AN APPLICATION OF BOCHNER'S TECHNIQUE TO THE DEFORMATIONS OF THE COMPLEX STRUCTURE OF $\mathbb{C P}^{n}$

YONG OUYANG

(Communicated by Mohan Ramachandran)

Abstract

We consider the deformation of the complex structure of $\mathbb{C P}^{n}$. We show that a harmonic deformation on $\mathbb{C P} \mathbb{P}^{n}$ equipped with the Fubini-Study metric is trivial if its supernorm is appropriately small.

Introduction

Let $\mathbb{C P}^{n}$ be the n-dimensional complex projective space equipped with the Fubini-Study metric. Let T be its holomorphic tangent bundle, and let M be the underlying differentiable manifold. Suppose that φ is a smooth (0,1)-form on $\mathbb{C P}^{n}$ with value in T. If the supernorm of φ is <1 and φ satisfies the integrability condition

$$
\begin{equation*}
\bar{\partial} \varphi=\frac{1}{2}[\varphi, \varphi], \tag{1}
\end{equation*}
$$

then such a φ determines a complex structure on M. We call φ a deformation and denote the deformed complex manifold by M_{φ}. A natural question to ask is whether M_{φ} is biholomorphic to $\mathbb{C P}^{n}$. It is well known that M_{φ} is biholomorphic to $\mathbb{C P}^{n}$ if φ and its derivatives are sufficiently small. However it seems unclear if M_{φ} is biholomorphic to $\mathbb{C P}^{n}$ for $n>2$ if we only assume that the supernorm of φ is appropriately small. If a deformation φ also satisfies the equation

$$
\begin{equation*}
\bar{\partial}^{*} \varphi=0, \tag{2}
\end{equation*}
$$

where $\bar{\partial}^{*}$ is the adjoint of $\bar{\partial}$, then (1) and (2) become a strongly elliptic system if the supernorm of φ is appropriately small. Equation (2) was introduced by Kuranishi in [2] to study the versal deformation of compact complex manifolds. For convenience sake, we call a deformation φ a harmonic deformation if it also satisfies equation (2). One can ask if such a φ on $\mathbb{C P}^{n}$ is zero so that M_{φ} is biholomorphic to $\mathbb{C P}^{n}$. The arguments in [2] (see also [1) only demonstrate that such a φ is 0 if we assume a priori that the Sobolev norm $\|\varphi\|_{k}$, say for $k \geq n+2$, is sufficiently small. It follows from the Sobolev embedding theorem that the $C^{1, \alpha}$ norm of such a φ must be assumed to be small. In this note we show that we can remove the assumption that the Sobolev norm of φ is sufficiently small. Using Bochner's technique, we prove that $\varphi=0$ if the supernorm of φ is appropriately small.

[^0]
1. Preliminaries

In this section we fix some notation and list some well-known formulas needed in section 2.

Let M be an n-dimensional compact complex manifold with a Kähler metric g. Let ω be its Kähler form. Let T be the holomorphic tangent bundle of M, and let $A^{p, q}(T)$ denote the space of $C^{\infty}(p, q)$-forms with values in T.

In general, $e(\psi)$ denotes the exterior multiplication by ψ, i.e.,

$$
e(\psi) \cdot \varphi=\psi \wedge \varphi
$$

In particular, we write $L=e(\omega)$, i.e.,

$$
L \varphi=\omega \wedge \varphi
$$

so that

$$
L: A^{p, q}(T) \longrightarrow A^{p+1, q+1}(T)
$$

We set

$$
\Lambda=*^{-1} \circ L \circ *: A^{p, q}(T) \longrightarrow A^{p-1, q-1}(T)
$$

where $*$ is the Hodge star operator and Λ is the adjoint of L. We note that both L and Λ are algebraic operators.

Let ∇ be the canonical connection on T. Then

$$
\nabla=\nabla^{\prime}+\bar{\partial}
$$

where

$$
\nabla^{\prime}: A^{p, q}(T) \longrightarrow A^{p+1, q}(T)
$$

and

$$
\bar{\partial}: A^{p, q}(T) \longrightarrow A^{p, q+1}(T)
$$

We define
(a) $\bar{\square}=\bar{\partial} \bar{\partial}^{*}+\bar{\partial}^{*} \bar{\partial}$,
(b) $\square=\nabla^{\prime} \nabla^{\prime *}+\nabla^{\prime *} \nabla^{\prime}$,
on $A^{p, q}(T)$. We have the following well-known identity:
Lemma 1.\square $+[i \Theta(T), \Lambda]$ where $\Theta(T)$ is the curvature form of T.

