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Abstract. This work is devoted to the approximation of variational inequal-
ities with pseudo-monotone operators. A variational inequality, considered
in an arbitrary real Banach space, is first embedded into a reflexive Banach
space by means of linear continuous mappings. Then a strongly convergent
approximation procedure is designed by regularizing the embedded variational
inequality. Some special cases have also been discussed.

1. Introduction

Throughout the paper, unless the contrary is stated, Y is a real Banach space,
Y ∗ its topological dual and 〈 · , · 〉Y the associated pairing. Let ‖ · ‖Y be the norm
in Y as well as in Y ∗. Let Ω ⊂ Y be nonempty, closed and convex. Consider a
single-valued operator F : D(F ) ⊆ Y → Y ∗ and let f ∈ Y ∗ be arbitrary. Here and
throughout, D(F ) will be the effective domain of F. The symbols “→” and “⇀”
are used to specify the strong and the weak (weak∗) convergence, respectively.

We consider the following problem: find y ∈ Ω such that

(1) 〈Fy − f, x− y 〉Y ≥ 0, ∀x ∈ Ω.

The above problem is the celebrated Variational Inequality (for short, V I) in-
troduced by G. Stampacchia (see [11]). Any element y ∈ Ω satisfying the above
conditions is said to be a solution to V I(1). We shall denote by S(V I) the set of
all solutions to V I(1).

If Ω is a closed and convex cone with apex at the origin, then V I(1) collapses to
the following Nonlinear Complementarity Problem (for short, NCP ): find y ∈ Y
such that

y ∈ Ω, Fy − f ∈ Ω∗, 〈Fy − f, y 〉Y = 0,

where Ω∗ denotes the (positive) polar of Ω (for details on NCP see for instance
[8]).

In recent years the theory of V I and NCP has emerged as an important branch
of pure, applied and industrial mathematics (see [3], [4], [7], [11], [17]).
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Let us assume that instead of the exact data (F, f,Ω) for V I(1), only perturbed
data (Fn, fn,Ωn) are available. Throughout, it will be assumed that ∀n ∈ N, fn ∈
Y ∗ and Ωn are nonempty closed and convex. The relationship between (F, f,Ω)
and (Fn, fn,Ωn) will be made precise shortly.

Therefore, we need to deal with the following Perturbed VI (for short, PV I):

(2) find y ∈ Ωn such that 〈Fny − fn, x− y〉Y ≥ 0, ∀x ∈ Ωn.

The aim of the present work is to develop a stable approximation procedure for
the above problem. However, the strategy we adopt here for the stable approxima-
tion of PV I(2) differs from the standard stabilization procedures (for a comparison
see [1], [15]). Since it is well known that PV I(2) is in general ill-posed, a regu-
larization procedure is incorporated, however, contrary to the usual approach, the
regularization is carried out in an arbitrary space fulfilling certain requirements.
For the purpose, V I(2) is first embedded into another space and the rest of the
treatment is done in the topology of this new space. One advantage of this ap-
proach is that we impose minimal restrictions on the space Y, in which V I(1) is
posed. For example, the space Y need not be reflexive. It is known that the reg-
ularization of minimization problems in nonreflexive spaces is crucial for classical
problems such as the minimal surface problem and for modern problems such as
image reconstruction (see [16]). Since a variational inequality is a necessary opti-
mality condition for minimization problems our results are also applicable to such
problems. Our approach resembles the so-called Elliptic-super-regularization, in-
troduced by Browder-Ton [2] (see also Ton [18]). However, the idea of using the
topology of the space in which the V I is embedded was originated in [9] for varia-
tional inequalities with pseudo-monotone operators (in the sense of Karamardian)
and later developed in [10] for a more general setting. In this paper, we extend and
refine the earlier results (cf. [9], [10]) for pseudo-monotone operators (in the sense
of H. Brézis).

The rest of the paper is organized as follows: In the next section, we recall
some results and concepts. Section 3 begins with certain technical results. These
results are further used to define a regularized form of PV I(2). We show that
the regularized problem is strongly convergent. The paper concludes with some
remarks concerning the approach.

2. Preliminaries

Let Z be a real reflexive Banach space, let Z∗ be the topological dual of Z, let
〈·, ·〉Z be the associated pairing and let ‖ · ‖Z be the norm in Z.

