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ON ALTERNATING ANALOGUES
OF TORNHEIM’S DOUBLE SERIES

HIROFUMI TSUMURA

(Communicated by Wen-Ching Winnie Li)

Abstract. In this paper, we give some evaluation formulas for alternating
analogues of Tornheim’s double series. These can be regarded as alternating
analogues of Mordell’s formulas. This gives a partial answer to the problem
posed by Subbarao-Sitaramachandrarao.

1. Introduction

Tornheim considered the double series T (p, q, r) defined by

(1.1) T (p, q, r) =
∞∑

m,n=1

1
mpnq(m+ n)r

,

where p, q, r are nonnegative integers with p+ r > 1, q + r > 1 and p+ q + r > 2
(see [5]). He showed that T (p, q,N − p − q) is a polynomial in {ζ(j)| 2 ≤ j ≤ N}
with rational coefficients when N is odd and N ≥ 3 (see also [2]).

In [3], Mordell gave an evaluation formula for T (2k, 2k, 2k) for a positive integer
k. Furthermore, in [4], Subbarao and Sitaramachandrarao generalized Mordell’s
formula, and considered alternating analogues of (1.1) defined by

R(p, q, r) =
∞∑

m,n=1

(−1)n

mpnq(m+ n)r
,(1.2)

S(p, q, r) =
∞∑

m,n=1

(−1)m+n

mpnq(m+ n)r
.(1.3)

They posed the problem to evaluate R(p, p, p) and S(p, p, p) for any positive integer
p. As a partial answer to their problem, we gave an evaluation formula for S(p, p, p)
for any positive odd integer p (see [6], Corollary 3).

The purpose of this paper is to give an evaluation formula for R(p, p, p) for any
odd positive integer p with p ≥ 3 (see Theorem 3.6). In order to prove this formula,
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we make use of the same method as we introduced in [6]. Indeed, we consider
partial Tornheim’s double series

(1.4) Tb1,b2(p, q, r) =
∞∑

m,n=0

1
(2m+ b1)p(2n+ b2)q(2m+ 2n+ b1 + b2)r

,

where b1, b2 ∈ {1, 2}. As a result, we can write T1,1(p, p, q) as a rational linear
combination of products of Riemann’s zeta values at positive integers, when p and
q are odd positive integers with q ≥ 3 (see Proposition 3.5).

More general results on partial Tornheim’s double series defined by (1.4) will be
given in [7].

The author wishes to express his sincere gratitude to the referee who gave him
valuable comments and carefully pointed out the errors in this paper.

2. Preliminaries

Let N be the set of natural numbers, N0 = N ∪ {0}, Z the ring of rational
integers, and R the field of real numbers. Let i =

√
−1. Throughout this paper

we fix δ ∈ R with δ > 0. For u ∈ R with u ∈ [1, 1 + δ] and s ∈ R, we define
ρ(s;u) :=

∑
m≥0 (−u)−m/(2m+ 1)s. If u > 1, then ρ(s;u) is convergent for any

s ∈ Z. Let ρ(s) := ρ(s; 1). We define a set of numbers {Em(u)} by

(2.1) F (x;u) =
2uex

e2x + u
=
∞∑
m=0

Em(u)
xm

m!
.

Note that {Em(1)} are the Euler numbers (see, e.g., [1]). So we have E2j+1(1) =
0 (j ∈ N0). It follows from (2.1) that if u ∈ [1, 1 + δ], then

(2.2) lim inf
m→∞

(
|Em(u)|
m!

)−1/m

≥ π

2
.

From the relation F (x;u) = 2
∑
n≥0(−u)−ne(2n+1)x, we obtain the following.

Lemma 2.1. For k ∈ N0 and u ∈ (1, 1 + δ],

(2.3) ρ(−k;u) =
1
2
Ek(u).