We also need the following result:
Lemma 2. Let p be a point on M. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a normal frame field of $(1,0)$ type around p. Suppose that $\varphi \in A^{0,1}(T)$. Then at p we have

$$
\text { (a1) } \square \varphi=-\nabla_{e_{i}} \nabla_{\bar{e}_{i}} \varphi+S(\varphi) \text {, }
$$

(b1) $\square \varphi=-\nabla_{\bar{e}_{i}} \nabla_{e_{i}} \varphi$,
where

$$
S(\varphi)(\bar{X})=R\left(e_{i}, \bar{X}\right) \varphi \cdot \bar{e}_{i}
$$

for $\bar{X} \in T_{p} M^{0,1}$ and

$$
R\left(e_{i}, \bar{X}\right)=\nabla_{e_{i}} \nabla_{\bar{X}}-\nabla_{\bar{X}} \nabla_{e_{i}}-\nabla_{\left[e_{i}, \bar{X}\right]}
$$

2. Harmonic deformations on $\mathbb{C} \mathbb{P}^{n}$

In this section we prove the following result:
Theorem 1. Suppose that φ is a harmonic deformation on $\mathbb{C P}^{n}$ equipped with the Fubini-Study metric. There exists a constant $\epsilon(n)>0$ such that if $\|\varphi\|_{\infty} \leq \epsilon(n)$, then

$$
\varphi=0
$$

Here $\|\varphi\|_{\infty}$ is the supernorm of φ.
Proof. If we can show that

$$
\bar{\square}|\varphi|^{2}=\square\langle\varphi, \varphi\rangle \geq c\left(\|\bar{\partial} \varphi\|^{2}+\left\|\nabla^{\prime} \varphi\right\|^{2}\right)
$$

for some constant $c>0$ when $\|\varphi\|_{\infty}$ is appropriately small, then $\bar{\partial} \varphi=0$. This together with $\bar{\partial}^{*} \varphi=0$ implies $\varphi=0$.

Suppose that p is an arbitrary point on $\mathbb{C P}^{n}$. Then we can find a coordinate $\left(z^{1}, \ldots, z^{n}\right)$ around p such that $p=(0, \ldots, 0)$ and

$$
\begin{aligned}
\Phi & =\log \left(1+|z|^{2}\right) \\
& =|z|^{2}-|z|^{4} / 2+|z|^{6} / 3-\ldots
\end{aligned}
$$

is the Kähler potential of the Fubini-Study metric. The metric at p is given by

$$
g_{i \bar{j}}(0)=\frac{\partial^{2} \Phi(0)}{\partial z^{i} \partial \bar{z}^{j}}=\delta_{i j}
$$

and the curvature is

$$
R_{j a \bar{b}}^{i}(0)=\frac{\partial^{4}\left(|z|^{4} / 2\right)}{\partial z^{a} \partial \bar{z}^{b} \partial z^{j} \partial \bar{z}^{i}}
$$

The only nonzero $R_{j a \bar{b}}^{i}$ are

$$
\begin{aligned}
R_{a a \bar{a}}^{a} & =2 \\
R_{i a \bar{a}}^{i} & =1, i \neq a \\
R_{j i \bar{j}}^{i} & =1, i \neq j
\end{aligned}
$$