The following notion of a pseudo-monotone operator was introduced by H. Brézis
(cf. [20]).

Definition 2.1. Let T : D(T ) ⊆ Z → Z∗. The operator T is said to be pseudo-
monotone, if for xn, x ∈ D(T ) such that xn ⇀ x together with

lim sup
n→∞

〈Txn, xn − x〉Z ≤ 0

imply
lim inf
n→∞

〈Txn, xn − z〉Z ≥ 〈Tx, x− z〉Z , ∀z ∈ D(T ).

Definition 2.2. Let T : D(T ) ⊆ Z → Z∗. (i) The operator T is said to be
demicontinuous, if for x ∈ D(T ), and any sequence xn → x with xn ∈ D(T ), we
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have Txn ⇀ Tx. (ii) The operator T is said to be hemicontinuous, if for x0 ∈ D(T ),
and for any vector x such that x0 + tx ∈ D(T ) for 0 ≤ t ≤ α (α = α(x) > 0) and
for any sequence tn → 0 as n→∞ (0 < tn ≤ α), we have T (x0 + tnx) ⇀ Tx0.

It is known that if T : Z → Z∗ is monotone and hemicontinuous, then T is
pseudo-monotone and that the sum of two pseudo-monotone operators is pseudo-
monotone.

Now we recall the so-called Mosco convergence of convex sets (see Mosco [14]).

Definition 2.3. Let Kρ be a sequence of nonempty, closed and convex sets. The
sequence Kρ is said to converge to a set K as ρ approaches zero, denoted by
Kρ ⇒ K, if and only if the following two conditions hold:

[M1]: If uρ ∈ Kρ where ρ is a sequence which converges to zero and uρ ⇀ u,
then u ∈ K.

[M2]: For each u ∈ K there exists a uρ ∈ Kρ such that uρ → u.

The proof of the following result can be obtained from Zeidler [20].

Theorem 2.1. Let K ⊆ Z be nonempty, closed and convex and let T : K → Z∗

be bounded, demicontinuous and pseudo-monotone. Let f ∈ Z∗ be an arbitrary
element. Assume that the operator T is coercive in the following sense: there exists
x0 ∈ K such that 〈Tx, x− x0〉Z/ ‖ x ‖Z→ +∞ as ‖ x ‖Z→ +∞. Then, there exist
at least one y ∈ K such that

〈Ty − f, x− y〉Z ≥ 0, ∀x ∈ K.

3. Regularization

Let X be a real reflexive Banach space and let X∗ be its topological dual. Let
〈 · , · 〉X be the associated pairing and let ‖ · ‖X be the norm in X as well as in X∗.

Let ζ be a single-valued mapping defined from X to Y . Throughout the present
work, it will be assumed that ζ is linear and continuous and the sets Π := Ω∩ζ(X)
and Πn := Ωn∩ζ(X) are nonempty. We use the notation ζ∗ to specify the transpose
of the mapping ζ which is defined from Y ∗ to X∗.

Consider the following Regularized VI (for short, RV I): find xn ∈ ζ−1(Πn) such
that for all z ∈ ζ−1(Πn) we have

(3) 〈ζ∗Fnζxn + εnRxn − ζ∗fn, z − xn〉X ≥ −εnκ(‖ ζxn ‖Y ) ‖ ζz − ζxn ‖Y ,
where R : X → X∗ is hemicontinuous and strongly monotone, κ : R+ → R+ is
nondecreasing and bounded and εn > 0.

Recall that R is said to be strongly monotone iff there exists a constant m > 0
such that

〈R(x)−R(z), x− z〉 ≥ m ‖ x− z ‖2, ∀x, y ∈ X.
We shall denote by Sn(RV I) the set of all solutions to RV I(3).
In order to justify the formulation of RV I(3) we give some auxiliary results.

Lemma 3.1. For n ∈ N, the sets ζ−1(Πn) and ζ−1(Π) are closed and convex
subsets of X.

