Ω,Rn) so that (4)-(6) hold, obeys the rule of integration
by parts ([4], [9], [3] and [6, Theorem 7.2.1]; see also the fundamental paper [7] by
Iwaniec and Sbordone).

Theorem 1.1. Suppose that the Jacobian of f ∈ W 1, n
2

n+1
loc (Ω,Rn) is non-negative

a.e. and the mapping f obeys the rule (7) of integration by parts. Then f satisfies
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the isoperimetric inequality (2) for every x0 ∈ Ω and almost every radius r ∈
(0, dist(x0, ∂Ω)).

The question of the sharp constant is motivated by the study of sharp modulus of
continuity properties for mappings of finite distortion; see the forthcoming papers
[8] and [13].

2. Proof of Theorem 1.1

Let BR = B(x0, R) ⊂ Ω be a ball such that BR ⊂ Ω. We approximate f

in W 1, n
2

n+1 (BR,Rn) by mappings f i ∈ C∞(BR,Rn). Since the functions |D]f i|
converge to |D]f | in L1(BR) (observe that the cofactor matrix is made up of n− 1
subdeterminants of the differential matrix and n2

n+1 ≥ n − 1), we find by Fubini’s
theorem that |D]f i| converges to |D]f | in L1(∂Br) for almost every radius r ∈
(0, R). Fix r ∈ (0, R) so that the functions |D]f i| converge to |D]f | in L1(∂Br).
Pick 0 < ε < r

2 . We take a convolution approximation uεt to the characteristic
function χBr−ε of the ball Br−ε by using the standard mollifiers Φt (see [6, Formula
(4.6)]) where t is chosen to be so small that uεt ∈ C∞0 (Br). Then 0 ≤ uεt ≤ 1 and so

(9)
∫
Br

uεt(x)J(x, f i) dx ≤
∫
Br

J(x, f i) dx ≤ I(n)
(∫

∂Br

|D]f i(x)| dx
) n
n−1

.

Applying Stokes’ theorem for the smooth mapping f i we find that

(10)
∫
Br

uεt(x)J(x, f i) dx = −
∫
Br

f i1(x)J(x, uεt , f
i
2, ..., f

i
n) dx.

The telescoping decomposition of the Jacobian (cf. [6, Chapter 8]) leads to the
equation ∫

Br

f1(x)J(x, uεt , f2, ..., fn) dx−
∫
Br

f i1(x)J(x, uεt , f
i
2, ..., f

i
n) dx

=
∫
Br

(f1(x)− f i1(x))J(x, uεt , f2, ..., fn) dx

+
n∑
k=2

∫
Br

f1(x)J(x, uεt , f
i
2, ..., f

i
k−1, fk − f ik, fk+1, ..., fn) dx.(11)

Combining Hadamard’s inequality with Hölder’s inequality we find that∣∣∣∣∫
Br

f1(x)J(x, uεt , f2, ..., fn) dx−
∫
Br

f i1(x)J(x, uεt , f
i
2, ..., f

i
n) dx

∣∣∣∣
≤

∫
Br

|f1 − f i1||∇uεt||Df |n−1 +
n∑
k=2

∫
Br

|f1||∇uεt||Df i|k−2|Df −Df i||Df |n−k

≤ |∇uεt|L∞(Br)

(∫
Br

|f1 − f i1|n
2
) 1
n2
(∫

Br

|Df | n
2

n+1

)n2−1
n2

+C(n)|∇uεt|L∞(Br)

(∫
Br

|f1|n
2
) 1
n2
(∫

Br

(|Df i|+ |Df |) n2
n+1

)n2−n−2
n2

(∫
Br

|Df −Df i| n
2

n+1

)n+1
n2

.(12)
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By the Sobolev-Poincaré inequality we see that the right-hand side of inequality
(12) tends to zero as i goes to infinity. Combining this with inequality (9) and
equation (10) we find that

(13) −
∫
Br

f1(x)J(x, uεt , f2, ..., fn) dx ≤ I(n)
(∫

∂Br

|D]f(x)| dx
) n
n−1

.

Applying the assumptions uεt ∈ C∞0 (Br) and (7) we conclude that

(14)
∫
Br

uεt(x)J(x, f) dx ≤ I(n)
(∫

∂Br

|D]f(x)| dx
) n
n−1

.

Since uεt(x)J(x, f) ≤ χBr (x)J(x, f) and J(·, f) ∈ L1
loc(Ω) by (8), we can use the

dominated convergence theorem. First letting t → 0 and then ε → 0, the claim
follows.
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[16] Šverak, V. (1988). Regularity properties of deformations with finite energy. Arch. Rational

Mech. Anal. 100, no. 2, 105-127. MR 89g:73013

Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35,
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