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INDUCED LOCAL ACTIONS
ON TAUT AND STEIN MANIFOLDS
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(Communicated by Mohan Ramachandran)

Abstract. Let G = (R,+) act by biholomorphisms on a taut manifold X. We
show that X can be regarded as a G-invariant domain in a complex manifold
X∗ on which the universal complexification (C,+) of G acts. If X is also
Stein, an analogous result holds for actions of a larger class of real Lie groups
containing, e.g., abelian and certain nilpotent ones. In this case the question
of Steinness of X∗ is discussed.

Introduction

Let X be a complex manifold endowed with an action by biholomorphisms of
a connected real Lie group G, i.e., X is a complex G-manifold. If the Lie algebra
of the universal complexification GC of G is the complexification of Lie(G), then
one obtains an induced local GC-action by integrating the C-linear extension of
the infinitesimal generator associated to the G-action. In many cases this can be
understood as the restriction of a global GC-action, that is, it is possible to realize
X as a G-invariant domain in a complex GC-manifold X∗ to which we will refer
as a globalization of the local GC-action. For instance, by a result of P. Heinzner
([H]) if X is Stein and G compact, then there exists a Stein globalization X∗ with
the following universal property: every holomorphic G-equivariant map on X to
a complex GC-manifold extends GC-equivariantly on X∗.

Furthermore, for X Stein and G with polar complexification GC and cocom-
pact discrete subgroup Γ such that GC/Γ is Stein, equivalent conditions for the
existence of a Stein universal globalization are given in [CIT]. These can be verified
to hold in many concrete situations, however it seems not to be known whether in
this setting a globalization always exists. Here we first consider (R,+)-actions on
taut manifolds and we prove the following:

Let X be a taut R-manifold. Then there exists a universal globalization X∗ of
the induced local C-action.

Note that one cannot expect X∗ to be taut unless the R-action on X is trivial.
If X is also Stein, we show that a similar result holds for G in the above-mentioned
class of real Lie groups (Corollary 3). In this case it is natural to ask whether such
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a universal globalization is also Stein. For G = (R,+) it turns out that this is
equivalent to a positive answer to the following open question:

Let Y be a complex manifold and assume there exist lower semicontinuous func-
tions α, β : Y → R such that Ω := { (λ, y) ∈ C× Y : −β(y) < Imλ < α(y) } is
Stein. Is Y then Stein?

We conclude by pointing out particular cases where this holds true.

Existence of globalizations

For basic facts and results on local actions and their globalizations we refer to
[P] and more generally to [HI, §§1-3], from which most notations are inherited.
However note that here all manifolds are assumed to be Hausdorff (cf. [HI, §3]).

Theorem 1. Let X be a taut R-manifold. Then there exists a universal global-
ization X∗ of the induced local C-action.

Proof. Note that every leaf Σ of Palais’ foliation with respect to the induced local
C-action is a non-compact Riemann surface, since its projection p|Σ : Σ → C is
not constant. In particular Σ is holomorphically separable and [HI, Corollary, p.
438] applies to show univalency of such a local action. Then by [HI, Theorem 2,
p. 38] there exists a possibly non-Hausdorff universal globalization X∗. The result
will follow by showing that X∗ is Hausdorff.

For this suppose that there exist elements x1 and x2 in X∗ which are not
topologically separable. Since X∗ = C ·X and X is R-invariant one may assume
that x1 ∈ X and x2 = it · x0 with x0 ∈ X and t ∈ R>0. Note that X is
Hausdorff, thus x2 /∈ X and consequently the local C-orbit through x0 has neces-
sarily complex dimension one. Then one can choose a local slice f : Bn−1(1)→ X
transversal to C · x0 with f(0) = x0 and a neighborhood U ⊂ C of 0 such that
ϕ : U ×Bn−1(1)→ X defined by ϕ(z, s) := z · f(s) is a chart of X . Here n is the
complex dimension of X and Bn−1(r) := { s ∈ Cn−1 : |s| < r } for all r > 0.
Let us call such a chart an adapted chart of X in x0 .

Now it·ϕ(rU×Bn−1(r)) are open neighborhoods of x2 for all 0 < r < 1 and we
are assuming that x1 and x2 are not separable. Therefore there exists a sequence
(zj, sj) convergent to (0, 0) in U × Bn−1(1) such that X 3 it · ϕ(zj , sj) → x1.
Thus for yj := ϕ(zj , sj) one has X 3 yj → x0 and X 3 it · yj → x1. Now recall
that X is orbit-connected (cf. [CIT, Lemma 1.6]) and R-invariant in X∗. Then
by considering an adapted chart of X in x1 one checks that there exists ε > 0
such that S := {z ∈ C : −ε < Imz < t + ε} ⊂ Ω(yj) for all j > 0 , where by
definition Ω(x) := { z ∈ C : z · x ∈ X } for all x ∈ X .