Proof. We prove the assertion for ζ−1(Πn). For the purpose, let n ∈ N be arbitrary.
As ζ is a single-valued mapping form X to Y , ζ−1(Πn) is a set in X . Convexity of
this set follows as a consequence of convexity of Ωn and linearity of the single-valued
mapping ζ. For closedness, let xk ∈ ζ−1(Πn) with xk → x. We claim x ∈ ζ−1(Πn).
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Indeed, ζxk ∈ Ωn, which implies ζx ∈ Ωn as ζ is continuous and Ωn is closed. Also,
we have ζ−1(ζX) = X and therefore x belongs to ζ−1(Ωn ∩ ζ(X)) = ζ−1(Πn). The
proof is complete. �

Proposition 3.1. Let F : D(F ) ⊆ Y → Y ∗ be pseudo-monotone. Assume that
ζ(X) ⊆ D(F ). Then Fζ(·) := ζ∗Fζ(·) is well defined and pseudo-monotone over
the set ζ−1(Π).

Proof. Let yn, y ∈ ζ−1(Π) be such that yn ⇀ y as n → ∞. In view of the
assumption ζ(X) ⊆ D(F ), we obtain ζyn, ζy ∈ D(F ). Therefore Fζ(yn) and Fζ(y)
are well-defined. For the final assertion, we need to show that the convergence
yn ⇀ y as n→∞ along with

(4) lim sup
n→∞

〈Fζyn, yn − y〉X ≤ 0

implies that

(5) lim inf
n→∞

〈Fζyn, yn − x〉X ≥ 〈Fζy, y − x〉X , ∀x ∈ ζ−1(Π).

Since ζ is linear and continuous, from yn ⇀ y as n→∞, we deduce that ζyn ⇀ ζy
as n →∞. Assume that (4) holds. This implies lim sup

n→∞
〈Fzn, zn − z〉Y ≤ 0, where

zn = ζyn, z = ζy such that zn ⇀ z as n → ∞. This in view of the pseudo-
monotonicity of F yields

lim inf
n→∞

〈Fzn, zn − x〉Y ≥ 〈Fz, z − x〉Y , ∀x ∈ D(F ),

and particularly

lim inf
n→∞

〈Fzn, zn − x〉Y ≥ 〈Fz, z − x〉Y , ∀x ∈ Π.

Consequently

lim inf
n→∞

〈Fζyn, yn − x〉X ≥ 〈Fζy, y − x〉X , ∀x ∈ ζ−1(Π).

Therefore (5) holds. This completes the proof. �

Proposition 3.2. Let F : D(F ) ⊆ Y → Y ∗ and let f ∈ Y ∗. Assume that K1,K2 ⊂
Y such that K1 is weakly dense in K2. If there exists u∗ ∈ Y such that

(6) 〈Fu∗ − f, u− u∗〉Y ≥ 0, ∀u ∈ K1,

then (6) holds for all u ∈ K2.

Proof. Let ū ∈ K2 be arbitrary. Since K1 is weakly dense in K2, there exists a net
{ui| i ∈ I} ⊂ K1 converging weakly to ū. Since (Fu∗−f) ∈ Y ∗, 〈Fu∗−f, ui−u∗〉Y
converges to 〈Fu∗ − f, ū − u∗〉Y and hence 〈Fu∗ − f, ū − u∗〉Y ≥ 0, the result
follows. �

Now we are in a position to discuss the solvability of RV I(3).

Theorem 3.1. Let n ∈ N be arbitrary but fixed. Let F be bounded, demicontinuous
and pseudo-monotone with ζ(X) ⊆ D(F ). Assume that there exists a strictly postive
real αn ≤ εn such that ‖ Fx − Fnx ‖Y≤ αnκ(‖ x ‖Y ), ∀x ∈ Πn. Assume that
there exist yn ∈ Πn and a constant θn <∞ such that 〈Fx, x − ζyn〉Y ≥ θn ‖ x ‖Y .
Then Sn(RV I) 6= ∅.
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Proof. Let us consider an auxiliary RV I (for short ARV I): find xn ∈ ζ−1(Πn)
such that

(7) 〈ζ∗Fζxn + εnRxn − ζ∗fn, z − xn〉X ≥ 0, ∀z ∈ ζ−1(Πn).