For r ∈ N, p ∈ N0, u ∈ [1, 1 + δ] and θ ∈ R, we define

(2.4) Xp(θ, r;u) :=
∞∑
n=0

(−u)−n sin(p)((2n+ 1)θ)
(2n+ 1)r

,

where we denote the l-th derivative of a function f(θ) by f (l)(θ). Using the well-
known relation

(2.5) sin(p)(θ) =
ip−1

2
(
eiθ + (−1)p−1e−iθ

)
= ip−1

∞∑
n=0

λp+1+n
(iθ)n

n!
,

where λj := (1 + (−1)j)/2, we have

(2.6) Xp(θ, r;u) = ip−1
∞∑
m=0

ρ(r −m;u)λp+1+m
(iθ)m

m!
,
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when u ∈ (1, 1 + δ]. By (2.2) and (2.3), we see that (2.6) is uniformly convergent
with respect to u ∈ (1, 1 + δ] when θ ∈ (−π/2, π/2). Furthermore we define

(2.7) Yp(θ, r;u) := Xp(θ, r;u)− ip−1
r∑
j=0

ρ(r − j;u)λp+1+j
(iθ)j

j!
,

for r ∈ N, p ∈ N0, u ∈ [1, 1 + δ] and θ ∈ R. When u ∈ (1, 1 + δ],

Yp(θ, r;u) = ip−1
∞∑
n=1

ρ(−n;u)λp+1+n+r
(iθ)n+r

(n+ r)!
.

This is also uniformly convergent with respect to u ∈ (1, 1+δ] when θ ∈ (−π/2, π/2).
So it follows from Lemma 2.1 and the fact E2j+1(1) = 0 (j ∈ N0) that

(2.8) Yr(θ, r;u)→ 0 (u→ 1; r ∈ N, θ ∈ (−π/2, π/2)).

Now we define

S(k, s;u) :=
∞∑

m,n=0

(−u)−m−n

{(2m+ 1)(2n+ 1)}2k+1(2m+ 2n+ 2)s
,(2.9)

R(k, s;u) :=
∞∑

m,n=0

(−u)−2m−n−1

{(2m+ 1)(2m+ 2n+ 3)}2k+1(2n+ 2)s
,(2.10)

for k ∈ N0, s ∈ Z, u ∈ [1, 1 + δ]. By an elementary calculation just the same as
that in Lemma 3 of [6], we obtain the following.

Lemma 2.2. For k ∈ N0, u ∈ (1, 1 + δ] and θ ∈ R,
∞∑
m=0

(−u)−mei(2m+1)θ

(2m+ 1)2k+1
·
∞∑
n=0

(−u)−nei(2n+1)θ

(2n+ 1)2k+1
=
∞∑
m=0

S(k,−m;u)
(iθ)m

m!
,(2.11)

∞∑
m=0

(−u)−me−i(2m+1)θ

(2m+ 1)2k+1
·
∞∑
n=0

(−u)−nei(2n+1)θ

(2n+ 1)2k+1
(2.12)

=
∞∑
m=0

R(k,−m;u){1 + (−1)m} (iθ)m

m!
+
∞∑
m=0

u−2m

(2m+ 1)4k+2
.

For n ∈ Z, k ∈ N0 and u ∈ (1, 1 + δ], we define

βn(k;u) :=
1
2
{S(k,−n;u) + (1 + (−1)n)R(k,−n;u)}(2.13)

−
k∑
ν=0

(
n

2ν

)
ρ(2k + 1− 2ν;u)ρ(2k + 1 + 2ν − n;u).

In particular when n ≤ −1, we define βn(k; 1) by (2.13) with u = 1. By combining
(2.13) and Lemma 2.2, we obtain the following.

Lemma 2.3. For k ∈ N0, u ∈ (1, 1 + δ] and θ ∈ R,

Y2k+1(θ, 2k + 1;u)
∞∑
n=0

(−u)−nei(2n+1)θ

(2n+ 1)2k+1
(2.14)

= (−1)k
∞∑
n=0

βn(k;u)
(iθ)n

n!
+

(−1)k

2

∞∑
m=0

u−2m

(2m+ 1)4k+2
.
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Proof. By (2.5) and Lemma 2.2, we have

X2k+1(θ, 2k + 1;u)
∞∑
n=0

(−u)−nei(2n+1)θ

(2n+ 1)2k+1

=
i2k

2

∞∑
n=0

{S(k,−n;u) + (1 + (−1)n)R(k,−n;u)} (iθ)n

n!

+
(−1)k

2

∞∑
m=0

u−2m

(2m+ 1)4k+2
.

