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ABSTRACT. Let A be B be semisimple Banach algebras and let ¢ : A — B be
a unital bijective linear operator that preserves invertibility. If the socle of A
is an essential ideal of A, then ¢ is a Jordan isomorphism.

1. INTRODUCTION

Let A and B be algebras with identity elements, and let ¢ : A — B be a linear
map. We say that ¢ is unital if it maps the identity element of A into the identity
element of B, and we say that ¢ preserves invertibility if ¢(z) is invertible in B when-
ever x is invertible in A. It turns out that, under rather mild assumptions, Jordan
homomorphisms are unital invertibility preserving maps (see e.g. [10} Proposition
1.3]). Motivated by various relevant results (such as the Gleason-Kahane-Zelazko
theorem) Kaplansky [9] asked when the converse is true, that is, under which as-
sumptions a unital invertibility preserving map must be a Jordan homomorphism.
There has been a lot of activity concerning this question; we refer the reader to
some rather recent papers ([3], [], [6], [I0]) for historical accounts. We shall now
only briefly discuss those results that are closely connected with the present paper.

By B(X) we denote the algebra of all bounded linear operators on a Banach
space X. In [§] Jafarian and Sourour proved that Jordan isomorphisms are the only
bijective unital linear operators between B5(X) and B(Y') that preserve invertibility
in both directions (i.e., x is invertible if and only if ¢(x) is invertible). Aupetit and
du Mouton [4] extended this result to semisimple Banach algebras whose socle is an
essential ideal (actually, they considered a slightly more general problem on maps
preserving the full spectrum of each element). Finally, Sourour [I0] showed that the
result from [8] is true for maps that preserve invertibility (in only one direction).

The goal of this note is to obtain results similar to those in [4], however, under the
assumption that the invertibility is preserved in one direction only. In particular, we
shall thereby obtain a brief proof of Sourour’s result [10]. It should be mentioned,
however, that several ideas from both 4] and [10] will be used in our proof.

By a Banach algebra we shall mean a complex Banach algebra with an identity
element. The socle of the algebra A will be denoted by soc(A). Recall that an ideal
7 of A is said to be essential if it has a nonzero intersection with every nonzero
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ideal of A; in semisimple algebras this is equivalent to the condition that a-Z = 0,
where a € A, implies a = 0.

We are now in a position to state our main result, which extends [4, Theorem
3.2 and Corollary 3.3].

Theorem 1.1. Let A and B be semisimple Banach algebras and let ¢ : A — B be
a unital bijective linear operator that preserves invertibility. Then

» Y (p(a?) — d(a)?) -soc(A) =0 for every a € A.
In particular, if soc(A) is an essential ideal of A, then ¢ is a Jordan isomorphism.

In primitive algebras every nonzero ideal is essential, and from a well-known
theorem of Herstein [7] on Jordan homomorphisms onto prime rings it follows easily
that every Jordan isomorphism ¢ from a primitive algebra onto another algebra is
either an isomorphism or an anti-isomorphism (just consider ¢~!). Hence we have
the following corollary, which generalizes [10, Main theorem)].

Corollary 1.2. Let A be a primitive Banach algebra with nonzero socle, and let B
be a semisimple Banach algebra. If ¢ : A — B is a unital bijective linear operator
that preserves invertibility, then ¢ is either an isomorphism or an anti-isomorphism.

2. PROOF

We first fix the notation and terminology. By A and B we denote semisimple
Banach algebras, and by ¢ a bijective unital linear operator from A onto B that
preserves invertibility. Note that the latter assumption can be equivalently formu-
lated as o(¢(a)) C o(a) for every a € A, where () denotes the spectrum of the
element x.

Recall that every minimal left ideal of A is of the form Ae where e is a minimal
idempotent, i.e., e2 = e # 0 and ede = Ce. In this case eA is a minimal right
ideal of A. The sum of all minimal left ideals of A is called the socle of A and
it coincides with the sum of all minimal right ideals of A. For example, for any
Banach space X, soc(B(X)) is equal to the ideal of all finite rank operators in B(X).
If A has no minimal one-sided ideals, then we define soc(A) = 0. We say that a
nonzero element u € A has rank one if u belongs to some minimal left ideal of A
(equivalently, u = ue for some minimal idempotent e in A). By Fi(A) we denote
the set of all elements of rank one in A. Tt is easy to see (see [5] for details) that
u € F1(A) if and only if u # 0 and w lies in some minimal right ideal of A, and
furthermore, this is equivalent to the condition that uAu = Cu # 0. Another, less
obvious characterization is that u € F1(A) if and only if u # 0 and |o(zu) \ {0}| <1
for every z € A or, equivalently, |o(uz) \ {0} <1 for every z € A (see [4] or [5]).

Lemma 2.1. ¢(F1(A)) C F1(B).

