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ASYMPTOTIC LIMIT FOR CONDENSATE SOLUTIONS
IN THE ABELIAN CHERN-SIMONS HIGGS MODEL II

JONGMIN HAN

(Communicated by David S. Tartakoff)

Abstract. In this paper we show that the maximal condensate solutions
(φε, Aε) in the Abelian Chern-Simons Higgs model converge to (φ∗, A∗) in
higher norms, where φ∗ is a harmonic map.

1. Introduction

In this paper we continue our study discussed in [4] on asymptotic behaviors of
the maximal solutions of the following equations on Ω:

D1φ+ iD2φ = 0,(1.1)

FA +
2
ε2
|φ|2(|φ|2 − 1) = 0.(1.2)

Here ε > 0, φ : Ω → C is the complex Higgs field, A : Ω → R2 is the coupled
gauge potential, DAφ = ∇φ − iAφ is the covariant derivative, and FA = curlA is
the magnetic field. The domain Ω is a basic lattice cell in R2 generated by two
independent vectors a1 and a2, namely,

Ω = {x ∈ R2 | x = s1a1 + s2a2, 0 < s1, s2 < 1}.
The equations (1.1) and (1.2) arise from the self-dual Abelian Chern-Simons

Higgs model proposed by Hong-Kim-Pac [5] and Jackiw-Weinberg [6]. It is easy to
see that (1.1) and (1.2) are invariant under the gauge transformation

(φ,A)→ (eiχφ,A+∇χ),

where χ : Ω → R. In view of gauge invariance we impose the following ’t Hooft
boundary condition on Ω:

(1.3)
exp(iξj(x + aj))φ(x + aj) = exp(iξj(x))φ(x),

(Ak + ∂kξj)(x+ aj) = (Ak + ∂kξj)(x), k = 1, 2,
x ∈ Γ1 ∪ Γ2 − Γj , j = 1, 2,

where ξ1 and ξ2 are real-valued smooth functions defined in a neighborhood of
Γ2 ∪ {a1 + Γ2}, Γ1 ∪ {a2 + Γ1}, respectively. Here

Γj = {x ∈ R2|x = saj , 0 < s < 1}, j = 1, 2.
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The solutions of (1.1) and (1.2) on Ω under the above boundary conditions are
called condensate solutions.

Using the classical Jaffe-Taubes arguments [7], one can show that the equation
(1.1) implies that φ is holomorphic up to a nonvanishing multiple factor and has
exactly N zeros allowing multiplicities. Thus in light of gauge invariance we may
assume that φ takes the form

(1.4) φ(x) = exp
( 1

2
u(x) + i

k∑
j=1

nj arg(x− pj)
)
,

where the points p1, · · · , pk, called the vortex points, are the distinct zeros of φ with
multiplicities n1, · · · , nk, respectively. Then the equation (1.2) can be reduced to

(1.5)
∆u =

4
ε2
eu(eu − 1) + 4π

k∑
j=1

njδpj on Ω,

u : doubly periodic.

Here δp denotes the Dirac measure concentrated on the point p. Conversely, once
we find a solution u of (1.5), we may recover A from (1.1) by the formula

(1.6) A1 + iA2 = −2i∂ lnφ,

where ∂ = (∂1 + i∂2)/2.
The first result about the existence of solutions of (1.1) and (1.2) was given by

Caffarelli-Yang [2]. They showed that there is a critical value εc <
√
|Ω|/4πN so

that for 0 < ε < εc the equations (1.1)ε and (1.2)ε with the boundary condition
(1.3) admits a maximal solution (φε, Aε) of the form (1.4) and (1.6). The solution
(φε, Aε) is maximal in the sense that |φε| has the largest possible value among all
the solutions to (1.1)ε and (1.2)ε with the same zeros and multiplicities. In [8] it
was proved by Tarantello that there exists another solution, and some asymptotic
behaviors of solutions as ε→ 0 were studied. See also [3] and references therein for
recent progress for related topics.

