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ISOMORPHISMS OF SUBALGEBRAS OF NEST ALGEBRAS
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(Communicated by David R. Larson)

Abstract. Let T be a subalgebra of a nest algebra T (N ). If T contains all
rank one operators in T (N ), then T is said to be large; if the set of rank one
operators in T coincides with that in the Jacobson radical of T (N ), T is said to
be radical-type. In this paper, algebraic isomorphisms of large subalgebras and
of radical-type subalgebras are characterized. Let Ni be a nest of subspaces of
a Hilbert space Hi and Ti be a subalgebra of the nest algebra T (Ni) associated
to Ni (i = 1, 2). Let φ be an algebraic isomorphism from T1 onto T2. It is
proved that φ is spatial if one of the following occurs: (1) Ti (i = 1, 2) is large
and contains a masa; (2) Ti (i = 1, 2) is large and closed; (3) Ti (i = 1, 2) is
a closed radical-type subalgebra and Ni (i = 1, 2) is quasi-continuous (i.e. the
trivial elements of Ni are limit points); (4) Ti (i = 1, 2) is large and one of N1

and N2 is not quasi-continuous.

1. Introduction and preliminaries

A nest N is a totally ordered set of closed subspaces of a Hilbert space H
containing (0) and H which is closed under intersection and closed span. By B(H),
we denote the set of all linearly bounded operators on H, and if H1 and H2 are
Hilbert spaces, then B(H1,H2) denotes the set of all linearly bounded operators
from H1 to H2. The nest algebra denoted by T (N ) associated to N is the set of
operators in B(H) which leave every element in N invariant. For E ∈ N , we use
E to denote both a subspace and the orthogonal projection to it. So E⊥ denotes
the orthogonal complement H 	 E and the difference I − E. Given a nest N and
E ∈ N , define E− =

∨
{N : N < E,N ∈ N} and E+ =

∧
{N : N > E,N ∈ N}.

N is continuous if E− = E for each E ∈ N ; N is quasi-continuous if (0)+ = (0) and
H− = H; N is maximal if dim(E 	E−) ≤ 1 for every E ∈ N ; N is sub-maximal if
dim((0)+) ≤ 1 and dim(H	H−) ≤ 1.

Let x and y be non-zero vectors in H. Then rank one operator x⊗ y is defined
by (x ⊗ y)z = (z, y)x for any z ∈ H. Let T (N ) be a nest algebra and RN be the
Jacobson radical of T (N ). It is well known that x⊗ y belongs to T (N ) if and only
if there is E in N such that x ∈ E and y ∈ E⊥− , and to RN if and only if there is
E in N such that x ∈ E and y ∈ E⊥. Thus RN contains all rank one operators in
T (N ) only when N is continuous.
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Definition 1.1. Let T be a subalgebra of T (N ). If T contains all rank one
operators in T (N ), then we say that T is large. If the set of rank one operators in
T coincides with that in the Jacobson radical of T (N ), we say that T is radical-
type.

In the fundamental work [6] on the theory of nest algebras, R. Ringrose estab-
lished the Isomorphism Theorem of nest algebras which states that every algebraic
isomorphism between two nest algebras is necessarily spatial. In the same paper,
he also proved that

Theorem 1.2 ([6, Theorem 4.1]). Let Ni be a nest of subspaces of a Hilbert space
Hi and Ti be a subalgebra of nest algebra T (Ni) associated to Ni (i = 1, 2). Let
φ be an algebraic isomorphism from T1 onto T2. Suppose that (1) Ti is large; (2)
there is a maximal abelian *-subalgebra (masa) Ai of B(Hi) in Ti; (3) φ(A1) = A2.
Then φ is spatially implemented, i.e. there is an invertible operator S ∈ B(H1,H2)
such that φ(T ) = STS−1 for every T ∈ T1.

