ASYMPTOTIC LIMIT FOR CONDENSATE SOLUTIONS IN THE ABELIAN CHERN-SIMONS HIGGS MODEL II

JONGMIN HAN

(Communicated by David S. Tartakoff)

ABSTRACT. In this paper we show that the maximal condensate solutions $(\phi^{\epsilon}, A^{\epsilon})$ in the Abelian Chern-Simons Higgs model converge to (ϕ_*, A_*) in higher norms, where ϕ_* is a harmonic map.

1. Introduction

In this paper we continue our study discussed in [4] on asymptotic behaviors of the maximal solutions of the following equations on Ω :

$$(1.1) D_1\phi + iD_2\phi = 0.$$

(1.1)
$$D_1\phi + iD_2\phi = 0,$$
(1.2)
$$F_A + \frac{2}{\epsilon^2}|\phi|^2(|\phi|^2 - 1) = 0.$$

Here $\epsilon > 0$, $\phi : \Omega \to \mathbb{C}$ is the complex Higgs field, $A : \Omega \to \mathbb{R}^2$ is the coupled gauge potential, $D_A \phi = \nabla \phi - iA\phi$ is the covariant derivative, and $F_A = \mathbf{curl} A$ is the magnetic field. The domain Ω is a basic lattice cell in \mathbb{R}^2 generated by two independent vectors \mathbf{a}^1 and \mathbf{a}^2 , namely,

$$\Omega = \{ x \in \mathbb{R}^2 \mid x = s_1 \mathbf{a}^1 + s_2 \mathbf{a}^2, \ 0 < s_1, s_2 < 1 \}.$$

The equations (1.1) and (1.2) arise from the self-dual Abelian Chern-Simons Higgs model proposed by Hong-Kim-Pac [5] and Jackiw-Weinberg [6]. It is easy to see that (1.1) and (1.2) are invariant under the gauge transformation

$$(\phi, A) \rightarrow (e^{i\chi}\phi, A + \nabla\chi),$$

where $\chi:\Omega\to\mathbb{R}$. In view of gauge invariance we impose the following 't Hooft boundary condition on Ω :

(1.3)
$$\exp(i\xi_j(x+\mathbf{a}^j))\phi(x+\mathbf{a}^j) = \exp(i\xi_j(x))\phi(x), (A_k + \partial_k \xi_j)(x+\mathbf{a}^j) = (A_k + \partial_k \xi_j)(x), \quad k = 1, 2, x \in \Gamma^1 \cup \Gamma^2 - \Gamma^j, \quad j = 1, 2,$$

where ξ_1 and ξ_2 are real-valued smooth functions defined in a neighborhood of $\Gamma^2 \cup \{\mathbf{a}^1 + \Gamma^2\}, \Gamma^1 \cup \{\mathbf{a}^2 + \Gamma^1\}, \text{ respectively. Here}$

$$\Gamma^j = \{ x \in \mathbf{R}^2 | x = s\mathbf{a}^j, \ 0 < s < 1 \}, \ j = 1, 2.$$

Received by the editors July 24, 2002.

²⁰⁰⁰ Mathematics Subject Classification. Primary 35B40, 81T13.

Key words and phrases. Chern-Simons-Higgs model, self-duality equations, maximal solutions. This research was supported by the research fund of Hankuk University of Foreign Studies, 2002.

The solutions of (1.1) and (1.2) on Ω under the above boundary conditions are called condensate solutions.

