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FIXED POINTS IN THE FAMILY
OF CONVEX REPRESENTATIONS

OF A MAXIMAL MONOTONE OPERATOR

B. F. SVAITER

(Communicated by Jonathan M. Borwein)

Abstract. Any maximal monotone operator can be characterized by a convex
function. The family of such convex functions is invariant under a transforma-
tion connected with the Fenchel-Legendre conjugation. We prove that there
exists a convex representation of the operator which is a fixed point of this
conjugation.

1. Introduction

Let X be a real Banach space and X∗ its dual. It is usual to identify a point to
set operator T : X ⇒ X∗ with its graph, {(x, x∗) ∈ X ×X∗ |x∗ ∈ T (x)}. We will
use the notation 〈x, x∗〉 for the duality product x∗(x) of x ∈ X , x∗ ∈ X∗.

An operator T : X ⇒ X∗ is monotone if

(x, x∗), (y, y∗) ∈ T ⇒ 〈x− y, x∗ − y∗〉 ≥ 0

and is maximal monotone if it is monotone and

∀(y, y∗) ∈ T, 〈x− y, x∗ − y∗〉 ≥ 0⇒ (x, x∗) ∈ T.
Krauss [11] managed to represent maximal monotone operators by subdifferen-

tials of saddle functions on X×X . After that, Fitzpatrick [8] proved that maximal
monotone operators can be represented by convex functions on X × X∗. Later
on, Simons [19] studied maximal monotone operators using a min-max approach.
Recently, the convex representation of maximal monotone operators was rediscov-
ered by Burachik and Svaiter [7] and Martinez-Legaz and Théra [13]. In [7], some
results on enlargements are used to perform a systematic study of the family of
convex functions which represents a given maximal monotone operator. Here we
are concerned with this kind of representation.

Given f : X → R, the Fenchel-Legendre conjugate of f is f∗ : X∗ → R,

f∗(x∗) := sup
x∈x
〈x, x∗〉 − f(x).
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The subdifferential of f is the operator ∂f : X ⇒ X∗,

∂f(x) := {x∗ ∈ X∗ | f(y) ≥ f(x) + 〈y − x, x∗〉, ∀y ∈ X}.

If f is convex, lower semicontinuous and proper, then ∂f is maximal monotone [17].
From the previous definitions, we have the Fenchel–Young inequality: for all x ∈ X ,
x∗ ∈ X∗,

f(x) + f∗(x∗) ≥ 〈x, x∗〉 , f(x) + f∗(x∗) = 〈x, x∗〉 ⇐⇒ x∗ ∈ ∂f(x).

So, defining hFY : X ×X∗ → R,

(1.1) hFY(x, x∗) := f(x) + f∗(x∗),

we observe that this function fully characterizes ∂f . Assume that f is convex, lower
semicontinuous and proper. In this case, ∂f is maximal monotone. Moreover, if
we use the canonical injection of X in to X∗∗, then f∗∗(x) = f(x) for all x ∈ X .
Hence, for all (x, x∗) ∈ X ×X∗,

(hFY)∗(x, x∗) = hFY(x, x∗).

Our aim is to prove that any maximal monotone operator has a convex represen-
tation with a similar property.

From now on, T : X ⇒ X∗ is a maximal monotone operator. Define, as in [8],
H(T ) to be the family of convex lower semicontinuous functions h : X ×X∗ → R
such that

(1.2)
∀(x, x∗) ∈ X ×X∗, h(x, x∗) ≥ 〈x, x∗〉,

(x, x∗) ∈ T ⇒ h(x, x∗) = 〈x, x∗〉.

This family is nonempty [8]. Moreover, for any h ∈ H(T ), h(x, x∗) = 〈x, x∗〉
if and only if (x, x∗) ∈ T [7]. Hence, any element of H(T ) fully characterizes,
or represents, T . Since the sup of convex lower semicontinuous function is also
convex and lower semicontinuous, also using (1.2) we conclude that the sup of any
(nonempty) subfamily of H(T ) is still in H(T ).

The dual of X×X∗ is X∗×X∗∗. So, for (x, x∗) ∈ X×X∗, (y∗, y∗∗) ∈ X∗×X∗∗,

〈(x, x∗) , (y∗, y∗∗)〉 = 〈x, y∗〉+ 〈x∗, y∗∗〉.