We can find a normal frame field $\left\{e_{1}, \ldots, e_{n}\right\}$ of type $(1,0)$ around p such that

$$
e_{i}(0)=\partial / \partial z^{i}(0), i=1, \ldots, n
$$

Let $\left\{\theta^{1}, \ldots, \theta^{n}\right\}$ be the dual frame of $\left\{e_{1}, \ldots, e_{n}\right\}$. Then in a neighborhood of p, we have

$$
\begin{gathered}
L=i e\left(\theta^{k}\right) e\left(\bar{\theta}^{k}\right) \\
\Lambda=-i \tau\left(\bar{\theta}^{k}\right) \tau\left(\theta^{k}\right)
\end{gathered}
$$

where τ is the interior product operator. We observe

$$
\begin{aligned}
\Theta(T) & =\sum\left(R_{j a \bar{b}}^{i} \theta^{a} \wedge \bar{\theta}^{b}\right) \theta^{j} \otimes e_{i} \\
& =\Theta_{1}+\Theta_{2}+\Theta_{3}
\end{aligned}
$$

where

$$
\begin{aligned}
& \Theta_{1}=2 \sum_{2}\left(\theta^{i} \wedge \bar{\theta}^{i}\right) \theta^{i} \otimes e_{i}, \\
& \Theta_{2}=\sum_{i \neq a}\left(\theta^{a} \wedge \bar{\theta}^{a}\right) \theta^{i} \otimes e_{i}, \\
& \Theta_{3}=\sum_{i \neq j}\left(\theta^{i} \wedge \bar{\theta}^{j}\right) \theta^{j} \otimes e_{i} .
\end{aligned}
$$

At p we have

$$
\begin{align*}
\bar{\square}\langle\varphi, \varphi\rangle= & e_{i} \bar{e}_{i}\langle\varphi, \varphi\rangle \\
= & e_{i}\left\langle\nabla_{\bar{e}_{i}} \varphi, \varphi\right\rangle+e_{i}\left\langle\varphi, \nabla_{e_{i}} \varphi\right\rangle \\
= & \left\langle\nabla_{e_{i}} \nabla_{\bar{e}_{i}} \varphi, \varphi\right\rangle+\left\langle\nabla_{\bar{e}_{i}} \varphi, \nabla_{\bar{e}_{i}} \varphi\right\rangle \\
& +\left\langle\nabla_{e_{i}} \varphi, \nabla_{e_{i}} \varphi\right\rangle+\left\langle\varphi, \nabla_{\bar{e}_{i}} \nabla_{e_{i}} \varphi\right\rangle \tag{3}\\
= & \left|\nabla_{e_{i}} \varphi\right|^{2}+\left|\nabla_{\bar{e}_{i}} \varphi\right|^{2}+\left\langle\nabla_{e_{i}} \nabla_{\bar{e}_{i}} \varphi, \varphi\right\rangle \\
& +\left\langle\varphi, \nabla_{\bar{e}_{i}} \nabla_{e_{i}} \varphi\right\rangle .
\end{align*}
$$

It follows from the hypothesis that

$$
\begin{equation*}
\bar{\square} \varphi=\frac{1}{2} \bar{\partial}^{*}[\varphi, \varphi] . \tag{4}
\end{equation*}
$$

Lemmas 1 and 2 and (4) yield

$$
\begin{align*}
& \left\langle\nabla_{e_{i}} \nabla_{\bar{e}_{i}} \varphi, \varphi\right\rangle+\left\langle\varphi, \nabla_{\bar{e}_{i}} \nabla_{e_{i}} \varphi\right\rangle \\
& =-\langle\square \varphi, \varphi\rangle+\langle\varphi, S(\varphi)\rangle-\langle\varphi, \square \varphi\rangle \\
& =-\langle\square \varphi, \varphi\rangle-\langle\square \varphi, \varphi\rangle+\langle\varphi, S(\varphi)\rangle \\
& =-2\langle\square \varphi, \varphi\rangle+\langle[i \Theta(T), \Lambda] \varphi, \varphi\rangle+\langle\varphi, S(\varphi)\rangle \tag{5}\\
& =-\left\langle\bar{\partial}^{*}[\varphi, \varphi], \varphi\right\rangle+\langle[i \Theta(T), \Lambda] \varphi, \varphi\rangle+\langle\varphi, S(\varphi)\rangle \\
& =-\langle[\varphi, \varphi], \bar{\partial} \varphi\rangle+\langle[i \Theta(T), \Lambda] \varphi, \varphi\rangle+\langle\varphi, S(\varphi)\rangle .
\end{align*}
$$