On the other hand, by combining (2.6) and

(2.15)
∞∑
n=0

(−u)−nei(2n+1)θ

(2n+ 1)2k+1
=
∞∑
n=0

ρ(2k + 1− n;u)
(iθ)n

n!
,

we havei2k
2k+1∑
j=0

ρ(2k + 1− j;u)λj
(iθ)j

j!


∞∑
n=0

(−u)−nei(2n+1)θ

(2n+ 1)2k+1

= (−1)k
∞∑
n=0

k∑
ν=0

(
n

2ν

)
ρ(2k + 1− 2ν;u)ρ(2k + 1 + 2ν − n;u)

(iθ)n

n!
.

By (2.13), we obtain the proof. �

Since (2.7) and (2.15) are uniformly convergent with respect to u ∈ (1, 1 + δ]
when θ ∈ (−π/2, π/2) by (2.2), so is (2.14), and

(2.16) lim inf
m→∞

(
|βm(k;u)|

m!

)−1/m

≥ π

2
,

for k ∈ N0. Furthermore, by (2.8), we have

lim
u→1

βm(k;u) = 0 (m ∈ N),(2.17)

lim
u→1

β0(k;u) = −1
2

∞∑
m=0

1
(2m+ 1)4k+2

.(2.18)

3. Evaluation formulas

By (2.13), we have

β2j+1(k;u) =
1
2
S(k,−2j − 1;u)(3.1)

−
k∑
ν=0

(
2j + 1

2ν

)
ρ(2k + 1− 2ν;u)ρ(2k + 2ν − 2j;u),

for j ∈ N0.
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Lemma 3.1. For k, l ∈ N0, p ∈ {0, 1}, u ∈ (1, 1 + δ] and θ ∈ R,

1
2

∞∑
m,n=0

(−u)−m−n sin(p)((2m+ 2n+ 2)θ)

{(2m+ 1)(2n+ 1)}2k+1 (2m+ 2n+ 2)2l+p
(3.2)

−
k∑
ν=0

ρ(2k + 1− 2ν;u)
2ν∑
τ=0

(
2l + p− 1 + 2ν − τ

2l + p− 1

)
(−θ)τ
τ !

· Xτ+p(θ; 2k + 2l + 1 + p+ 2ν − τ ;u)

= ip−1
∞∑

j=−l−p
β2j+1(k;u)

(iθ)2j+2l+1+p

(2j + 2l+ 1 + p)!
.

Proof. By (2.5) and (2.9), we have

∞∑
m,n=0

(−u)−m−n sin(p)((2m+ 2n+ 2)θ)

{(2m+ 1)(2n+ 1)}2k+1 (2m+ 2n+ 2)2l+p

= ip−1
∞∑

m=−2l−p
S(k,−m;u)λm+1

(iθ)m+2l+p

(m+ 2l + p)!
.

On the other hand, we use (2.5) and consider the function f(x; d, θ) = sin(p)(xθ)x−d

in the argument of Lemma 6 of [6]. Then we obtain that

r∑
τ=0

(
d− 1 + r − τ

d− 1

)
(−θ)τ
τ !

sin(τ+p)(θx)
xd+r+q−τ

= ip−1
∞∑

m=−d
(−1)r

(
m

r

)
(iθ)m+d

(m+ d)!
λp+1+m+d x

−q−r+m,

by using the well-known relation
(−X
j

)
= (−1)j

(
X+j−1

j

)
. Putting r = 2ν, q = 2k+1

and d = 2l+ p, we have

k∑
ν=0

ρ(2k + 1− 2ν;u)
2ν∑
τ=0

(
2l + p− 1 + 2ν − τ

2l + p− 1

)
(−θ)τ
τ !

· Xτ+p(θ; 2k + 2l+ 1 + p+ 2ν − τ ;u)

= ip−1
∞∑

m=−2l−p

k∑
ν=0

(
m

2ν

)
ρ(2k + 1− 2ν;u)ρ(2k + 1 + 2ν −m;u)

· λm+1
(iθ)m+2l+p

(m+ 2l+ p)!
.