Given a function h : X ×X∗ → R, define Jh : X ×X∗ → R,

(1.3) Jh(x, x∗) := h∗(x∗, x),

where h∗ stands for the Fenchel-Legendre conjugate of h and the canonical inclusion
of X in X∗∗ is being used. Equivalently,

(1.4) Jh(x, x∗) = sup
(y,y∗)∈X×X∗

〈x, y∗〉+ 〈y, x∗〉 − h(y, y∗).

Trivially, J inverts the natural order of functions, i.e., if h ≥ h′, then Jh′ ≥ Jh. The
family H(T ) is invariant under the application J [7]. The aim of this paper is to
prove that there exists an element h ∈ H(T ) such that Jh = h.

The application J can be studied in the framework of generalized conjugation [18,
Ch. 11, Sec. L]. With this aim, define

Φ : (X ×X∗)× (X ×X∗) :→ R,
Φ((x, x∗), (y, y∗)) := 〈x, y∗〉+ 〈y, x∗〉.
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Given h : X ×X∗ → R, let hΦ be the conjugate of h with respect to the coupling
function Φ,

(1.5) hΦ(x, x∗) := sup
(y,y∗)∈X×X∗

Φ((x, x∗), (y, y∗))− h(y, y∗).

Now we have
Jh = hΦ,

and, in particular,

(1.6) h ≥ hΦΦ = J2h.

2. Proof of the main theorem

Define σT : X ×X∗ → R,
σT := sup

h∈H(T )

h.

Since H(T ) is “closed” under the sup operation, we conclude that σT is the biggest
element of H(T ). Combining this fact with the inclusion JσT ∈ H(T ) we conclude
that

σT ≥ JσT .

For a more detailed discussion on σT , we refer the reader to [7, eq. (35)]. The above
inequality will be, in some sense, our departure point. Now define

Ha(T ) := {h ∈ H(T ) |h ≥ Jh}.

The family Ha(T ) is connected with a family of enlargements of T which shares with
the ε-subdifferential a special property (see [7]). We already know that σT ∈ Ha(T ).
Later on, we will use the following construction of elements in this set.

Proposition 2.1. Take h ∈ H(T ) and define

ĥ = max h, Jh.

Then ĥ ∈ Ha(T ).

Proof. Since h and Jh are in H(T ), ĥ ∈ H(T ). By definition,

ĥ ≥ h, ĥ ≥ Jh.

Applying J on these inequalities and using (1.6) for majorizing J2h we obtain

Jh ≥ Jĥ, h ≥ Jĥ.

Hence, ĥ ≥ Jĥ. �

For h ∈ H(T ) define

L(h) := {g ∈ H(T ) |h ≥ g ≥ Jg}.

The operator J inverts the order. Therefore, L(h) 6= ∅ if and only if h ≥ Jh, i.e.,
h ∈ Ha(T ). We already know that L(σT ) 6= ∅.

Proposition 2.2. For any h ∈ Ha(T ), the family L(h) has a minimal element.
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Proof. We shall use the Zorn Lemma. Let C ⊆ L(h) be a (nonempty) chain, that is,
C is totally ordered. Take h′ ∈ C. For any h′′ ∈ C, h′ ≥ h′′ or h′′ ≥ h′. In the first
case we have h′ ≥ h′′ ≥ Jh′′, and in the second case, h′ ≥ Jh′ ≥ Jh′′. Therefore,

(2.1) h′ ≥ Jh′′, ∀h′, h′′ ∈ C.

Now define

(2.2) ĝ = sup
h′∈C

Jh′.

Since H(T ) is invariant under J and also closed with respect to the sup, we have
ĝ ∈ H(T ). From (2.1), (2.2) it follows that

h′ ≥ ĝ ≥ Jh′, ∀h′ ∈ C.

Applying J to the above inequalities, and also using (1.6), we conclude that

(2.3) h′ ≥ Jĝ ≥ Jh′, ∀h′ ∈ C.

Since ĝ ∈ H(T ), Jĝ ∈ H(T ). Taking the sup on h′ ∈ C, in the right-hand side of
the last inequality, we get

Jĝ ≥ ĝ.
Applying J, again, we obtain

Jĝ ≥ J(Jĝ).

