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ASYMPTOTIC LIMIT FOR CONDENSATE SOLUTIONS
IN THE ABELIAN CHERN-SIMONS HIGGS MODEL II
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(Communicated by David S. Tartakoff)

ABSTRACT. In this paper we show that the maximal condensate solutions
(¢, A€) in the Abelian Chern-Simons Higgs model converge to (¢«, As) in
higher norms, where ¢ is a harmonic map.

1. INTRODUCTION

In this paper we continue our study discussed in [4] on asymptotic behaviors of
the maximal solutions of the following equations on §2:

(1.1) Di¢p+iDsp = 0,
(12) Fat Sl6P(ol ~1) = 0.

Here ¢ > 0, ¢ :  — C is the complex Higgs field, A : Q — R? is the coupled
gauge potential, Dg¢p = V¢ — iA¢ is the covariant derivative, and Fy = curlA is
the magnetic field. The domain ) is a basic lattice cell in R? generated by two
independent vectors a' and a2, namely,

Q= {m€R2 | z = si1al +s0a%, 0< 51,80 < 1}.

The equations (LI)) and (2) arise from the self-dual Abelian Chern-Simons
Higgs model proposed by Hong-Kim-Pac [5] and Jackiw-Weinberg [6]. It is easy to
see that (LI)) and (L2)) are invariant under the gauge transformation
where y : 2 — R. In view of gauge invariance we impose the following 't Hooft
boundary condition on 2:

exp(ij(z +a’))p(z +a/) = exp(ig;(x))d(z),
(1.3) (Ak +8k§j)(x+aj_) = (Ak—l—akfj)(l‘ , k=12,
reT UT2—T9,  j=1,2,

where & and & are real-valued smooth functions defined in a neighborhood of
I2u{a® +1?}, Tt U {a? +T'!}, respectively. Here

IVM={zecR¥z=sal, 0<s<1}, j=1,2.
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The solutions of (LIl) and (L2) on Q under the above boundary conditions are
called condensate solutions.

Using the classical Jaffe-Taubes arguments [7], one can show that the equation
(L) implies that ¢ is holomorphic up to a nonvanishing multiple factor and has
exactly N zeros allowing multiplicities. Thus in light of gauge invariance we may
assume that ¢ takes the form

k
1 .
(1.4) o) = exp (Fu(@) +i_njarg(z —py) ).
j=1
where the points p1,- -+ , pg, called the vortex points, are the distinct zeros of ¢ with
multiplicities nq, - - - , ng, respectively. Then the equation ([CZ) can be reduced to

k
4
(1.5) Au = E—Qeu(eu -1+ 47sz:;nj(5pj on €,

u : doubly periodic.

Here 6, denotes the Dirac measure concentrated on the point p. Conversely, once
we find a solution u of (L), we may recover A from ([Il) by the formula

(1.6) Al +iAy = —2i01n ¢,

where § = (01 +i02)/2.

The first result about the existence of solutions of (LT)) and (L2)) was given by
Caffarelli-Yang [2]. They showed that there is a critical value e, < /||/47N so
that for 0 < € < €. the equations (LI). and (L2). with the boundary condition
(L3) admits a maximal solution (¢, A¢) of the form (L4) and (L6)). The solution
(¢%, A°) is maximal in the sense that |¢¢| has the largest possible value among all
the solutions to (LI)e and (L2) with the same zeros and multiplicities. In [8] it
was proved by Tarantello that there exists another solution, and some asymptotic
behaviors of solutions as e — 0 were studied. See also [3] and references therein for
recent progress for related topics.

In [4] we showed that

Theorem 1.1. Let (¢, A€) be the mazimal solution of (1)) and [L2) correspond-
ing to e. Let Q' = Q\{p1,--- ,pr}. Then for each a € (0,1), we have
(65,4 = (92,4 in G (Y, C) x Cp (Y, R?)

loc loc

as € — 0, where (¢, As) belongs to WZQO’CP(Q’,(C) X VVllo’cp(Q’,Rz) for all p > 1 and
satisfies

A(b* +¢*|v¢*|2 = 0;
|¢*| = 1
A, = —ip Vo,

on Q. In fact,
T (= p)™
(1.8) ou(2) = [[ 22

on .
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The purpose of the present paper is to obtain the speed of the convergence of
(9%, A€) to (¢, Ay) in higher norms. In fact, we establish

Theorem 1.2. Let (¢, A°) be the mazimal solution of (L) and correspond-
ing to €. Let Q' = Q\{p1, - ,pr}. Then for each positive integer s, we have

(65, A°) = (¢4, A in CP(,C) x CE QY R2).

loc

Furthermore for each K CC ), as € — 0,

(1.9) |¢° = dullcs (1) < Ck 56
and
(110) HAE — A*HCs—l(K) S CK7362.