As we observed, the Isomorphism Theorem of nest algebras is a corollary of The-
orem 1.2, since in this case the isomorphism is the composition of two isomorphisms,
one of which is spatial and the other satisfies hypotheses (1)-(3) in Theorem 1.2 [1,
Theorem 17.5]. This suggests that condition (3) in Theorem 1.2 may be removed
for appropriate subalgebras. In fact, in [3] we proved

Theorem 1.3 ([3, Theorem 3.4]). Let Ni be a nest of subspaces of a Hilbert space
Hi and Ti be a subalgebra of nest algebra T (Ni) associated to Ni (i = 1, 2). Let φ
be an algebraic isomorphism from T1 onto T2. Suppose that (1) Hi 	 (Hi)− and
(0i)+ both have dimension ≤ 1; (2) there is a maximal abelian *-subalgebra (masa)
Ai of B(Hi) in Ti; (3) the invariant subspace lattice of Ti is Ni; (4) Ti contains
every rank one operator x ⊗ y with x ∈ E and y ∈ E⊥ for some element E in Ni.
Then φ is spatially implemented.

In the present paper, we continue to investigate algebraic isomorphisms of sub-
algebras of nest algebras. We pay our attention to algebraic isomorphisms of large
subalgebras and of radical-type subalgebras. Unlike Theorem 1.2 and Theorem
1.3, we do not require subalgebras to contain masas. If subalgebras contain masas,
unlike Theorem 1.2 and like Theorem 1.3, we do not require the algebraic isomor-
phism to satisfy condition (3) in Theorem 1.2. Let Ni be a nest of subspaces of
a Hilbert space Hi and Ti be a subalgebra of nest algebra T (Ni) associated to Ni
(i = 1, 2). Let φ be an algebraic isomorphism from T1 onto T2. We will prove that
φ is spatial if one of the following occurs: (1) Ti (i = 1, 2) is large and contains a
masa; (2) Ti (i = 1, 2) is large and closed; (3) Ti (i = 1, 2) is large and one of N1

and N2 is not quasi-continuous; (4) Ti (i = 1, 2) is a closed radical-type subalgebra
and Ni (i = 1, 2) is quasi-continuous. In particular, every algebraic isomorphism of
compact operator ideals of nest algebras is spatial and so is every isomorphism of
the Jacobson radicals of nest algebras associated to quasi-continuous nests.

In order to deal with isomorphisms of large subalgebras and of radical-type
subalgebras simultaneously, we introduce θ-subalgebras which are modeled on large
subalgebras and radical-type subalgebras.

Definition 1.4. We say that a subalgebra T of T (N ) is a θ-subalgebra if
(1) θ is a homomorphism from the nest N to itself such that θ(E) = E or E−

for every E ∈ N .
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(2) A rank one operator x⊗ y belongs to T if and only if there is E ∈ N such
that x ∈ E and y ∈ θ(E)⊥.

Thus a large subalgebra is a θ-subalgebra where θ : E → E− and the Jacobson
radical is also a θ-subalgebra where θ is the identity on N . We would like to
emphasize the following facts. For a θ-subalgebra T of T (N ): (1) if x⊗ y belongs
to T and E is the smallest element containing x in N , then y ∈ θ(E)⊥; (2) if x ∈ E
and y ∈ E⊥, then x⊗ y ∈ T .

In subsequent sections, isomorphisms always refer to algebraic isomorphisms.

2. Isomorphisms of θ-subalgebras

In this section, Ni is always a nest of subspaces of a Hilbert space Hi and Ti is
a θi-subalgebra of the nest algebra T (Ni) (i = 1, 2). φ is an isomorphism from T1

onto T2. We use N θi
i to denote the set {E ∈ Ni : E > (0) and θi(E)⊥ 6= (0)}.

Lemma 2.1. Suppose that
∨
{θ1(E)⊥ : E ∈ N θ1

1 } = H1 and φ preserves rank one
operators. Let E be in N θ1

1 . If y0 is a non-zero vector in θ1(E)⊥, then there is v0

with the property that for each x ∈ E there exists a vector u such that φ(x⊗ y0) =
u⊗ v0.

Proof. Let x be any non-zero vector in E. Then x⊗y0 belongs to T1. Suppose that
φ(x⊗ y0) = u⊗ v; it suffices to prove that v is a multiple of a fixed vector v0. We
distinguish two cases.

Case 1: θ1(E) < E. Fix a unit vector x0 in E	 θ1(E). Then x⊗ x0 and x0⊗ y0

belong to T1. Suppose that φ(x ⊗ x0) = f ⊗ g and φ(x0 ⊗ y0) = u0 ⊗ v0. Then we
have that u ⊗ v = φ(x ⊗ y0) = φ((x ⊗ x0)(x0 ⊗ y0)) = (u0, g)f ⊗ v0. Thus v must
be a multiple of v0.