Using the classical Jaffe-Taubes arguments [7], one can show that the equation (1.1) implies that ϕ is holomorphic up to a nonvanishing multiple factor and has exactly N zeros allowing multiplicities. Thus in light of gauge invariance we may assume that ϕ takes the form

(1.4)
$$\phi(x) = \exp\left(\frac{1}{2}u(x) + i\sum_{j=1}^{k} n_j \arg(x - p_j)\right),$$

where the points p_1, \dots, p_k , called the vortex points, are the distinct zeros of ϕ with multiplicities n_1, \dots, n_k , respectively. Then the equation (1.2) can be reduced to

(1.5)
$$\Delta u = \frac{4}{\epsilon^2} e^u (e^u - 1) + 4\pi \sum_{j=1}^k n_j \delta_{p_j} \quad \text{on } \Omega,$$
$$u : \text{doubly periodic.}$$

Here δ_p denotes the Dirac measure concentrated on the point p. Conversely, once we find a solution u of (1.5), we may recover A from (1.1) by the formula

$$(1.6) A_1 + iA_2 = -2i\overline{\partial}\ln\phi,$$

where $\overline{\partial} = (\partial_1 + i\partial_2)/2$.

The first result about the existence of solutions of (1.1) and (1.2) was given by Caffarelli-Yang [2]. They showed that there is a critical value $\epsilon_c < \sqrt{|\Omega|/4\pi N}$ so that for $0 < \epsilon < \epsilon_c$ the equations (1.1) $_\epsilon$ and (1.2) $_\epsilon$ with the boundary condition (1.3) admits a maximal solution $(\phi^\epsilon, A^\epsilon)$ of the form (1.4) and (1.6). The solution $(\phi^\epsilon, A^\epsilon)$ is maximal in the sense that $|\phi^\epsilon|$ has the largest possible value among all the solutions to $(1.1)_\epsilon$ and $(1.2)_\epsilon$ with the same zeros and multiplicities. In [8] it was proved by Tarantello that there exists another solution, and some asymptotic behaviors of solutions as $\epsilon \to 0$ were studied. See also [3] and references therein for recent progress for related topics.

In [4] we showed that

Theorem 1.1. Let $(\phi^{\epsilon}, A^{\epsilon})$ be the maximal solution of (1.1) and (1.2) corresponding to ϵ . Let $\Omega' = \Omega \setminus \{p_1, \dots, p_k\}$. Then for each $\alpha \in (0, 1)$, we have

$$(\phi^{\epsilon}, A^{\epsilon}) \to (\phi_*, A_*)$$
 in $C^{1,\alpha}_{loc}(\Omega', \mathbb{C}) \times C^{0,\alpha}_{loc}(\Omega', \mathbb{R}^2)$

as $\epsilon \to 0$, where (ϕ_*, A_*) belongs to $W^{2,p}_{loc}(\Omega', \mathbb{C}) \times W^{1,p}_{loc}(\Omega', \mathbb{R}^2)$ for all p > 1 and satisfies

(1.7)
$$\begin{aligned}
\Delta\phi_* + \phi_* |\nabla\phi_*|^2 &= 0, \\
|\phi_*| &= 1, \\
\deg(\phi_*, p_j) &= n_j, \\
A_* &= -i\overline{\phi_*}\nabla\phi_*
\end{aligned}$$

on Ω' . In fact,

(1.8)
$$\phi_*(z) = \prod_{j=1}^k \frac{(z - p_j)^{n_j}}{|z - p_j|^{n_j}}$$

on Ω' .

The purpose of the present paper is to obtain the speed of the convergence of $(\phi^{\epsilon}, A^{\epsilon})$ to (ϕ_*, A_*) in higher norms. In fact, we establish

Theorem 1.2. Let $(\phi^{\epsilon}, A^{\epsilon})$ be the maximal solution of (1.1) and (1.2) corresponding to ϵ . Let $\Omega' = \Omega \setminus \{p_1, \dots, p_k\}$. Then for each positive integer s, we have

$$(\phi^{\epsilon}, A^{\epsilon}) \to (\phi_*, A_*)$$
 in $C^s_{loc}(\Omega', \mathbb{C}) \times C^{s-1}_{loc}(\Omega', \mathbb{R}^2)$.

Furthermore for each $K \subset\subset \Omega'$, as $\epsilon \to 0$,

and

In the next section we give a proof of Theorem 1.2.