Take some h′ ∈ C. By the definition of L(h) and (2.3), we conclude that h ≥ h′ ≥ Jĝ.
Hence Jĝ belongs to L(h) and is a lower bound for any element of C. Now we apply
the Zorn Lemma to conclude that L(h) has a minimal element. �

The minimal elements of L(h) (for h ∈ Ha(T )) are the natural candidates for
being fixed points of J. First we will show that they are fixed points of J2. Observe
that, since J inverts the order of functions, J2 preserves it, i.e., if h ≥ h′, then
J2h ≥ J2h′. Moreover, J2 maps H(T ) in itself.

Proposition 2.3. Take h ∈ Ha(T ) and let h0 be a minimal element of L(h). Then
J2h0 = h0.

Proof. First observe that J2h0 ∈ H(T ). By assumption, h0 ≥ Jh0. Applying J2 in
this inequality we get

J2h0 ≥ J2(Jh0) = J(J2h0).

Since h ≥ h0 and, by (1.6), h0 ≥ J2h0, we conclude that h ≥ J2h0 ≥ J(J2h0).
Hence J2h0 ∈ L(h). Again using the inequality h0 ≥ J2h0 and the minimality of
h0, the conclusion follows. �

Theorem 2.4. Take h ∈ H(T ) such that h ≥ Jh. Then h0 ∈ L(h) is minimal (on
L(h)) if and only if h0 = Jh0.

Proof. Assume first that h0 = Jh0. If h′ ∈ L(h) and

h0 ≥ h′,
then, applying J on this inequality and using the definition of L(h) we conclude
that

h′ ≥ Jh′ ≥ Jh0 = h0.

Combining the above inequalities we obtain h′ = h0. Hence h0 is minimal on L(h).
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Assume now that h0 is minimal on L(h). By the definition of L(h), h0 ≥ Jh0.
Suppose that for some (x0, x

∗
0),

(2.4) h0(x0, x
∗
0) > Jh0(x0, x

∗
0).

We shall prove that this assumption is contradictory. By Proposition 2.3, h0 =
J(Jh0). Hence, the above inequality can be expressed as

J(Jh0)(x0, x
∗
0) > Jh0(x0, x

∗
0),

or equivalently

sup
(y,y∗)∈X×X∗

〈y, x∗0〉+ 〈x0, y
∗〉 − Jh0(y, y∗) > Jh0(x0, x

∗
0).

Therefore, there exists some (y0, y
∗
0) ∈ X ×X∗ such that

(2.5) 〈y0, x
∗
0〉+ 〈x0, y

∗
0〉 − Jh0(y0, y

∗
0) > Jh0(x0, x

∗
0).

In particular, Jh0(y0, y
∗
0), Jh0(x0, x

∗
0)∈R. Interchanging Jh0(y0, y

∗
0) with Jh0(x0, x

∗
0)

we get
〈y0, x

∗
0〉+ 〈x0, y

∗
0〉 − Jh0(x0, x

∗
0) > Jh0(y0, y

∗
0).

Therefore, also using (1.4), we get J(Jh0(y0, y
∗
0)) > Jh0(y0, y

∗
0). Again using the

equality J2h0 = h0 we conclude that

(2.6) h0(y0, y
∗
0) > Jh0(y0, y

∗
0).

Define γ : X ×X∗ → R, g : X ×X∗ → R,

γ(x, x∗) := 〈x, y∗0〉+ 〈y0, x
∗〉 − Jh0(y0, y

∗
0),(2.7)

g := max γ, Jh0.(2.8)

By (1.4), h0 ≥ γ. Since h0 ∈ L(h), h0 ≥ Jh0. Therefore,

h0 ≥ g ≥ Jh0.

We claim that g ∈ H(T ). Indeed, g is a lower semicontinuous convex function.
Moreover, since h0, Jh0 ∈ H(T ), it follows from (1.2) and the above inequalities
that g ∈ H(T ). Now apply J to the above inequality to conclude that

h0 ≥ Jg ≥ Jh0.

Therefore, defining

(2.9) ĝ = max g, Jg,

we have h > h0 ≥ ĝ. By Proposition 2.1, ĝ ∈ H(T ) and ĝ ≥ Jĝ. Combining these
results with the minimality of h0, it follows that ĝ = h0. In particular,

(2.10) ĝ(y0, y
∗
0) = h0(y0, y

∗
0).