Case 2: θ1(E) = E. Then there is F in N1 such that (0) < F < E.
By an argument similar to Case 1, there is a fixed vector v0 such that φ(x1⊗y0) =

u1⊗v0 for every x1 ∈ F . For a non-zero vector x2 ∈ E	F , suppose that φ(x2⊗y0) =
u2 ⊗ z and φ(x1 ⊗ x2) = f ⊗ g. Then ‖x2‖2(u1 ⊗ v0) = φ((x1 ⊗ x2)(x2 ⊗ y0)) =
(u2, g)f ⊗ z. Thus z is a multiple of v0 and hence φ(x2 ⊗ y0) = u′2 ⊗ v0. Writing
x = x1 + x2 ∈ F ⊕ (E 	 F ), we have that φ(x ⊗ y0) = φ((x1 + x2) ⊗ y0) =
u1 ⊗ v0 + u′2 ⊗ v0 = u⊗ v0.

Lemma 2.2. Suppose that
∨
{θ1(E)⊥ : E ∈ N θ1

1 } = H1 and φ preserves rank
one operators. Let E be in N θ1

1 . If x0 is a non-zero vector in E, then there is
u0 with the property that for every y ∈ θ1(E)⊥ there exists a vector v such that
φ(x0 ⊗ y) = u0 ⊗ v.

Proof. We distinguish two cases.
Case 1: θ1(E) < E. Let y0 be a fixed unit vector in E	θ1(E). Then x0⊗y0 ∈ T1.

Suppose that φ(x0⊗ y0) = u0⊗ v0. For y ∈ θ1(E)⊥, suppose that φ(x0⊗ y) = u⊗ v
and φ(y0⊗y) = f⊗g. Then we have that u⊗v = φ((x0⊗y0)(y0⊗y)) = (f, v0)u0⊗g.
It follows that u must be a multiple of u0.

Case 2: θ1(E) = E. Then there is F such that (0) < F < E.
If x0 ∈ F , by an argument similar to Case 1, the assertion holds.
Now assume that z0 = (E − F )x0 6= 0. Fix y0 in θ1(E)⊥ and suppose that

φ(x0 ⊗ y0) = u0 ⊗ v0. For any y1 ∈ θ1(E)⊥ which is linearly independent of y0,
suppose that φ(x0⊗ y1) = u1⊗ v1. Since u0⊗ v0 +u1⊗ v1 (= φ(x0⊗ (y0 + y1))) is a
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rank one operator, one of the pairs {u1, u0} and {v1, v0}must be linearly dependent.
If u1 and u0 are linearly dependent, then we are done. If u1 and u0 are linearly
independent, then v1 and v0 are linearly dependent. In this case, take x1 in F . By
an argument similar to Case 1, we have that φ(x1⊗yi) = f ⊗gi (i = 0, 1). Suppose
that φ(x1 ⊗ z0) = h⊗w. Then we have that ‖z0‖2f ⊗ gi = φ((x1 ⊗ z0)(x0 ⊗ yi)) =
(ui, w)h ⊗ vi, i = 0, 1, which implies that g0 and g1 are linearly dependent, and
hence y0 and y1 are linearly dependent, which contradicts the hypothesis that y0

and y1 are linearly independent.

Let N be a nest over H. Let x be a non-zero vector in H. Then Ex =
∧
{N ∈

N : x ∈ N} is the smallest element in N to which x belongs. We say that such
an Ex is the smallest element of x in N and x is a maximal vector of Ex. For a
non-zero element E in N , we can construct a maximal vector xE of E as follows.
If E 6= E−, then any non-zero vector xE in E 	 E− will be. If E = E−, then
there is an increasing sequence {Ek} ⊆ N such that limk→∞ Ek = E in the strong
operator topology. Let ek be a unit vector in Ek+1	Ek. Then xE =

∑∞
k=1

1
2k
ek is

a maximal vector of E.