Let Sn(ARV I) be the set of all solutions to ARV I(7). We first show that Sn(ARV I)
6= ∅. Since F is pseudo-monotone, it follows from Proposition 3.1 that ζ∗Fζ is
pseudo-monotone as well. The boundedness and the demicontinuity of ζ∗Fζ is de-
rived from the hypotheses on ζ. In view of Theorem 2.1, it will suffice to show that
(ζ∗Fζ + εnR) is coercive. For, we let y ∈ ζ−1(Πn) be arbitrary. We have

〈ζ∗Fζy + εnRy, y − yn〉X = 〈Fζy, ζy − ζyn〉Y + εn〈Ry, y − yn〉X
≥ θn ‖ ζy ‖Y −εn ‖ Ryn ‖X‖ y − yn ‖X +m ‖ y − yn ‖2X ,

where the strong monotonicity of R is used. From the above inequality it follows
that

〈ζ∗Fζy + εnRy, y − yn〉X/ ‖ y ‖X→ +∞, as ‖ y ‖X→ +∞.
Now it is a consequence of Theorem 2.1 that Sn(ARV I) 6= ∅.

Further, we claim that Sn(ARV I) ⊂ Sn(RV I). For this we choose y∈Sn(ARV I)
arbitrarily. This implies that y ∈ ζ−1(Πn) and satisfies (7). Hence ∀z ∈ ζ−1(Πn)
we have

〈ζ∗Fnζy + εnRy − ζ∗fn, z − y〉X ≥ 〈ζ∗Fnζy − ζ∗Fζy, z − y〉X
≥ − ‖ Fnζy − Fζy ‖Y ‖ ζz − ζy ‖Y
≥ −αnκ(‖ ζy ‖Y ) ‖ ζz − ζy ‖Y
≥ −εnκ(‖ ζy ‖Y ) ‖ ζz − ζy ‖Y .

Thus y ∈ Sn(RV I) and this confirms the inclusion Sn(ARV I) ⊂ Sn(RV I). Since we
have shown that Sn(ARV I) 6= ∅, we conclude that Sn(RV I) 6= ∅. This completes
the proof. �

We remark that the idea of introducing an error term in an RVI (cf. (3)) was first
given by Liskovets [12] for monotone operators. However, for monotone operators
this approach has the disadvantage that an RVI with an error (cf. (3)) term is
not uniquely solvable, although an RVI without an error term (cf. (7)) is always
uniquely solvable. Contrary to this, for pseudo-monotone operators, in general,
neither (3) nor (7) has a singleton solution set.

For a sequence {sn}∞n=1, we represent by ωw(sn), the weak-ω limit set of {sn}∞n=1,
that is, the set of all points s such that it is always possible to extract a subsequence
{sk}∞k=1 from {sn}∞n=1 satisfying sk ⇀ s as k →∞.

Our first main result is as follows.

Theorem 3.2. Besides the hypotheses of Theorem 3.1, assume that ζ−1(Πn) ⇒
ζ−1(Π) and for fn ∈ Y ∗, there exists βn > 0 such that ‖ f − fn ‖Y ≤ βn. Assume
that εn, αn, βn, αn/εn, βn/εn ↘ 0 as n → ∞. Assume that {yn}∞n=1, where
yn ∈ Sn(RV I) is chosen arbitrarily, be uniformly bounded. Then each y ∈ ωw(yn)
is a solution to the following V I:

(8) find w ∈ ζ−1(Π) such that 〈ζ∗Fζw − ζ∗f, x− w〉X ≥ 0, ∀x ∈ ζ−1(Π).

Furthermore, if Π is weakly dense in Ω, then ζ(ωw(yn)) ⊆ S(V I).
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Proof. Since the space Y is reflexive, the set ωw(yn) is nonempty. Let y ∈ ωw(yn)
be arbitrary and let {yn}∞n=1 be a subsequence (we use the same notation for the
subsequences as well) extracted from {yn}∞n=1 and satisfying yn ⇀ y as n → ∞.
From the definition of yn it is clear that yn ∈ ζ−1(Πn) and ∀x ∈ ζ−1(Πn) the
following holds:

(9) 〈ζ∗Fnζyn + εnRyn − ζ∗fn, x− yn〉X ≥ −εnκ(‖ ζyn ‖Y ) ‖ ζx− ζyn ‖Y .