Put m = 2j + 1. Then, by (3.1), we obtain the proof. �

By (2.16), we can let u→ 1 in both sides of (3.2) when l ∈ N and θ ∈ [−π/2, π/2].
By (2.17), we obtain the following.
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Proposition 3.2. For k ∈ N0, l ∈ N, p ∈ {0, 1} and θ ∈ [−π/2, π/2],

1
2

∞∑
m,n=0

(−1)m+n sin(p)((2m+ 2n+ 2)θ)

{(2m+ 1)(2n+ 1)}2k+1 (2m+ 2n+ 2)2l+p
(3.3)

−
k∑
ν=0

ρ(2k + 1− 2ν)
2ν∑
τ=0

(
2l+ p− 1 + 2ν − τ

2l + p− 1

)
(−θ)τ
τ !

· Xτ+p(θ; 2k + 2l+ 1 + p+ 2ν − τ ; 1)

= ip−1
−1∑

j=−l−p
β2j+1(k; 1)

(iθ)2j+2l+1+p

(2j + 2l+ 1 + p)!
.

For simplicity, we let ψ(s) :=
∑
m≥0 1/(2m+1)s = (1−2−s)ζ(s) for s > 1, where

ζ(s) is the Riemann zeta function. It is well-known that sin(2j) ((2m+ 1)π/2) =
(−1)j+m and sin(2j+1) ((2m+ 1)π/2) = 0 for j,m ∈ N0. Hence X2j(π/2, s; 1) =
(−1)jψ(s) and X2j+1(π/2, s; 1) = 0. Putting p = 0, θ = π/2 and l = m + 1 for
m ∈ N0 in (3.3), we have

m∑
r=0

β2r−2m−1(k; 1)
(iπ/2)2r+1

(2r + 1)!
(3.4)

= −i
k∑
ν=0

ρ(2k + 1− 2ν)
ν∑
η=0

(
2m+ 1 + 2ν − 2η

2m+ 1

)

· (iπ/2)2η

(2η)!
ψ(2k + 2m+ 3 + 2ν − 2η),

for k ∈ N0. We recall the following lemma which can be obtained by replacing π
with π/2 in Lemma 8 of [6].

Lemma 3.3. Suppose {Pm} and {Qm} are sequences which satisfy the relation
m∑
j=0

Pm−j
(iπ/2)2j+1

(2j + 1)!
= Qm,

for any m ∈ N0. Then the relation

Pm =
2
iπ

m∑
ν=0

(
1− 22ν+1−2m

)
22ν+1−2mζ(2m− 2ν)Qν

holds for any m ∈ N0. Note that ζ(0) = − 1
2 .

By (3.4), we can apply Lemma 3.3 with Pm=β−2m−1(k; 1) and Qm=−iZ0(k,m)
for m ∈ N0, where

Zp(k,m) :=
k∑
ν=p

ρ(2k + 1− 2ν)
ν−p∑
η=0

(
2m+ 1− 2p+ 2ν − 2η

2m+ 1− p

)
(3.5)

· ψ(2k + 2m− 2p+ 3 + 2ν − 2η)
(−1)η(π/2)2η+p

(2η + p)!
,

for p ∈ {0, 1}. Then we have

(3.6) β−2m−1(k; 1) = − 2
π

m∑
ν=0

(
1− 22ν+1−2m

)
22ν+1−2mζ(2m− 2ν)Z0(k, ν),
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for m ∈ N0.

Remark 3.4. It follows from (2.2) that both sides of
∞∑
m=0

(−u)−m cos((2m+ 1)π/2)
(2m+ 1)2k+1

=
∞∑
n=0

ρ(2k + 1− 2n;u)
(iπ/2)2n

(2n)!

are uniformly convergent with respect to u ∈ (1, 1+ δ], when k ∈ N. Letting u→ 1,
we have

k∑
j=0

ρ(2k + 1− 2j)
(iπ/2)2j

(2j)!
= 0,

because ρ(−2m− 1;u)→ 0 (u→ 1; m ∈ N0). Hence we can see that if k ∈ N, then

Zp(k,m) =
k∑
ν=1

ρ(2k + 1− 2ν)
ν−1∑
η=0

(
2m+ 1− 2p+ 2ν − 2η

2m+ 1− p

)
(3.7)

· ψ(2k + 2m− 2p+ 3 + 2ν − 2η)
(−1)η(π/2)2η+p

(2η + p)!
,

for p ∈ {0, 1}.