Theorem 2.3. Suppose that
∨
{θi(E)⊥ : E ∈ N θi

i } = Hi (i = 1, 2) and φ carries
rank one operators to rank one operators. For each E ∈ N θ1

1 , let xE be a fixed unit
maximal vector of E. Then

(1) There is an order preserving map E → Ê from N θ1
1 to N θ2

2 such that∨
{θ2(Ê)⊥ : E ∈ N θ1

1 } = H2.
(2) For every E ∈ N θ1

1 , there exists a unit vector uE ∈ Ê and a linear bijective
map AE from θ1(E)⊥ onto θ2(Ê)⊥ such that φ(xE ⊗ y) = uE ⊗ (AEy) for
any y ∈ θ1(E)⊥.

(3) There is a linear bijective map A from
⋃
{θ1(E)⊥ : E ∈ N θ1

1 } onto⋃
{θ2(Ê)⊥ : E ∈ N θ1

1 } such that AT ∗ = φ(T )∗A on
⋃
{θ1(E)⊥ : E ∈ N θ1

1 }.
(4) Moreover, if both φ and φ−1 are bounded, then AE and A are also bounded.

Proof. (1) Let E be in N θ1
1 . By Lemma 2.2, there is a fixed unit vector uE with

the property that for every y ∈ θ1(E)⊥ there is v such that

(2.1) φ(xE ⊗ y) = uE ⊗ v.

Let Ê be the smallest element of uE in N2. Then the map E → Ê is well defined.
Since T2 is a θ2-subalgebra, the vector v in the right side of equation (2.1) is in

θ2(Ê)⊥ for every y ∈ θ1(E)⊥, which implies that Ê is in N θ2
2 .

Let E1 and E2 be in Nθ1
1 such that E1 < E2. By the choice of xE ’s, there is

a vector y1 in E⊥1 such that (xE2 , y1) 6= 0. Let y2 be in θ1(E2)⊥. Then xE1 ⊗ y1

and xE2 ⊗ y2 belong to T1. Suppose that φ(xEi ⊗ yi) = uEi ⊗ vi (i = 1, 2).
Then (uE2 , v1)uE1 ⊗ v2 = (xE2 , y1)φ(xE1 ⊗ y2) 6= 0 and hence (uE2 , v1) 6= 0. Since
uE2 ∈ Ê2 and v1 ∈ θ2(Ê1)⊥, we have that Ê2θ2(E1)⊥ 6= 0. Thus θ2(Ê1) < Ê2 and
hence Ê1 ≤ Ê2.

Let F be in N θ2
2 . Let uF be a unit maximal vector of F . Applying Lemma 2.2

to φ−1, there is a unit vector xF with the property that for every v ∈ θ2(F )⊥ there
is y(v) such that

(2.2) φ(xF ⊗ y(v)) = uF ⊗ v.
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Let E be the smallest element of xF in N1. Then the vector y(v) in the left side
of equation (2.2) is in θ1(E)⊥. Hence E ∈ N θ1

1 and xE ⊗ y(v) ∈ T1. By equation
(2.1), we have that

(2.1′) φ(xE ⊗ y(v)) = uE ⊗ v′

and v′ is in θ2(Ê)⊥. By Lemma 2.1 and equations (2.2) and (2.1′), v and v′ must
be linearly dependent, so v ∈ θ2(Ê)⊥. That is to say, for each F ∈ N θ2

2 there is
E ∈ N θ1

1 such that θ2(F )⊥ ⊆ θ2(Ê)⊥. Thus∨
{θ2(Ê)⊥ : E ∈ N θ1

1 } =
∨
{θ2(F )⊥ : F ∈ N θ2

2 } = H2.

(2) By (1), for any y ∈ θ1(E)⊥ there is a unique v in θ2(Ê)⊥ such that φ(xE⊗y) =
uE⊗v. Thus the map AE : y → v is well defined, linear, from θ1(E)⊥ into θ2(Ê)⊥.
Moreover φ(xE ⊗ y) = uE ⊗ (AEy) for any y ∈ θ1(E)⊥. Now we prove that AE is
onto.

Let y0 ∈ θ1(E)⊥. Suppose that φ(xE ⊗ y0) = uE ⊗ v0. For any v in θ2(Ê)⊥,
applying Lemma 2.2 to φ−1, there is a vector y such that xE⊗y ∈ T1 and φ(xE⊗y) =
uE ⊗ v. By the choice of xE , we have that y ∈ θ1(E)⊥.