Since ζ−1(Πn)⇒ ζ−1(Π), it follows that y ∈ ζ−1(Π) and there exists {zn}∞n=1 such
that zn → y with zn ∈ ζ−1(Πn) (see Definition 2.3). On substituting x = zn in (9),
we obtain

(10) 〈ζ∗Fnζyn + εnRyn − ζ∗fn, zn − yn〉X ≥ −εnκ(‖ ζyn ‖Y ) ‖ ζzn − ζyn ‖Y .

This implies

lim sup
n→∞

〈ζ∗Fζyn, yn − zn〉X

≤ lim sup
n→∞

〈fn − f, ζyn − ζzn〉Y + lim sup
n→∞

〈f, ζyn − ζzn〉Y

+ lim sup
n→∞

〈εnRyn, zn − yn〉X + εnκ(‖ ζyn ‖Y ) ‖ ζzn − ζyn ‖Y

+ lim sup
n→∞

〈Fζyn − Fnζyn, ζyn − ζzn〉Y

≤ lim sup
n→∞

βn[‖ ζzn − ζy ‖Y + ‖ ζyn − ζy ‖Y ]

+ lim sup
n→∞

[‖ f ‖Y ‖ ζzn − ζy ‖Y +〈f, ζyn − ζy〉Y ]

+ lim sup
n→∞

εn ‖ Ryn ‖X‖ zn − yn ‖X

+ lim sup
n→∞

(αn + εn)κ(‖ ζyn ‖Y ) ‖ ζyn − ζzn ‖Y .

(11)

Since { εn, αn βn, 〈 f, ζyn − ζy〉 , ‖ζzn − ζy‖ } → 0 as n →∞ and the remaining
terms are bounded, we deduce that lim sup

n→∞
〈ζ∗Fζyn, yn−zn〉X ≤ 0 and accordingly

lim sup
n→∞

〈ζ∗Fζyn, yn − y〉X ≤ lim sup
n→∞

〈ζ∗Fζyn, zn − y〉X

= 0.(12)

In view of the pseudo-monotonicity of F and Proposition 3.1, we obtain

lim inf
n→∞

〈ζ∗Fζyn, yn − w〉X ≥ 〈ζ∗Fζy, y − w〉X , ∀w ∈ ζ−1(Π).

From 〈ζ∗f, yn − w〉X → 〈ζ∗f, y − w〉X as n → ∞ and the above inequality we
deduce that

(13) lim inf
n→∞

〈ζ∗Fζyn − ζ∗f, yn − w〉X ≥ 〈ζ∗Fζy − ζ∗f, y − w〉X ∀w ∈ ζ−1(Π).

Let z ∈ ζ−1(Π) be arbitrary and let zn ∈ ζ−1(Πn) be such that zn → z as n→∞.
In order to get an estimate for the term appearing on the right side of (13), we
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consider
lim inf
n→∞

〈ζ∗Fζyn − ζ∗f, yn − z〉X
≤ lim sup

n→∞
〈ζ∗Fζyn − ζ∗f, yn − z〉X

≤ lim sup
n→∞

〈ζ∗Fζyn − ζ∗f, yn − zn〉X

+ lim sup
n→∞

〈ζ∗Fζyn − ζ∗f, zn − z〉X

≤ lim sup
n→∞

〈ζ∗Fζyn − ζ∗Fnζyn, yn − zn〉X

+ lim sup
n→∞

〈ζ∗Fnζyn − ζ∗fn, yn − zn〉X

+ lim sup
n→∞

〈ζ∗fn − ζ∗f, yn − zn〉X

≤ lim sup
n→∞

αnκ(‖ ζyn ‖Y ) ‖ ζyn − ζzn ‖Y

+ lim sup
n→∞

〈ζ∗Fnζyn − ζ∗fn, yn − zn〉X

+ lim sup
n→∞

βn ‖ ζyn − ζzn ‖

≤ lim sup
n→∞

〈ζ∗Fnζyn − ζ∗fn, yn − zn〉X

≤ lim sup
n→∞

εn(〈Ryn, zn − yn〉X + κ(‖ ζyn ‖Y ) ‖ ζyn − ζzn ‖Y )

= 0,

(14)

where the second last inequality is a consequence of (10).
The above inequality when combined with (13) yields

(15) 〈ζ∗Fζy − ζ∗f, z − y〉X ≥ 0, ∀z ∈ ζ−1(Π).