$[i \Theta(T), \Lambda] \varphi$ can be written as:

$$
\begin{align*}
& {[i \Theta(T), \Lambda] \varphi} \\
& =-i \Lambda \Theta(T) \varphi \\
& =-\sum_{p} \tau\left(\bar{\theta}^{p}\right) \tau\left(\theta^{p}\right) \Theta(T) \varphi \tag{6}\\
& =-\sum_{j=1}^{3} \sum_{p} \tau\left(\bar{\theta}^{p}\right) \tau\left(\theta^{p}\right) \Theta_{j} \varphi .
\end{align*}
$$

Let

$$
\varphi=\varphi_{\bar{k}}^{l} \bar{\theta}^{k} \otimes e_{l}
$$

We compute each term in (6) separately:

$$
\begin{align*}
\varphi_{1} & =-\sum_{p} \tau\left(\bar{\theta}^{p}\right) \tau\left(\theta^{p}\right) \Theta_{1} \varphi \\
& =-\sum_{p} \tau\left(\bar{\theta}^{p}\right) \tau\left(\theta^{p}\right)\left\{2 \sum\left(\theta^{i} \wedge \bar{\theta}^{i}\right) \theta^{i} \otimes e_{i}\left(\varphi_{\bar{k}}^{l} \bar{\theta}^{k} \otimes e_{l}\right)\right\} \\
& =-\sum_{i \neq k} 2 \delta_{i l} \varphi_{\bar{k}}^{l} \bar{\theta}^{k} \otimes e_{i} \tag{7}\\
& =-2 \sum_{k \neq l} \varphi_{\bar{k}}^{l} \bar{\theta}^{k} \otimes e_{l} \\
\varphi_{2} & =-\sum_{p} \tau\left(\bar{\theta}^{p}\right) \tau\left(\theta^{p}\right) \Theta_{2} \varphi \\
& =-\sum_{p} \tau\left(\bar{\theta}^{p}\right) \tau\left(\theta^{p}\right)\left\{\sum_{i \neq a}\left(\theta^{a} \wedge \bar{\theta}^{a}\right) \theta^{i} \otimes e_{i}\left(\varphi_{\bar{k}}^{l} \bar{\theta}^{k} \otimes e_{l}\right)\right\} \\
& =-\sum_{a \neq k} \delta_{i l} \varphi_{\frac{k}{k}}^{l} \bar{\theta}^{k} \otimes e_{i} \tag{8}\\
& =-\sum_{k}(n-1) \varphi_{k}^{k} \bar{\theta}^{k} \otimes e_{k}-\sum_{k \neq l}(n-2) \varphi_{\bar{k}}^{l} \bar{\theta}^{k} \otimes e_{l} \\
\varphi_{3} & =-\sum_{p} \tau\left(\bar{\theta}^{p}\right) \tau\left(\theta^{p}\right) \Theta_{3} \varphi \\
& =-\sum_{p} \tau\left(\bar{\theta}^{p}\right) \tau\left(\theta^{p}\right)\left\{\sum_{i \neq j}\left(\theta^{i} \wedge \bar{\theta}^{j}\right) \theta^{j} \otimes e_{i}\left(\varphi_{\bar{k}}^{l} \bar{\theta}^{k} \otimes e_{l}\right)\right\} \\
& =\sum_{j \neq k} \delta_{j l} \varphi_{\bar{k}}^{l} \bar{\theta}^{j} \otimes e_{k} \tag{9}\\
& =\sum_{k \neq l} \varphi_{\bar{k}}^{l} \bar{\theta}^{l} \otimes e_{k}
\end{align*}
$$

Summarizing (7), (8), (9), we obtain

$$
\begin{equation*}
[i \Theta(T), \Lambda] \varphi=-(n-1) \sum_{k} \bar{\varphi}_{\bar{k}}^{k} \bar{\theta}^{k} \otimes e_{k}-n \sum_{k \neq l} \varphi_{\bar{k}}^{l} \bar{\theta}^{k} \otimes e_{l}+\sum_{k \neq l} \varphi_{\bar{k}}^{l} \bar{\theta}^{l} \otimes e_{k} \tag{10}
\end{equation*}
$$

Hence

$$
\begin{align*}
& \langle[i \Theta(T), \Lambda] \varphi, \varphi\rangle \\
& =-(n-1) \sum_{k}\left|\varphi_{\bar{k}}^{k}\right|^{2}-n \sum_{k \neq l}\left|\varphi_{\bar{k}}^{l}\right|^{2}+\sum_{k \neq l} \varphi_{\bar{k}}^{l} \bar{\varphi}_{\bar{l}}^{k} \tag{11}
\end{align*}
$$