(3) Fix E0 in N θ1
1 . Let E be in N θ1

1 . We want to prove that there is a scalar λE
such that

(2.3) λEAEy = AE0y on θ1(E0)⊥ ∩ θ1(E)⊥.

If θ1(E) < θ1(E0), then both xE ⊗ y and xE0 ⊗ y belong to T1 for any y ∈ θ1(E0)⊥.
Thus by (2) we have

(2.4) φ(xE ⊗ y) = uE ⊗ (AEy),

(2.5) φ(xE0 ⊗ y) = uE0 ⊗ (AE0y).

Let y0 be a fixed vector in E0	 θ1(E) such that (y0, xE0) = 1 (by the choice of xE ,
such y0 must exist). Then uE ⊗AEy = φ((xE ⊗ y0)(xE0 ⊗ y)) = (uE0 , AEy0)uE ⊗
AE0y, and hence (2.3) holds. Likewise if θ1(E) > θ1(E0), there is also a scalar λE
such that equation (2.3) holds. If θ1(E) = θ1(E0) = F , assume that E < E0. For
every y ∈ F⊥, by (2.5) and Lemma 2.1,

(2.6) φ(xE ⊗ y) = u⊗AE0y.

Comparing (2.4) and (2.6), we deduce that AEy is a non-zero multiple of AE0y.
Since this holds for every y ∈ F⊥, it follows easily that AE is a non-zero multiple
of AE0 . That is, equation (2.3) holds.

Similarly, for any E1 and E2 in N θ1
1 , there is a scalar λ such that λAE1y =

AE2y on θ1(E1)⊥ ∩ θ1(E2)⊥. Hence there is a scalar µ such that µλE1AE1y =
λE2AE2y on θ1(E1)⊥ ∩ θ1(E2). Since λE1AE1y = AE0y = λE2AE2y, on θ1(E0)⊥ ∩
θ1(E1)⊥ ∩ θ1(E2)⊥, we have that µ = 1, that is,

(2.7) λE1AE1y = λE2AE2y on θ1(E1)⊥ ∩ θ1(E2)⊥.

Define A from
⋃
{θ1(E)⊥ : E ∈ N θ1

1 } to
⋃
{θ2(Ê)⊥ : E ∈ N θ1

1 } by Ay = λEAEy
for y ∈ θ1(E)⊥. By equation (2.7), A is well defined and bijective. Moreover, we
have φ(xE ⊗ y) = λ̄−1

E uE ⊗ (Ay).
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Let T ∈ T1 and y ∈ θ1(E)⊥, where E ∈ N θ1
1 . We have λ̄−1

E uE ⊗ (AT ∗y) =
φ(xE ⊗ T ∗y) = λ̄−1

E uE ⊗ (Ay)φ(T ). Hence AT ∗y = φ(T )∗Ay. Since y is arbitrary,
we have that

(2.8) AT ∗ = φ(T )∗A on
⋃
{θ1(E)⊥ : E ∈ N θ1

1 }.

(4) If φ and φ−1 are bounded, by (2) we have that ‖AE‖ ≤ ‖φ‖ and ‖A−1
E ‖ ≤

‖φ−1‖. By equation (2.3), |λE | ≤ ‖A−1
E ‖‖AE0‖ ≤ ‖φ−1‖‖φ‖. Consequently, by the

definition of A, A is bounded.

The next goal in this section is to give a sufficient condition such that an iso-
morphism of θ-subalgebras preserves rank one operators and is bounded. To this
end, we introduce the following concept.

Definition 2.4. Let N be a nest over a Hilbert space H and θ an order homo-
morphism from N into itself. The map θ is said to be dense if

∨
{E ∈ N : θ(E) <

H} = H and
∨
{θ(E)⊥ : E ∈ N and N > (0)} = H.

Remark 2.5. (1) For a nest N , it is well known that
∨
{E ∈ N : E− < H} = H

and
∨
{E⊥− : E ∈ N and E > (0)} = H. Therefore, if θ(E) = E− for every E ∈ N ,

then θ is dense.
(2) If N is quasi-continuous and θ is a map of N such that E− ≤ θ(E) ≤ E,

then (0) ≤ θ(E) ≤ E < H for every (0) < E < H. Thus∨
{E ∈ N : θ(E) < H} ≥

∨
{E ∈ N : E < H} = H

and ∧
{θ(E) : E ∈ N and E > (0)} ≤

∧
{E ∈ N : E > (0)} = (0).