In [4] we showed that

Theorem 1.1. Let (φε, Aε) be the maximal solution of (1.1) and (1.2) correspond-
ing to ε. Let Ω′ = Ω\{p1, · · · , pk}. Then for each α ∈ (0, 1), we have

(φε, Aε)→ (φ∗, A∗) in C1,α
loc (Ω′,C)× C0,α

loc (Ω′,R2)

as ε → 0, where (φ∗, A∗) belongs to W 2,p
loc (Ω′,C) ×W 1,p

loc (Ω′,R2) for all p > 1 and
satisfies

(1.7)

∆φ∗ + φ∗|∇φ∗|2 = 0,
|φ∗| = 1,

deg(φ∗, pj) = nj,

A∗ = −iφ∗∇φ∗
on Ω′. In fact,

(1.8) φ∗(z) =
k∏
j=1

(z − pj)nj
|z − pj |nj

on Ω′.
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The purpose of the present paper is to obtain the speed of the convergence of
(φε, Aε) to (φ∗, A∗) in higher norms. In fact, we establish

Theorem 1.2. Let (φε, Aε) be the maximal solution of (1.1) and (1.2) correspond-
ing to ε. Let Ω′ = Ω\{p1, · · · , pk}. Then for each positive integer s, we have

(φε, Aε)→ (φ∗, A∗) in Csloc(Ω
′,C)× Cs−1

loc (Ω′,R2).

Furthermore for each K ⊂⊂ Ω′, as ε→ 0,

(1.9) ‖φε − φ∗‖Cs(K) ≤ CK,sε2

and

(1.10) ‖Aε −A∗‖Cs−1(K) ≤ CK,sε2.
In the next section we give a proof of Theorem 1.2.

2. Proof of Theorem 1.2

We notice that the equation (1.5) can be regarded as an exponential nonlinearity
version of the following Ginzburg-Landau equations:

(2.1) −∆v =
1
ε2
v(1 − |v|2) in ω,

where v : ω ⊂ R2 → C. The main strategy of the proof of Theorem 1.2 is to apply
the same arguments used in [1] to describe the asymptotic behavior of solutions of
(2.1).

Let us denote

Θ(x) = 2
k∑
j=1

nj arg(x− pj).

Then it comes from (1.4), (1.6), (1.7), and (1.8) that

φε = exp(uε/2 + iΘ/2),
2Aε = curluε +∇Θ,
φ∗ = exp(iΘ/2),

2A∗ = ∇Θ,

where curlu = (∂2u,−∂1u).
In order to prove Theorem 1.2, we need some lemmas.

Lemma 2.1 ([1]). Let U be a bounded domain in Rn. Suppose that

∆v = f in U.

Then for each K ⊂⊂ U ,

‖∇v‖2L∞(K) ≤ CK‖v‖L∞(U)

(
‖f‖L∞(U) + ‖v‖L∞(U)

)
.

Lemma 2.2 ([3]). For every compact subset K of Ω\{p1, · · · , pk},
(2.2) 0 ≤ 1− |φε(x)|2 ≤ CKε2, ∀x ∈ K,
as ε→ 0.

Lemma 2.3. For each K ⊂⊂ Ω′ and nonnegative integer s, we have

(2.3) ‖1− euε‖Cs(K) ≤ CK,sε2

as ε→ 0.
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Proof. The proof is given by induction. The case s = 0 follows from (2.2) and we
suppose that (2.3) holds up to s ≥ 0.

Let us choose x0 ∈ Ω′ and R < inf{ |x0 − pj|/5 : j = 1, · · · , k}. Set

wε =
1− euε
ε2

.

Then it comes from (1.5) that

(2.4) ∆uε = 4ε2w2
ε − 4wε on B5R(x0),

where B5R(x0) is a ball of radius 5R centered at x0. Since ‖wε‖Cs(B5R) ≤ C by
induction assumption, it follows from the elliptic estimates that ‖uε‖W s+2,p(B4R) ≤
C for all p > 1. In particular,

(2.5) ‖uε‖Cs+1(B4R) ≤ C.
A short computation yields

(2.6) ∆wε =
4
ε2
e2uεwε −

1
ε2
euε |∇uε|2 ≡ fε on B4R.