Now let's evaluate $S(\varphi)$:

$$
\begin{align*}
& S(\varphi)\left(\bar{e}_{j}\right) \\
& =R\left(e_{i}, \bar{e}_{j}\right) \varphi \cdot \bar{e}_{i} \\
& =\varphi_{\bar{k}}^{l}\left\{\left\langle R\left(e_{i}, \bar{e}_{j}\right) \bar{\theta}^{k} \otimes e_{l}, \bar{e}_{i}\right\rangle+\left\langle\bar{\theta}^{k} \otimes R\left(e_{i}, \bar{e}_{j}\right) e_{l}, \bar{e}_{i}\right\rangle\right\} \\
& =\varphi_{\bar{k}}^{l}\left\{-\left\langle\bar{\theta}^{k} \otimes R\left(e_{i}, \bar{e}_{j}\right) \bar{e}_{i}\right\rangle e_{l}+\delta_{k i} R\left(e_{i}, \bar{e}_{j}\right) e_{l}\right\} \tag{12}\\
& =\varphi_{\bar{k}}^{l}\left\{\overline{\left\langle\theta^{k}, R\left(e_{j}, \bar{e}_{i}\right) e_{i}\right\rangle} e_{l}+\delta_{k i} R\left(e_{i}, \bar{e}_{j}\right) e_{l}\right\} \\
& =\varphi_{\bar{k}}^{l}\left\{R_{i j \bar{i}}^{k} e_{l}+\delta_{k i} R_{l i \bar{j}}^{p} e_{p}\right\} .
\end{align*}
$$

Let $f(j, k, l)=R_{i j \bar{i}}^{k} e_{l}+\delta_{k i} R_{l i \bar{j}}^{p} e_{p}$. When $k=l$ and $j=k$, we have

$$
\begin{align*}
f(j, k, l) & =R_{i k \bar{i}}^{k} e_{k}+\delta_{k i} R_{k i \bar{k}}^{p} e_{p} \\
& =R_{k k \bar{k}}^{k} e_{k}+\sum_{i \neq k} R_{i k \bar{i}}^{k} e_{k}+R_{k k \bar{k}}^{p} e_{p} \tag{13}\\
& =2 e_{k}+(n-1) e_{k}+2 e_{k} \\
& =(n+3) e_{k}
\end{align*}
$$

When $k=l$ and $j \neq k$, we have

$$
\begin{align*}
f(j, k, l) & =R_{i j \bar{i}}^{k} e_{k}+R_{k k \bar{j}}^{p} e_{p} \tag{14}\\
& =0 .
\end{align*}
$$

When $k \neq l$ and $j=k$, we have

$$
\begin{align*}
f(j, k, l) & =R_{i k \bar{i}}^{k} e_{l}+\delta_{k i} R_{l i \bar{k}}^{p} e_{p} \\
& =R_{k k \bar{k}}^{k} e_{l}+\sum_{i \neq k} R_{i k \bar{i}}^{k} e_{l}+R_{l k \bar{k}}^{p} e_{p} \tag{15}\\
& =2 e_{l}+(n-1) e_{l}+e_{l} \\
& =(n+2) e_{l} .
\end{align*}
$$

When $k \neq l, j \neq k$ and $j=l$, we have

$$
\begin{align*}
f(j, k, l) & =R_{i l \bar{i}}^{k} e_{l}+R_{l k l}^{p} e_{p} \\
& =0+e_{k} \tag{16}\\
& =e_{k} .
\end{align*}
$$

When $k \neq l, j \neq k$ and $j \neq l$, we have

$$
\begin{align*}
f(j, k, l) & =0+R_{l k \bar{j}}^{p} e_{p} \tag{17}\\
& =0 .
\end{align*}
$$

Hence we obtain

$$
\begin{equation*}
S(\varphi) \bar{e}_{j}=\sum_{j}(n+3) \varphi_{\bar{j}}^{j} e_{j}+\sum_{l \neq j}(n+2) \varphi_{\bar{j}}^{l} e_{l}+\sum_{k \neq j} \varphi_{\bar{k}}^{j} e_{k} \tag{18}
\end{equation*}
$$