Hence θ is dense.

The following gives a characterization of rank one operators in a θ-subalgebra,
which assures that isomorphisms of θ-subalgebras preserve rank one operators under
the density assumption. Recall that an element s of an abstract algebra A is called
a single element of A if asb = 0 and a, b ∈ A implies that either as = 0 or sb = 0 [6].
It is easy to see that every rank one operator is a single element of every operator
algebra containing it.

Lemma 2.6. Let T be a θ-subalgebra of T (N ) and suppose θ is dense. Then every
non-zero single element of T is of rank one.

Proof. For the case in which T is a large subalgebra (i.e. θ(E) = E− for every
E ∈ N ), refer to [6, Lemma 2.3]. Here the proof is simpler. Suppose that T has rank
at least two. Since

∨
{E ∈ N : θ(E) < H} = H, there is E1 with θ(E1) < H such

that TE1 has rank at least two. Hence, since
∨
{θ(N)⊥ : N ∈ N and N > (0)} = H,

there is E2 with (0) < E2 such that θ(E2)⊥TE1 has rank at least two. Thus
we can pick vectors x1 and x2 in E1 such that θ(E2)⊥Tx1 and θ(E2)⊥Tx2 are
non-zero and orthogonal. Take non-zero vectors g in θ(E1)⊥ and h in E2. Let
A = h⊗ (θ(E2)⊥Tx1) and B = x2⊗ g. Then both A and B belong to T . It is easy
to see that ATx1 6= 0, TBg 6= 0, ATB = (Tx2, θ(E2)⊥Tx1)h ⊗ g = 0. Namely, T
is not a single element of T .

Here we give an example which shows that if θ is not dense, then Lemma 2.6
may not hold. Let N be a nest over H such that E = (0)+ > (0). Then for each
S in RN , the Jacobson radical of T (N ), we have that SE = ESE = 0. Let T be
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in RN such that T = ETE⊥. Then ST = SET = 0 for every S ∈ RN . However
such T is not necessarily of rank one unless E or E⊥ is of dimension one.

Theorem 2.7. Suppose that φ is an isomorphism from a θ1-subalgebra T1 onto a
θ2-subalgebra T2. If both θ1 and θ2 are dense, then φ carries rank one operators in
T1 to rank one operators in T2.

Proof. By Lemma 2.6, it is a simple algebraic exercise. We omit it.

Lemma 2.8. Suppose that φ is an isomorphism from a θ1-subalgebra T1 onto a
θ2-subalgebra T2 and ui ⊗ vi (i = 1, 2) belong to T2. If both θ1 and θ2 are dense,
then T → (u1 ⊗ v1)φ(T )(u2 ⊗ v2) is continuous on T1.

Proof. By Theorem 2.7, there are x1 ⊗ y1 and x2 ⊗ y2 in T1 such that φ(xi ⊗ yi) =
ui ⊗ vi. Thus the continuity of (u1 ⊗ v1)φ(T )(u2 ⊗ v2) is immediate from

(u1 ⊗ v1)φ(T )(u2 ⊗ v2) = φ((x1 ⊗ y1)T (x2 ⊗ y2)) = (Tx2, y1)φ(x1 ⊗ y2).

Theorem 2.9. Suppose that φ is an isomorphism from a closed θ1-subalgebra T1

onto a closed θ2-subalgebra T2. If both θ1 and θ2 are dense, then φ is automatically
continuous.

Proof. By the closed graph theorem, it suffices to prove that φ is a closed operator
from T1 into T2. Let Tn, T be in T1 and S in T2 such that Tn → T and φ(Tn)→ S.

Let F be in N θ2
2 and x in F . We want to prove that φ(T )x = Sx. In fact, take a

non-zero vector y in θ2(F )⊥; then x⊗ y is in T2. For any F ′ ∈ N θ2
2 , let u be a fixed

non-zero vector in F ′. Then for every v ∈ θ2(F ′)⊥, u ⊗ v ∈ T2. By the continuity
of (u ⊗ v)φ(·)(x ⊗ y) on T , we obtain that (u ⊗ v)φ(T )(x ⊗ y) = (u ⊗ v)S(x ⊗ y),
and hence (φ(T )x, v) = (Sx, v). Since

∨
{θ2(F )⊥ : F ∈ N θ2

2 } = H2, we have that
φ(T )x = Sx. Furthermore, since

∨
{F : F ∈ N θ2

2 } = H2, we have that φ(T ) = S.