Define a sequence of holomorphic functions hj : S → X by hj(z) := z · yj, let
a0 , b0 ∈ R>0 be given by Ω(x0) = {z ∈ C : −b0 < Imz < a0} and note that
it ·x0 /∈ X , hence a0 ≤ t . Moreover hj(0)→ x0 while ia0 ·x0 /∈ X and is ·x0 ∈ X ,
for s smaller than a0 and close to it, imply that hj(a0) → ∞. Since X is taut,
this gives a contradiction and concludes the proof. �

Remark 2. Since X is R-invariant and orbit-connected in X∗, there exist lower
semicontinuous positive functions a, b : X → R>0 such that

Ω(x) = { z ∈ C : −b(x) < Imz < a(x) }
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for all x in X , where Ω(x) := { z ∈ C : z ·x ∈ X }. An analogous argument as in
the above proof applies to show that on a taut manifold, a and b are continuous
( if X is Stein one knows that −a and −b are plurisubharmonic [F]).

Let G be a real Lie group with polar complexification GC, i.e., the G -equivariant
map G × g → GC given by (g, ξ) → g exp iξ is a real analytic diffeomorphism.
Furthermore assume that G admits a discrete cocompact subgroup Γ such that
GC/Γ is Stein. For instance all abelian and compact real Lie groups are of this kind
or more generally products of the form K × N , with K compact and N simply
connected and nilpotent with rational structure constants (see [Ma], [GH]). Since
GC is polar, the Lie algebra of GC is the complexification of g, the Lie algebra of
G. As a consequence if G acts on a complex manifold one obtains a holomorphic
local action of the complexification GC by integrating the holomorphic vector fields
given by the G -action. For G as above one has

Corollary 3. Let X be a taut and Stein G-manifold. Then there exists a universal
globalization X∗ of the induced local GC-action.

Proof. For η ∈ g , consider the R-action on X defined by t · x := (exp tη) · x and
denote by X∗η the universal globalization of the induced local C-action given by
the above theorem. Then the corollary is a consequence of [CIT, Corollary 3.7]. �

For an action of a compact Lie group G on a Stein manifold the universal
globalization X∗ is automatically Stein ([H]). It would be interesting to know
whether this remains true in the case where G is not compact and X∗ exists. For
G = R one has

Proposition 4. The following statements are equivalent:
i) Let X be a Stein R-manifold with universal globalization X∗. Then X∗ is

Stein.
ii) Let Y be a complex manifold and assume there exist lower semicontinuous

functions α, β : Y → R such that Ω := { (λ, y) ∈ C × Y : −β(y) <
Imλ < α(y) } is Stein. Then Y is Stein.

Proof. Let Ω be as in ii) and consider the R-action by left multiplication on the
first component of C × Y . Then [CIT, Lemma 1.5] applies to show that C × Y
is the universal globalization of Ω. Thus if i) holds, then C × Y is Stein and
consequently so is Y , implying ii).

Conversely for X as in i) let R act diagonally on C×X and by left multiplica-
tion on the first component of C×X∗. Then the map f : C×X → C×X∗ given
by (λ, x)→ (λ, λ−1 · x) is easily checked to be an R-equivariant open embedding.
In particular f(C×X) is a Stein R-invariant subdomain of C×X∗.

Now let a, b : X → R>0 be as in Remark 2, fix y ∈ X∗ and choose x ∈ X and
t ∈ R such that y = it · x . One has that

(λ, y ) = (λ, λ−1 · ( (λ+ it) · x) )

belongs to f(C×X) if and only if (λ+it)·x ∈ X , i.e., −b(x)−t < Imλ < a(x)−t .
By defining α(y) = a(x) − t and β(y) = b(x) + t (which is easily verified not to
depend on the choice of x and t ) for all y ∈ X∗ one has

f(C×X) = { (λ, y) ∈ C×X∗ : −β(y) < Imλ < α(y)}
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and statement i) follows from ii) by letting Ω = f(C × X) in C × X∗, which
concludes the proof. �

Remark 5. In the following cases it is easy to check that statement ii) holds:
1) Y is holomorphically convex.
For this, first note that for any open Stein neighborhood U in Y the restrictions

of −α and −β to U define the Stein domain Ω ∩ (C × U) in C × U . It follows
that −α and −β are plurisubharmonic (see, e.g., [V]).

Now recall that each fiber F of the Remmert reduction of Y (cf. [GR, p. 221])
is a connected compact subspace. In particular α and β are constant on F , thus
F ∼= {z}×F ⊂ Ω for any fixed z in C with −β|F < Imz < α|F and consequently
F is holomorphically separable. By compactness and connectness it follows that
F consists of a single point, hence Y is Stein.

2) Y is a domain in a Stein manifold Ŷ .
Here Ω can be regarded as an open Stein R-invariant subdomain of C × Ŷ ,

where R acts by left multiplication on the first component. Since C× Ŷ is Stein,
then Ω is locally Stein ([DG]).

Moreover the quotient map C× Ŷ → (C× Ŷ )/Z is locally biholomorphic, there-
fore Ω/Z is locally Stein in (C× Ŷ )/Z ∼= C∗× Ŷ , which is Stein, and consequently
so is Ω/Z. Finally Y is easily checked to be biholomorphic to the categorical quo-
tient of Ω/Z with respect to the natural induced S1-action, thus it is Stein ([H,
§ 6.5]).

Remark 6. As already noted in the proof of Theorem 1, a complex R-manifold
admits a universal globalization X∗ which is possibly non-Hausdorff. Note that
the same argument used to prove Proposition 4 applies to show the analogous result
in the case where X∗ and Y are assumed to be in the category of possibly non-
Hausdorff complex manifolds.
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