Thus

$$
\begin{align*}
S(\varphi)= & \sum_{j}(n+3) \varphi_{\bar{j}}^{j} \bar{\theta}^{j} \otimes e_{j}+\sum_{l \neq j}(n+2) \varphi_{\bar{j}}^{l} \bar{\theta}^{j} \otimes e_{l} \\
& +\sum_{k \neq j} \varphi_{\bar{k}}^{j} \bar{\theta}^{j} \otimes e_{k} \tag{19}
\end{align*}
$$

Therefore

$$
\begin{equation*}
\langle\varphi, S(\varphi)\rangle=\sum_{k}(n+3)\left|\varphi_{\bar{k}}^{k}\right|^{2}+\sum_{k \neq l}(n+2)\left|\varphi_{\bar{k}}^{l}\right|^{2}+\sum_{k \neq l} \varphi_{\bar{k}}^{l} \bar{\varphi}_{\bar{l}}^{k} \tag{20}
\end{equation*}
$$

and

$$
\begin{align*}
& \langle[i \Theta(T), \Lambda] \varphi, \varphi\rangle+\langle\varphi, S(\varphi)\rangle \\
& =4 \sum_{k}\left|\varphi_{\bar{k}}^{k}\right|^{2}+2 \sum_{k \neq l}\left|\varphi_{\bar{k}}^{l}\right|^{2}+2 \sum_{k \neq l} \varphi_{\bar{k}}^{l} \bar{\varphi}_{\bar{l}}^{k} \\
& \geq 4 \sum_{k}\left|\varphi_{\bar{k}}^{k}\right|^{2}+2 \sum_{k \neq l}\left|\varphi_{\bar{k}}^{l}\right|^{2}-2 \sum_{k \neq l}\left|\varphi_{\bar{k}}^{l}\right|^{2} \tag{21}\\
& =4 \sum_{k}\left|\varphi_{\bar{k}}^{k}\right|^{2} \\
& \geq 0 .
\end{align*}
$$

We observe

$$
\begin{align*}
& \left\|\nabla_{e_{i}} \varphi\right\|^{2}+\left\|\nabla_{\bar{e}_{i}} \varphi\right\|^{2}+\langle[\varphi, \varphi], \bar{\partial} \phi\rangle \\
& \geq\left\|\nabla_{e_{i}} \varphi\right\|^{2}+\left\|\nabla_{\bar{e}_{i}} \varphi\right\|^{2}-\|[\varphi, \varphi]\|\|\bar{\partial} \phi\| \tag{22}\\
& \geq c\left(\left\|\nabla_{e_{i}} \varphi\right\|^{2}+\left\|\nabla_{\bar{e}_{i}} \varphi\right\|^{2}\right)
\end{align*}
$$

for some constant $c>0$ if $\|\varphi\|_{\infty}$ is appropriately small. Equations (3), (5), (21) and (22) yield

$$
\begin{equation*}
\bar{\square}\|\varphi\|^{2} \geq c\left(\left\|\nabla_{e_{i}} \varphi\right\|^{2}+\left\|\nabla_{\bar{e}_{i}} \varphi\right\|^{2}\right) \tag{23}
\end{equation*}
$$

and this implies

$$
\begin{equation*}
\varphi=0 \tag{24}
\end{equation*}
$$

References

1. Kunihiko Kodaira, J. Morrow, Complex manifolds, Holt, Rinehart and Winston, Inc., New York, 1971. MR 46:2080
2. M. Kuranishi, New proof for the existence of locally complete families of complex structures, Proceedings of the Conference on Complex Analysis in Minneapolis, 1964. Berlin: SpringerVerlag, 1965, pp. 142-154. MR 31:768

Korea Institute for Advanced Study, 207-43 Cheongryangri-dong, Dongdaemun-gu, 130-012 Seoul, Korea

E-mail address: ouyang@newton.kias.re.kr
Current address: 510403, GuangZhou, Jin Zhong Heng Lu, BaiLan HuaYuan, 25 Dong 403, P. R. China

[^0]: Received by the editors January 6, 2002.
 2000 Mathematics Subject Classification. Primary 32G05, 58J05.