3. Isomorphisms of large subalgebras

and of radical-type subalgebras

Theorem 3.1. Let Ni be a nest of subspaces of a Hilbert space Hi and Ti be a
closed subalgebra of the nest algebra Ti(Ni) associated to Ni (i = 1, 2). Let φ be an
isomorphism from T1 onto T2. Then

(1) if Ti is large (i = 1, 2), then φ is spatial;
(2) if Ti is radical-type and Ni is quasi-continuous (i = 1, 2), then φ is spatial.

Proof. By Remark 2.5 and Theorem 2.7, φ carries rank one operators to rank one
operators. Moreover by Theorem 2.9, φ is bounded and hence φ−1 is also bounded.
Thus the bijective linear map A provided by Theorem 2.3 is densely defined and has
a dense range and is bounded. So it can be extended to be an invertible operator
V from H1 onto H2. By equation (2.8), we have that for T ∈ T1, V T ∗ = φ(T )∗V
holds on H1. Therefore, φ(T ) = V ∗−1TV ∗.

The following corollaries are obvious.

Corollary 3.2. An isomorphism between the compact operator ideals of nest alge-
bras is spatially implemented.
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Let RN and KN be the Jacobson radical and the compact operator ideal of the
nest algebra T (N ). Then RN + KN is a closed subalgebra of T (N ) and is called
the compact perturbation of RN [4].

Corollary 3.3. An isomorphism between the compact perturbations of the Jacobson
radicals of nest algebras is spatially implemented.

In the following, an (left or right) ideal I of a nest algebra T (N ) is said to be
diagonal-disjoint if I ∩ (T (N ) ∩ T (N )∗) = {0}.

Lemma 3.4. Let I be a diagonal-disjoint (left or right) ideal of a nest algebra
T (N ). If I contains the Jacobson radical of T (N ), then it is radical-type.

Proof. See Theorem 2.2 and Remark 3.8 in [5].

Corollary 3.5. Let Ii be a diagonal-disjoint closed (left or right) ideal of a nest
algebra T (Ni) such that it contains the Jacobson radical of T (Ni) (i = 1, 2), and let
φ be an isomorphism from I1 onto I2. If Ni is quasi-continuous, then φ is spatial.

It is well known that the Jacobson radical, the Larson ideal and JN are diagonal-
disjoint and contain the Jacobson radical. So the above corollary is rich. However,
here is an example that shows that if a nest N is not quasi-continuous, then an
automorphism of the Jacobson radical may not be spatial.

Example 3.6. Let N = {(0) < E1 < E2 < E3 < H} be a nest over a Hilbert
space H. Then T in the Jacobson radical RN of T (N ) is of the form

T =


0 T12 T13 T14

0 0 T23 T24

0 0 0 T34

0 0 0 0

 on H = E1 ⊕ (E2 	 E1)⊕ (E3 	 E2)⊕ E⊥3 .

Let L be an operator in B(E1) and R be a non-zero operator from E⊥3 to E2 	E1.
For T ∈ RN , define

φ(T ) =


0 T12 T13 T14 + LT12R
0 0 T23 T24

0 0 0 T34

0 0 0 0

 .
It is easy to verify that φ is an algebraic automorphism of RN . But such φ is not
spatial unless L is a multiple of the identity on E1. To see this, suppose that there
is an invertible operator S such that

(3.1) ST = φ(T )S

for every T ∈ RN . Suppose that S = [Sij ]4×4 on H = E1 ⊕ (E2 	 E1) ⊕ (E3 	
E2) ⊕ E⊥3 . Rewrite S =