Then by Lemma 2.1

‖∂s+1wε‖2L∞(B3R)

≤ C‖∂swε‖L∞(B4R)

(
‖∂swε‖L∞(B4R) + ‖∂sfε‖L∞(B4R)

)
≤ C

(
1 +

1
ε2
‖wε‖Cs(B4R) · ‖uε‖Cs+1(B4R)

)
≤ Cε−2.

Hence we have

(2.7) ‖∂s+1wε‖L∞(B3R) ≤ Cε−1.

Differentiating (2.4) (s + 1) times and applying Lemma 2.1, we deduce from (2.5)
and (2.7) that

‖∂s+2uε‖2L∞(B2R)

≤ C‖∂s+1uε‖L∞(B3R)

(
‖∂s+1uε‖L∞(B3R) + ‖∆∂s+1uε‖L∞(B3R)

)
≤ C

(
1 + ‖∂s+1wε‖L∞(B3R)

)
≤ Cε−1.

Thus

(2.8) ‖∂s+2uε‖L∞(B2R) ≤ Cε−1/2.

Next differentiating (2.6) (s+ 1) times and applying Lemma 2.1 again, we find by
(2.7) and (2.8) that

‖∂s+2wε‖2L∞(BR)

≤ C‖∂s+1wε‖L∞(B2R)

(
‖∂s+1wε‖L∞(B2R) + ‖∂s+1fε‖L∞(B2R)

)
≤ C

ε2
‖∂s+1wε‖L∞(B2R)

(
‖∂s+1wε‖L∞(B2R) + ‖∂s+2uε‖L∞(B2R)

)
≤ Cε−4.
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Therefore

(2.9) ‖∂s+2wε‖L∞(BR) ≤ Cε−2.

Now let us rewrite (2.6) as

(2.10) −ε2∆wε + 4wε = 8ε2w2
ε − 4ε4w3

ε − ε2∇uε · ∇wε ≡ hε on BR.

Then
−ε2∆∂s+1wε + 4∂s+1wε = ∂s+1hε on BR.

It is seen from (2.5), (2.7), (2.8), and (2.9) that

‖∂s+1hε‖L∞(BR) ≤ C.
Set

v = ∂s+1wε −
‖∂s+1hε‖L∞(BR)

4
.

From (2.7) we are led to

(2.11)
−ε2∆v + 4v ≤ 0 in BR,

v ≤ C

ε
−
‖∂s+1hε‖L∞(BR)

4
on ∂BR.

On the other hand it is easy to check that for ε < R, the function

V (r) =
C

ε
exp

( 1
2εR

(r2 −R2)
)
, r = |x− x0|

is a supersolution of (2.11). This implies that

∂s+1wε(r) ≤
‖∂s+1hε‖L∞(BR)

4
+
C

ε
exp

(
− 3R

8ε

)
on BR/2.

Similarly,

∂s+1wε(r) ≥ −
‖∂s+1hε‖L∞(BR)

4
− C

ε
exp

(
− 3R

8ε

)
on BR/2.

As a consequence we conclude that

‖∂s+1wε‖L∞(BR/2) ≤ C,
and the proof is completed. �

Corollary 2.4. For each K ⊂⊂ Ω′ and nonnegative integer s, we have

(2.12) ‖∇uε‖Cs(K) ≤ CK,sε2

as ε→ 0.

Proof. By (2.2) we may assume that euε ≥ 1/2 on K as ε → 0. Then (2.12)
immediately follows from (2.3). �

We are now in a position to prove Theorem 1.2. Given K ⊂⊂ Ω′, we may
suppose by (2.2) that euε ≥ 1/2 on K. Then we observe from (2.3) that

(2.13) ‖1− euε/2‖Cs(K) ≤ CK,sε2.
In the sequel (1.9) and (1.10) is verified from (2.12) and (2.13) by the formula

φ∗ − φε = (1− euε/2)eiΘ/2,

A∗ −Aε =
1
2
curluε.
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