This proves the first assertion. For the second one, set ζy := u∗. From (15) we
obtain

〈Fu∗ − f, u− u∗〉Y ≥ 0, ∀u ∈ Π.
An application of Proposition 3.2 brings us to the conclusion that the above in-
equality is valid for all u ∈ Ω. Therefore ζy := u∗ satisfies

〈Fu∗ − f, u− u∗〉Y ≥ 0, ∀u ∈ Ω.

Consequently ζy ∈ S(V I). This completes the proof. �

Observe that (8) is the embedded form of (1). The above proof makes it clear
that the solvability of (1) is implied from the solvability of (8). Therefore, in the
present approach, first the perturbed V I is embedded into X and then by the
regularization procedure the embedded version of (1) is recovered.

In order to prove the strong convergence we need to recall that, given a real
reflexive Banach space Z with Z∗ as its topological dual, an operator T : Z → Z∗

is said to satisfy condition S if xn ⇀ x, together with lim sup
n→∞

〈Txn, xn − x〉 = 0,

implies that xn → x.

Theorem 3.3. Besides the hypotheses of Theorem 3.2 assume that either ζ∗Fζ
satifies the condition S or for each {zn}∞n=1 such that zn ⇀ z, we have that
lim
n→∞

〈Rzn, zn − z〉 = 0. Then for y ∈ ωw(yn), there is a subsequence of yn con-
verging strongly to y.



3868 B. DJAFARI ROUHANI AND A. A. KHAN

Proof. Proceeding as in the proof of Theorem 3.2, we can show that for a sub-
sequence {yn}∞n=1 such that yn ⇀ y as n → ∞, the following relation holds (cf.
(12)):

lim sup
n→∞

〈ζ∗Fζyn, yn − y〉X ≤ 0.

An analogue of (13) with w = y reads as

lim inf
n→∞

〈ζ∗Fζyn, yn − y〉 ≥ 0.

A combination of the above two inequalities yields

(16) 〈ζ∗Fζyn, yn − y〉 → 0 as n→∞.
Therefore, if ζ∗Fζ satisfies the condition S, we obtain the desired strong con-
vergence. Otherwise, since yn ⇀ y as n → ∞, by the assumption we have
limn→∞〈Ryn, yn − y〉X = 0. Since the condition S is always satisfied by strongly
monotone operators, we deduce from the above that yn → y as n → ∞. This
completes the proof. �

We now briefly touch upon the possibility of some applications of the results of
this paper.

Let K be a nonempty, closed and convex subset of a real Banach space Z. Given
a functional A : Z → <, consider the following minimization problem: find x ∈ K
such that

(17) A(x) ≤ A(z), ∀z ∈ K.
If A is convex and Gâteaux differentiable, then (17) is identical to the following V I:

find x ∈ K such that 〈∇A(x), z − x〉 ≥ 0, ∀z ∈ K,
where ∇A is the Gâteaux derivative of F . Let B be a Banach space which is
embedded into Z, that is, there exists a linear subspace V ⊆ Z such that I(B) ≡ V .
Here I is the embedding map. For the sake of simplicity, assume that K ⊆ V .

Clearly the above minimization problem is the framework of the present work
under the setting K := Ω, Z := Y, B := X, and I := ζ. The density assumption is
now superfluous because of the condition that K ⊆ V .

A few examples of the function spaces satisfying the above requirements are as
follows.

Example 3.1. Let Z = Wm,p(G) and B = W s,2(G), where s > m+ (n/2)− (n/p)
and G ⊂ <n. In this case I is compact. Here Wm,p(G) and W s,2(G) are the
familiar Sobolev spaces. For the details, the reader is referred to Zeidler [20]. �

Example 3.2. Let Z = BV (G) and B = W 1,2(G). In this case I is only contin-
uous. Here BV (G) represents the space of functions of bounded variations. For
details, the reader is referred to Nashed-Scherzer [16].