To conclude the proof we shall evaluate ĝ(y0, y
∗
0). Using (2.7) we obtain

γ(y0, y
∗
0) = 2〈y0, y

∗
0〉 − Jh0(y0, y

∗
0).

Since Jh0 ∈ H(T ), Jh0(y0, y
∗
0) ≥ 〈y0, y

∗
0〉. Hence, γ(y0, y

∗
0) ≤ 〈y0, y

∗
0〉 and by (2.8)

(2.11) g(y0, y
∗
0) = Jh0(y, y∗).

Again using the inequality g ≥ γ, we have

Jγ(y0, y
∗
0) ≥ Jg(y0, y

∗
0).

Direct calculation yields Jγ(y0, y
∗
0) = Jh0(y, y∗). Therefore

(2.12) Jh0(y0, y
∗
0) ≥ Jg(y0, y

∗
0).
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Combining (2.11), (2.12) and (2.9) we obtain

ĝ(y0, y
∗
0) = Jh0(y0, y

∗
0).

This equality, together with (2.10), yields h0(y0, y
∗
0) = Jh0(y0, y

∗
0), in contradiction

with (2.6). Therefore, h0(x, x∗) = Jh0(x, x∗) for all (x, x∗). �
Since σT ∈ Ha(T ), L(σT ) 6= ∅ and there exists some h ∈ L(σT ) such that Jh = h.

(Indeed L(σT ) = Ha(T ).)

3. Application

Let f : X ⇒ X∗ be a proper lower semicontinuous convex function. We already
know that ∂f is maximal monotone. Define, for ε ≥ 0,

∂εf(x) := {x∗ ∈ X∗ | f(y) ≥ f(x) + 〈y − x, x∗〉 − ε, ∀y ∈ X}.
Note that ∂0f = ∂f . We also have

∂f(x) ⊆ ∂εf(x), ∀x ∈ X, ε ≥ 0,(3.1)
0 ≤ ε1 ≤ ε2 ⇒ ∂ε1f(x) ⊆ ∂ε2f(x), ∀x ∈ X.(3.2)

Property (3.1) tells that ∂εf enlarges ∂f . Property (3.2) shows that ∂εf is nonde-
creasing (or increasing) in ε. The operator ∂εf has been introduced in [3], and since
that, it has had may theoretical and algorithmic applications [1, 14, 9, 10, 22, 12, 2].

Since ∂f is maximal monotone, the enlarged operator ∂εf loses monotonicity in
general. Even though, we have

(3.3) x∗ ∈ ∂εf(x)⇒ 〈x− y, x∗ − y∗〉 ≥ −ε, ∀(y, y∗) ∈ ∂f.
Now, take

(3.4)
x∗1 ∈ ∂ε1f(x1), x∗2 ∈ ∂ε1f(x2),
p, q ≥ 0, p+ q = 1,

and define

(3.5)
(x̄, x̄∗) := p(x1, x

∗
1) + q(x2, x

∗
2),

ε̄ := pε1 + qε2 + pq〈x1 − x2, x
∗
1 − x∗2〉.

Using the previous definitions, and the convexity of f , it is trivial to check that

(3.6) ε̄ ≥ 0, x̄∗ ∈ ∂ε̄f(x̄).

Properties (3.4), (3.5), (3.6) will be called a transportation formula. If ε1 = ε2 = 0,
then we are using elements in the graph of ∂f to construct elements in the graph
of ∂εf . In (3.5), the product of elements in ∂εf appears. This product admits the
following estimation:

(3.7) x∗1 ∈ ∂ε1f(x1), x∗2 ∈ ∂ε1f(x2)⇒ 〈x1 − x2, x
∗
1 − x∗2〉 ≥ −(ε1 + ε2).

Moreover, ∂εf is maximal with respect to property (3.7). We will call property
(3.7) additivity. The enlargement ∂εf can be characterized by the function hFY,
defined in (1.1),

x∗ ∈ ∂εf(x) ⇐⇒ hFY(x, x∗) ≤ 〈x, x∗〉+ ε.

The transportation formula (3.4), (3.5), (3.6) now follows directly of the convexity
of hFY. Additivity follows from the fact that hFY ≥ JhFY, and maximality of the
additivity follows from the fact that

hFY = JhFY.
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Define the graph of ∂εf as

G(∂(·)f(·)) := {(x, x∗, ε) |x∗ ∈ ∂εf(x)}.
Note that G(∂(·)f(·)) is closed. So we say that ∂εf is closed.