2. Proof of Theorem 1.2

We notice that the equation (1.5) can be regarded as an exponential nonlinearity version of the following Ginzburg-Landau equations:

$$(2.1) -\Delta v = \frac{1}{\epsilon^2} v(1 - |v|^2) \text{in } \omega,$$

where $v: \omega \subset \mathbb{R}^2 \to \mathbb{C}$. The main strategy of the proof of Theorem 1.2 is to apply the same arguments used in [1] to describe the asymptotic behavior of solutions of (2.1).

Let us denote

$$\Theta(x) = 2\sum_{j=1}^{k} n_j \arg(x - p_j).$$

Then it comes from (1.4), (1.6), (1.7), and (1.8) that

$$\begin{array}{rcl} \phi^{\epsilon} & = & \exp(u_{\epsilon}/2 + i\Theta/2), \\ 2A^{\epsilon} & = & \mathbf{curl}u^{\epsilon} + \nabla\Theta, \\ \phi_{*} & = & \exp(i\Theta/2), \\ 2A_{*} & = & \nabla\Theta, \end{array}$$

where $\mathbf{curl} u = (\partial_2 u, -\partial_1 u).$

In order to prove Theorem 1.2, we need some lemmas.

Lemma 2.1 ([1]). Let U be a bounded domain in \mathbb{R}^n . Suppose that

$$\Delta v = f$$
 in U .

Then for each $K \subset\subset U$,

$$\|\nabla v\|_{L^{\infty}(K)}^{2} \le C_{K} \|v\|_{L^{\infty}(U)} \Big(\|f\|_{L^{\infty}(U)} + \|v\|_{L^{\infty}(U)} \Big).$$

Lemma 2.2 ([3]). For every compact subset K of $\Omega \setminus \{p_1, \dots, p_k\}$,

(2.2)
$$0 \le 1 - |\phi^{\epsilon}(x)|^2 \le C_K \epsilon^2, \quad \forall x \in K,$$

as $\epsilon \to 0$.

Lemma 2.3. For each $K \subset\subset \Omega'$ and nonnegative integer s, we have

(2.3)
$$||1 - e^{u_{\epsilon}}||_{C^{s}(K)} \le C_{K,s} \epsilon^{2}$$

as $\epsilon \to 0$.

Proof. The proof is given by induction. The case s=0 follows from (2.2) and we suppose that (2.3) holds up to $s \ge 0$.

Let us choose $x_0 \in \Omega'$ and $R < \inf\{ |x_0 - p_j|/5 : j = 1, \dots, k \}$. Set

$$w_{\epsilon} = \frac{1 - e^{u_{\epsilon}}}{\epsilon^2}.$$

Then it comes from (1.5) that

(2.4)
$$\Delta u_{\epsilon} = 4\epsilon^2 w_{\epsilon}^2 - 4w_{\epsilon} \quad \text{on} \quad B_{5R}(x_0),$$

where $B_{5R}(x_0)$ is a ball of radius 5R centered at x_0 . Since $\|w_{\epsilon}\|_{C^s(B_{5R})} \leq C$ by induction assumption, it follows from the elliptic estimates that $\|u_{\epsilon}\|_{W^{s+2,p}(B_{4R})} \leq C$ for all p > 1. In particular,

$$(2.5) ||u_{\epsilon}||_{C^{s+1}(B_{4R})} \le C.$$

A short computation yields

(2.6)
$$\Delta w_{\epsilon} = \frac{4}{\epsilon^2} e^{2u_{\epsilon}} w_{\epsilon} - \frac{1}{\epsilon^2} e^{u_{\epsilon}} |\nabla u_{\epsilon}|^2 \equiv f_{\epsilon} \quad \text{on} \quad B_{4R}.$$