Example 3.3. Let E be an embeddable space, E∗ be the continuous dual of E and
H be the corresponding Hilbert space, that is, among other properties the relation
E ⊂ H (in the usual sense of embedding) holds. For the definition of embed-
dable spaces and various examples including general Banach spaces and topological
spaces, the reader is referred to Vainberg [19]. It is well known that for embeddable
space E, the relation H ⊂ E∗ is true. In this case B = H and Z = E∗ serve our
purpose.
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A general approach of construction of the mapping ζ can be based on the square
roots of certain operators. We illustrate this by giving some examples in the fol-
lowing. First, we mention that the methodology adopted in these examples has its
origin in solving the Hammerstein equation by the use of the variational methods
(cf. [19], [20]).

Example 3.4. Let the linear integral operator J : Lq(S)→ Lp(S) (p ≥ 2, p−1 +
q−1 = 1, mes(S) <∞) defined by

J (v) :=
∫
S

K(x, y)v(y)dy

be positive and selfadjoint (see [19] for details). Then J = T ∗T where T ∗ := U
is the positive square root of the restriction JL2(S) of J to L2(S). In the present
case we have T = T ∗∗ = U∗, where U : L2 → Lp and U∗ : Lq → L2. By setting
X := L2(S) and Y := Lp(S) and by choosing ζ := U we are in the framework of
our results. �

In fact the considerations of the above example make sense in more general Orlicz
spaces as shown in our next example. First, we recall that for given M(·) and N(·)
complementary young functions and the set LαM := {u(x) :

∫
SM(α|u(x)|)dx <

+∞}, where α > 0, S is as above and u(x) is measurable on S, the Orlicz space
LM is defined as the union of the clasees LαM for all α > 0 (see [19, Chapter VIII]
for details). The space LN is defined analogously and, under suitable conditions,
LM serves as the dual of LN . We shall denote by LfM the intersection of all the
classes LαM .

Example 3.5. Consider a linear integral operator J of the form given in Exam-
ple 3.4. Assume that J is positive and maps all of LN into LfM . Then J is bounded
from LN to LfM and its restriction J0 to L2(S) is also a bounded operator. Further-
more, it can be represented as J = U0U , where U0 = J 1/2

0 : L2(S)→ LM and U is
a continuous extension of U0 from LN to L2(S). Moreover 〈w,U0(v)〉 = 〈U(w), (v)〉
for v ∈ L2, w ∈ LN , where 〈w,U0(v)〉 =

∫
S w(x)U0v(x)dx. Now our results are

extendable to the case when X := L2(S), Y := LM and ζ := U0.

In order to throw some light on the representation of ζ and ζ∗ in the above
two examples, we briefly recall some facts about the square root of linear integral
operators. Let J : Lq(S)→ Lp(S) (p > 2, p−1 + q−1 = 1, S ⊂ Rn, mes(S) <∞)
be a completely continuous integral operator with a positive selfadjoint restriction
JL2(S) of J to L2(S) which can be expressed as (see [19, Chapter V]) JL2(S)(x) =∑∞
k=1

〈x,fk〉
λk

fk (x ∈ L2(S), fk ∈ L2, λk > 0), where fk are the eigenfunctions of
JL2(S) corresponding to the eigenvalues λk. Then for each k, fk ∈ Lp, and the square
root J 1/2

L2(S) has a continuous extension U∗ : Lq(S) → L2 which can be written as

U∗(v) =
∑∞

k=1
〈v,fk〉√
λk

fk (v ∈ Lq(S)) and its adjoint U∗∗ as U∗∗(u) =
∑∞

k=1
〈u,fk〉√
λk

fk

(u ∈ L2(S)).

4. Concluding remarks

In this paper we have considered a stable approximation of the variational in-
equalities with pseudo-monotone operators. The variational inequality is first em-
bedded into a real reflexive Banach space and then, by making use of the reflexive
nature of the space, weak as well as strong approximation is established.
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Here we have worked under the assumption that the stabilized solutions are
uniformly bounded. Further, we have used this to prove the solvability of the
original problem. It will be interesting to study the converse as well. It is well-
known that for monotone operators the converse holds. Recently Gwinner [6] has
shown that for pseudo-monotone operators the converse holds under additional
conditions on the operator.
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