[
S1 S2
S3 S4

]
on H = E2 ⊕ E⊥2 . Substituting T ∈ RN of the

form T =
[

0 T1
0 T2

]
on H = E2 ⊕ E⊥2 (i.e. T12 = 0) to (3.1), noting that φ(T ) = T

for this case, we have
[

0 S1T1+S2T2
0 S3T1+S4T2

]
=
[
T1S3 T1S4
T2S3 T2S4

]
. Thus T1S3 = 0 for every

T1 ∈ B(E⊥2 , E2) and hence S3 = 0. Let T2 = 0. Then we have that S1T1 = T1S4

for every T1 ∈ B(E⊥2 , E2) and hence there is a scalar λ such that S1 = λE2 and
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S4 = λE⊥2 . Hence S2T2 = 0, which forces that S13 = 0 and S23 = 0. Therefore

S =


λ 0 0 S14

0 λ 0 S24

0 0 λ 0
0 0 0 λ

 .
Substituting

T =


0 T12 0 0
0 0 0 0
0 0 0 0
0 0 0 0


in (3.1) we obtain T12S24 + λLT12R = 0 for all T12. Since λ 6= 0, L must be a
multiple of the identity on E1.

Now we deal with isomorphisms of non-closed large subalgebras. As we have seen,
when large subalgebras are closed, the boundedness of isomorphisms between them
can be concluded by the Closed Graph Theorem. However, when large subalgebras
are not closed, the Closed Graph Theorem is not applicable. In the following, we
consider two special cases: nests are not quasi-continuous and large subalgebras
contain masas.

Theorem 3.7. Let T1 and T2 be large subalgebras of nest algebras T (N1) and
T (N2). Let φ be an isomorphism from T1 onto T2. If one of N1 and N2 is not
quasi-continuous, then φ is spatial.

Proof. Without loss of generality, we assume that N1 is not quasi-continuous.
Case 1: (0)+ > (0). Let E → Ê be the map defined in Theorem 2.3 from

{E : E ∈ N1 and E− < H1} to {F : F ∈ N2 and F− < H2}. Then ((̂0)+)⊥− =∨
{(Ê)⊥− : E ∈ N1 and E > (0)} = H2. By Theorem 2.3, there is a bijective linear

map A from H1 onto H2 such that

(3.2) φ(T )∗A = AT ∗.

Now it suffices to prove that A is bounded. Hence it suffices to prove that A is a
closed operator.

Let {xn} ⊂ H1 such that xn → x and Axn → y. We want to show that Ax = y.
For every rank one operator S ∈ T2, by (3.2) and the fact that φ preserves rank one
operators, S∗A is bounded. Thus S∗Axn → S∗y and S∗Axn → S∗Ax. Thus we
have that S∗Ax = S∗y for every rank one operator S ∈ T (N2). Hence S∗Ax = S∗y
for every finite rank operator S ∈ T (N2). By the density of finite rank operators in
a nest algebra [2], there is a net {Sα} of finite rank operators in T (N2) such that
Sα weakly converges to the identical operator on H2. For every vector u in H2,
it follows from S∗x = S∗y that (Ax, Sαu) = (y, Sαu) and hence (Ax, u) = (y, u).
Thus we have that Ax = y.

Case 2: (H1)− < H1. Let ψ(T ∗) = φ(T )∗ for every T ∈ T1. Then ψ is an
isomorphism from T ∗1 onto T ∗2 , where T ∗i = {T ∗ : T ∈ Ti} (i = 1, 2). It is easy to
see that T ∗1 and T ∗2 are large subalgebras of T (N⊥1 ) and T (N⊥2 ) respectively, where
N⊥i = {N⊥ : N ∈ Ni}. Note that (0)+ > (0) in N⊥1 when (H1)− < H1 in N1. By
Case 1, there is a bounded and invertible operator A such that ψ(T ∗) = AT ∗A−1

and hence φ(T ) = (A∗)−1TA∗ for every T ∈ T1.
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Theorem 3.8. Let T1 and T2 be large subalgebras of nest algebras T (N1) and
T (N2). Let φ be an isomorphism from T1 onto T2. If Ti contains a masa, then φ
is spatial.

Proof. By Theorem 3.7, we only need consider the case when both N1 and N2 are
quasi-continuous. For this case, the result follows from Theorem 1.3.

There remains the following question on isomorphisms of large subalgebras:

Question 3.9. Let N be a quasi-continuous nest and T be the algebra of all finite
rank operators in T (N ). Let φ be an automorphism of T . Is φ bounded?
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