Then by Lemma 2.1

$$\|\partial^{s+1} w_{\epsilon}\|_{L^{\infty}(B_{3R})}^{2}$$

$$\leq C\|\partial^{s} w_{\epsilon}\|_{L^{\infty}(B_{4R})} \left(\|\partial^{s} w_{\epsilon}\|_{L^{\infty}(B_{4R})} + \|\partial^{s} f_{\epsilon}\|_{L^{\infty}(B_{4R})}\right)$$

$$\leq C\left(1 + \frac{1}{\epsilon^{2}} \|w_{\epsilon}\|_{C^{s}(B_{4R})} \cdot \|u_{\epsilon}\|_{C^{s+1}(B_{4R})}\right)$$

$$\leq C\epsilon^{-2}.$$

Hence we have

(2.7)
$$\|\partial^{s+1} w_{\epsilon}\|_{L^{\infty}(B_{3R})} \le C\epsilon^{-1}.$$

Differentiating (2.4) (s+1) times and applying Lemma 2.1, we deduce from (2.5) and (2.7) that

$$\|\partial^{s+2} u_{\epsilon}\|_{L^{\infty}(B_{2R})}^{2}$$

$$\leq C\|\partial^{s+1} u_{\epsilon}\|_{L^{\infty}(B_{3R})} \Big(\|\partial^{s+1} u_{\epsilon}\|_{L^{\infty}(B_{3R})} + \|\Delta \partial^{s+1} u_{\epsilon}\|_{L^{\infty}(B_{3R})}\Big)$$

$$\leq C\Big(1 + \|\partial^{s+1} w_{\epsilon}\|_{L^{\infty}(B_{3R})}\Big)$$

$$< C\epsilon^{-1}.$$

Thus

(2.8)
$$\|\partial^{s+2}u_{\epsilon}\|_{L^{\infty}(B_{2R})} \le C\epsilon^{-1/2}.$$

Next differentiating (2.6) (s+1) times and applying Lemma 2.1 again, we find by (2.7) and (2.8) that

$$\begin{split} & \|\partial^{s+2} w_{\epsilon}\|_{L^{\infty}(B_{R})}^{2} \\ \leq & C \|\partial^{s+1} w_{\epsilon}\|_{L^{\infty}(B_{2R})} \Big(\|\partial^{s+1} w_{\epsilon}\|_{L^{\infty}(B_{2R})} + \|\partial^{s+1} f_{\epsilon}\|_{L^{\infty}(B_{2R})} \Big) \\ \leq & \frac{C}{\epsilon^{2}} \|\partial^{s+1} w_{\epsilon}\|_{L^{\infty}(B_{2R})} \Big(\|\partial^{s+1} w_{\epsilon}\|_{L^{\infty}(B_{2R})} + \|\partial^{s+2} u_{\epsilon}\|_{L^{\infty}(B_{2R})} \Big) \\ \leq & C\epsilon^{-4}. \end{split}$$

Therefore

Now let us rewrite (2.6) as

$$(2.10) -\epsilon^2 \Delta w_{\epsilon} + 4w_{\epsilon} = 8\epsilon^2 w_{\epsilon}^2 - 4\epsilon^4 w_{\epsilon}^3 - \epsilon^2 \nabla u_{\epsilon} \cdot \nabla w_{\epsilon} \equiv h_{\epsilon} \text{on } B_R.$$

Then

$$-\epsilon^2 \Delta \partial^{s+1} w_{\epsilon} + 4 \partial^{s+1} w_{\epsilon} = \partial^{s+1} h_{\epsilon}$$
 on B_R .