Now we can prove the following result on T1,1(2k + 1, 2k + 1, 2l+ 1) defined by
(1.4).

Proposition 3.5. For k ∈ N0 and l ∈ N,

T1,1(2k + 1, 2k + 1, 2l+ 1)(3.8)

= −2Z1(k, l) +
4
π

l∑
m=0

m∑
ν=0

(
1− 22ν+1−2m

)
22ν+1−2mζ(2m− 2ν)

· Z0(k, ν)
(iπ/2)2l−2m

(2l − 2m)!
.

Proof. We put p = 1 and θ = π/2 in (3.3). Since cos((2m + 2n + 2)π/2) =
(−1)m+n+1, we have

−1
2
T1,1(2k + 1, 2k + 1, 2l+ 1) = Z1(k, l) +

l∑
m=0

β−2m−1(k; 1)
(iπ/2)2l−2m

(2l − 2m)!
.

By (3.6), we obtain the proof. �

Finally we prove an evaluation formula for R(2k+1, 2k+1, 2k+1) for any k ∈ N.
By (1.1), (1.2) and (1.4), we can see that

R(2k + 1, 2k + 1, 2k + 1)(3.9)

= 2−6k−3T (2k + 1, 2k + 1, 2k + 1)− T1,1(2k + 1, 2k + 1, 2k + 1),

for k ∈ N0. It was proved that

(3.10) T (2k + 1, 2k + 1, 2k + 1) = −4
k∑
j=0

(
4k − 2j + 1

2k

)
ζ(2j)ζ(6k − 2j + 3)

(see [2], Eq. (1.14)). By combining (3.9), (3.10) and Proposition 3.5, we obtain the
following.
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Theorem 3.6. For k ∈ N,

R(2k + 1, 2k + 1, 2k + 1)

= −2−6k−1
k∑
j=0

(
4k − 2j + 1

2k

)
ζ(2j)ζ(6k − 2j + 3) + 2Z1(k, k)

− 4
π

k∑
m=0

m∑
ν=0

(
1− 22ν+1−2m

)
22ν+1−2mζ(2m− 2ν)Z0(k, ν)

(iπ/2)2k−2m

(2k − 2m)!
,

where

Zp(k,m) =
k∑
ν=1

ρ(2k + 1− 2ν)
ν−1∑
η=0

(
2m+ 1− 2p+ 2ν − 2η

2m+ 1− p

)

· ψ(2k + 2m− 2p+ 3 + 2ν − 2η)
(−1)η(π/2)2η+p

(2η + p)!
,

for p ∈ {0, 1}. Note that ρ(s) =
∑

m≥0(−1)m/(2m+ 1)s and ψ(s) = (1− 2−s)ζ(s).

Example 3.7. We list several evaluation formulas for R(2k + 1, 2k + 1, 2k + 1)
deduced from Theorem 3.6. Note that we use the relations

ρ(2j + 1) =
(−1)jE2j

2(2j)!

(π
2

)2j+1

(j ∈ N0),

where {En} are the Euler numbers (see, e.g., [1]).

R(3, 3, 3) =
253
256

π2ζ(7)− 2545
256

ζ(9)

R(5, 5, 5) =
2039
18432

π4ζ(11) +
285565
24576

π2ζ(13)− 2056257
16384

ζ(15)

R(7, 7, 7) =
32639

2211840
π6ζ(15) +

913913
491520

π4ζ(17) +
40212403
262144

π2ζ(19)

− 896163411
524288

ζ(21)

R(9, 9, 9) =
522239

275251200
π8ζ(19) +

2978549
66060288

π6ζ(21) +
1194884977
41943040

π4ζ(23)

+
71693105055

33554432
π2ζ(25)− 1625043751045

67108864
ζ(27).

Remark 3.8. More general results on partial Tornheim’s double series Tb1,b2(p, q, r)
defined by (1.4) will be given in [7]. Indeed, we will be able to give more general
relation formulas for Tb1,b2(p, q, r).
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