In the next section we give a proof of Theorem [T.2]

2. PROOF OF THEOREM [[.2]

We notice that the equation (L.E) can be regarded as an exponential nonlinearity
version of the following Ginzburg-Landau equations:

1
(2.1) —Av = 6—21)(1 — |vf?) in w,

where v : w C R? — C. The main strategy of the proof of Theorem is to apply
the same arguments used in [I] to describe the asymptotic behavior of solutions of

Let us denote .

O(zx) = Qan arg(z — pj).

j=1
Then it comes from (I4), (T6), (), and (L) that
5 = exp(uc/2+i6/2),

24° = curlu®+ VO,
¢ = exp(i©/2),
24, = VO,

where curlu = (Gqu, —d1u).
In order to prove Theorem [[.Z] we need some lemmas.

Lemma 2.1 ([]). Let U be a bounded domain in R™. Suppose that
Av=f in U.

Then for each K CC U,

19012y < Gl (1m0 + Iollzmr)-
Lemma 2.2 ([3]). For every compact subset K of Q\{p1,-- ,pk},
(2.2) 0<1—|¢°(x)]* < Oge?, VreK,
as e — 0.
Lemma 2.3. For each K CC Q' and nonnegative integer s, we have
(2.3) |1 — e¥e

as € — 0.

os(k) < Ok €
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Proof. The proof is given by induction. The case s = 0 follows from (Z2) and we
suppose that (2.3) holds up to s > 0.
Let us choose z¢ € ' and R < inf{ |zog —p;|/5 : j=1,---,k}. Set

1—eY
We = ——

€
Then it comes from (LH) that

(2.4) Au, = 4e2w? — 4w, on Bsg(zo),

where Bsg(zo) is a ball of radius 5R centered at x. Since |wellcs(p,) < C by
induction assumption, it follows from the elliptic estimates that ||uc|[ws+2p(p,,) <
C for all p > 1. In particular,

(2.5) [l

A short computation yields

Cs+1(Byg) <C.

Vu6|2 = f6 on B4R.

4 1
(2.6) Aw, = 6—262“611)6 - 6—26“5

Then by Lemma 2]

||35+1we||%oo(BgR)

< Clowllppum (1070l e (1) + 10" fell ()
1

< C(1+ Slwdlospun - luelo- (. )

< Ce 2

Hence we have
(2.7) ||as+1w6||Loo(BSR) < Ce 1t

Differentiating (2.4) (s + 1) times and applying Lemma 1], we deduce from (Z.3])
and (Z7) that

||8S+2Ue||%oo(3m)

< OO el e () (107 e ey + 180 i (5,
< 0(1 + ||as+1w€||L°°(BgR))
< Ceh

Thus

(2.8) 0% 2 ue|| oo (Bomy < Ce /2.

Next differentiating (Z6]) (s + 1) times and applying Lemma [Z] again, we find by
(277) and (ZJ) that

||8S+2w€”2L°°(BR)
< IO wel o (107 well e () + 10" fel L () )
C S S S
< 10 w0 ey (107 well o (o) + 10" Pl e (o) )
< Ce
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Therefore
(2.9) 052 we || oo (Br) < Ce2.
Now let us rewrite (2.0)) as
(2.10) —2Aw, + 4w, = 85211162 — 4e4wf — e2Vu, - Vw, = he on Bg.
Then

—2 A w, + 40° T w, = 85k, on Bg.
It is seen from [2H), @7), ]), and @9) that
105 hell Los () < C-
Set

v = oty - 1 el

4
From (21) we are led to
—EAv+4dv < 0 in Bg,
2.11 Ot he| e
(2.11) o < G0 hli=wn o,
€ 4
On the other hand it is easy to check that for ¢ < R, the function

C 1
V(r) = —exp (E(TQ — RQ)>7 r = |z — x|

€
is a supersolution of (ZITl). This implies that

0¥ (r)

[05F e o c 3R
< N hell=(Br) (=2 o By

- 4 +?ex €

Similarly,
0T he|| poe C 3R
¥ (r) > N0 hell ey JL Br) _ = exp( ) on Bp/s.
€
As a consequence we conclude that

[0°F wel| oo (B, 0) < C

and the proof is completed. 0
Corollary 2.4. For each K CC ' and nonnegative integer s, we have

(2.12) [Vuellos (k) < Ck,s€>

as € — 0.

Proof. By ([2:2) we may assume that e*< > 1/2 on K as ¢ — 0. Then ([2.I2)
immediately follows from (2.3]). O

We are now in a position to prove Theorem [[2 Given K CcC €/, we may
suppose by [22) that e« > 1/2 on K. Then we observe from (23)) that

(2.13) 11— e"/?||ce (k) < C,s€
In the sequel (L.9) and (LI0) is verified from (2.12) and (2.13)) by the formula
G — ¢ = (1= e"/?)e'®r,

1
A, — A = —curlu,.
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