It is seen from (2.5), (2.7), (2.8), and (2.9) that

$$\|\partial^{s+1}h_{\epsilon}\|_{L^{\infty}(B_R)} \leq C.$$

Set

$$v = \partial^{s+1} w_{\epsilon} - \frac{\|\partial^{s+1} h_{\epsilon}\|_{L^{\infty}(B_R)}}{4}.$$

From (2.7) we are led to

(2.11)
$$-\epsilon^{2}\Delta v + 4v \leq 0 \quad \text{in} \quad B_{R},$$

$$v \leq \frac{C}{\epsilon} - \frac{\|\partial^{s+1}h_{\epsilon}\|_{L^{\infty}(B_{R})}}{4} \quad \text{on} \quad \partial B_{R}.$$

On the other hand it is easy to check that for $\epsilon < R$, the function

$$V(r) = \frac{C}{\epsilon} \exp\left(\frac{1}{2\epsilon R}(r^2 - R^2)\right), \qquad r = |x - x_0|$$

is a supersolution of (2.11). This implies that

$$\partial^{s+1} w_{\epsilon}(r) \le \frac{\|\partial^{s+1} h_{\epsilon}\|_{L^{\infty}(B_R)}}{4} + \frac{C}{\epsilon} \exp\left(-\frac{3R}{8\epsilon}\right) \quad \text{on } B_{R/2}.$$

Similarly,

$$\partial^{s+1} w_{\epsilon}(r) \ge -\frac{\|\partial^{s+1} h_{\epsilon}\|_{L^{\infty}(B_R)}}{4} - \frac{C}{\epsilon} \exp\left(-\frac{3R}{8\epsilon}\right) \quad \text{on } B_{R/2}.$$

As a consequence we conclude that

$$\|\partial^{s+1} w_{\epsilon}\|_{L^{\infty}(B_{R/2})} \le C,$$

and the proof is completed.

Corollary 2.4. For each $K \subset\subset \Omega'$ and nonnegative integer s, we have

as $\epsilon \to 0$.

Proof. By (2.2) we may assume that $e^{u_{\epsilon}} \geq 1/2$ on K as $\epsilon \to 0$. Then (2.12) immediately follows from (2.3).

We are now in a position to prove Theorem 1.2. Given $K \subset\subset \Omega'$, we may suppose by (2.2) that $e^{u_{\epsilon}} \geq 1/2$ on K. Then we observe from (2.3) that

(2.13)
$$||1 - e^{u_{\epsilon}/2}||_{C^s(K)} \le C_{K,s} \epsilon^2.$$

In the sequel (1.9) and (1.10) is verified from (2.12) and (2.13) by the formula

$$\phi_* - \phi^{\epsilon} = (1 - e^{u_{\epsilon}/2})e^{i\Theta/2},$$

$$A_* - A^{\epsilon} = \frac{1}{2}\mathbf{curl}u_{\epsilon}.$$

References

- F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. Var. P.D.E. 1 (1993), pp. 123-148. MR 94m:35083
- L. A. Caffarelli and Y. Yang, Vortex condensation in Chern-Simons-Higgs model: an existence theorem, Comm. Math. Phys. 168 (1995), pp. 321-336. MR 96b:81076
- J. Han, Asymptotics for the vortex condensate solutions in Chern-Simons-Higgs theory, Asymptotic Anal. 28 (2001), 31-48. MR 2002m:58027
- J. Han, Asymptotic limit for condensate solutions in the Abelian Chern-Simons Higgs model, Proc. Amer. Math. Soc. 131 (2003), 1839-1845.
- J. Hong, Y. Kim, and P. Y. Pac, Multivortex Solutions of the Abelian Chern-Simons-Higgs Theory, Phys. Rev. Lett. 64 (1990), pp. 2230-2233. MR 91a:81115
- R. Jackiw and E. J. Weinberg, Self-dual Chen-Simons Vortices, Phys. Rev. Lett. 64 (1990), 2234-2237. MR 91a:81117
- 7. A. Jaffe and C.H. Taubes, *Vortices and Monopoles*, Birkhäuser, Boston, 1980. MR 82m:81051
- 8. G. Tarantello, Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys. **37** (1996), pp. 3769-3796. MR **97f**:58045

DEPARTMENT OF MATHEMATICS, HANKUK UNIVERSITY OF FOREIGN STUDIES, 89 WANGSAN-RI MOHYUN, YONGIN, KYOUNGGI-DO 449-791, KOREA

E-mail address: jmhan@hufs.ac.kr