Given T : X ⇒ X∗, maximal monotone, it would be desirable to have an en-
largement of T , say T ε, with similar properties to the ∂εf enlargement of ∂f . With
this aim, such an object was defined in [4, 5] (in finite-dimensional spaces and in
Banach spaces, respectively), for ε ≥ 0, as

(3.8) T ε(x) := {x∗ ∈ X∗ | 〈x− y, x∗ − y∗〉 ≥ −ε, ∀(y, y∗) ∈ T }.
The T ε enlargement of T shares many properties with the ∂εf enlargement of ∂f :
the transportation formula, Lipschitz continuity (in the interior of its domain), and
even the Brøndsted-Rockafellar property (in Reflexive Banach spaces). Since its
introduction, it has had both theoretical and algorithmic applications [4, 6, 20, 21,
15, 16]. Even though, T ε is not the extension of the construct ∂εf to a generic
maximal monotone operator. Indeed, taking T = ∂f , we obtain

∂εf(x) ⊆ (∂f)ε(x),

with examples of strict inclusion even in finite-dimensional cases [4]. Therefore,
in general, T ε lacks the “additive” property (3.7). The T ε enlargement satisfies a
weaker property [5]

x∗1 ∈ T ε1(x1), x∗2 ∈ T ε2(x2)⇒ 〈x1 − x2, x
∗
1 − x∗2〉 ≥ −(

√
ε1 +

√
ε2)2.

The enlargement T ε is also connected with a convex function. Indeed,

x∗ ∈ T ε(x) ⇐⇒ 〈x− y, x∗ − y∗〉 ≥ −ε, ∀(y, y∗) ∈ T
⇐⇒ sup

(y,y∗)∈T
〈x− y, y∗ − x〉 ≤ ε.

The Fitzpatrick function, ϕT , is the smallest element of H(T ) [8], and is defined as

(3.9) ϕT (x, x∗) := sup
(y,y∗)∈T

〈x− y, y∗ − x〉+ 〈x, x∗〉.

Therefore,
x∗ ∈ T ε(x) ⇐⇒ ϕT (x, x∗) ≤ 〈x, x∗〉+ ε.

Now, the transportation formula for T ε follows from convexity of ϕT . In [7] it is
proven that each enlargement T̂ ε of T , which has a closed graph, is nondecreasing
and satisfies the transportation formula, is characterized by a function ĥ ∈ H(T ),
by the formula

x∗ ∈ T̂ ε(x) ⇐⇒ ĥ(x, x∗) ≤ 〈x, x∗〉+ ε.

So, if we want to retain “additivity”,

x∗1 ∈ T̂ ε1(x1), x∗2 ∈ T̂ ε2(x2)⇒ 〈x1 − x2, x
∗
1 − x∗2〉 ≥ −(ε1 + ε2).

We shall require ĥ ≥ Jĥ. The enlargements in this family, which are also maximal
with respect to the additivity, are structurally closer to the ∂εf enlargement, and
are characterized by ĥ ∈ H(T ),

ĥ = Jĥ.

If there were only one element in H(T ) as the fixed point of J, then this element
would be the “canonical” representation of T by a convex function, and the asso-
ciated enlargement would be the extension of the ε-subdifferential enlargement to
T . Unfortunately, it is not clear whether we have uniqueness of such fixed points.
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Existence of an additive enlargement of T , maximal with respect to “additivity”,
was proved in [23]. The convex representation of this enlargement turned out to be
minimal in the family Ha(T ), but the characterization of these minimal elements
of Ha(T ) as fixed point of J was lacking.

Since the function σT has played a fundamental role in our proof, we redescribe
it here. Let δT be the indicator function of T , i.e., in T its value is 0 and elsewhere
in (X ×X∗ \ T ) its value is +∞. Denote the duality product by π : X ×X∗ → R,
π(x, x∗) = 〈x, x∗〉. Then

σT (x, x∗) = cl− conv(π + δT ),

where cl− convf stands for the biggest lower semicontinuous convex function ma-
jorized by f . We refer the reader to [7] for a detailed analysis of this function.
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