Proof. Pick u € F1(A). We have to show that v = ¢(u) lies in F;(B), that is, that
lo(zv) \ {0}] <1 for every z € B.

From a well-known result of Aupetit [I] (see also [2] Theorem 5.5.2]) it follows
that ¢ is continuous, and therefore of course ¢! is also continuous. Set M =
(2l + 1)~ and pick z € B such that ||z]| < M. Since M < 1, 1 + z is
invertible, and we have y = (1+2) ' —1= —z+22—23+21—.... Set 2 = ¢ (y)
and note that
M 1

1-—M 2

] _
< o™

Izl < lle~ iyl < llo~"| <
1= |lz]|



NOTE ON INVERTIBILITY PRESERVERS ON BANACH ALGEBRAS 3835

so that 1+ is invertible, whence it follows that 1+z—Au = (1+2)(1=X(1+2) " tu)
is invertible for all but possibly one A € C. Since ¢ preserves invertibility, the same
is true for

p(l+z—du)=1+y— = 1+y)(1—A1+2)),
which means that the spectrum of (1 + z)v contains at most one nonzero point.
Thus we proved that |o((1 + 2)v) \ {0} < 1 whenever ||z|| < M, and similarly we
see that in this case also |o(v(1 + 2)) \ {0} < 1.

Now let z € B be any element. Define the analytic function f : C — B by
f(A) = (A + z)v and note that |o(f(N)) \ {0} <1 whenever |A| > %

Suppose that v does not have a left inverse. Since, in particular, |o(f()))] < 2
whenever |A| > %, it follows from [2] Theorem 3.4.25] that |o(f()))| < 2 for every
A € C. Taking A = 0 we thus get |o(zv)| < 2. However, since 0 € o(zv), it follows
that |o(zv)\{0}] < 1, as desired. The case when v does not have a right inverse can
be treated similarly, by considering the function A\ — v(\ + 2). So we may assume
that v is invertible. In this case |o(f(A))| = 1 whenever |A| > %, and so applying
[2, Theorem 3.4.25] again we see that this holds true for any A € C. Accordingly,
|o(zv)] = 1, and so, in particular, |o(zv) \ {0}| < 1 (incidentally we mention that
in the case when v is invertible we actually have A = B = C). O

Given u € Fi(A), there is 7(u) € C such that u? = 7(u)u. Clearly 7(u) € o(u),
and moreover, either 7(u) = 0 or 7(u) is the only nonzero point in o(u). Since
7(u) is unique, we may consider 7 as a function from F;(A) to C, and we extend
it by defining 7(0) = 0. Using uAu = Cu, u € F;(A), and considering (zu)? and
(uz)? it follows easily that 7(zu)u = uzu = 7(uz)u for any x € A. Furthermore,
we claim that 7(z1u + zou) = 7(x1u) + 7(22u) for all 1,22 € A and u € Fi(A).
This follows from [4] Lemma 2.3], but it can also be proved using only elementary
tools. Indeed, examining (x1u + xgu)2 = T1UT1U + T1UT2U + ToUuT1U + Touzou and
applying uzu = 7(zu)u we get

(T(z1u + z2u) — T(x1u) — T(x2u))(T1U + T2u) = 0,
from which our assertion can be easily inferred. Also, it is straightforward to check
that 7(Au) = Ar(u) for all A € C and u € F;(A). Therefore, the restriction of 7

to any minimal left ideal Au is a linear functional. Moreover, from u? = 7(u)u,
u € F1(A), we conclude that |7(u)| < ||u|| and so 7 is bounded on Au.

Lemma 2.2. 7(zu) = 7(¢(2)p(u)) and 7(z%u) = 7(p(x)?¢(u)) for all z € A and
u65f1@4)

Proof. Let u € F1(A) be a fixed element. Pick a nonzero x € A and let D, = {\ €
ClIAl < (Jolll=l)~*}. Then 1 — A¢(z) is invertible for every A € D,; moreover,
since ||@]| > 1 (¢ is unitall), the same is true for 1 — Az. We have ¢(u) € F1(B) and
so we can define F,,, G, : D, — C by

Fo(\) = 7((1 = Az) "), Go(A) = 7((1 = A(x)) " d(u)).

Since 7 is a continuous linear functional on Au (resp. Bo(u)), we have

Fo(\) =D r(@F )b, Go(N) =Y (@) d(u) A,
k=0 k=0

Suppose that G, (\) = a # 0 for some A € D,. Then (1 — A\¢p(z)) to(u) — a
is not invertible, and hence also ¢(u) — a(l — A¢(z)) is not invertible. Since ¢ is
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unital and preserves invertibility, it follows that v — (1 — Az) is not invertible.
Accordingly, (1 — Az)~!u — « is not invertible, which means that F,(\) = a. That
is, we showed that G4(\) = Fy(\) whenever G;(\) # 0. Since F, and G, are
analytic functions, it follows that either F, = G, or G, = 0.

Comparing coefficients at the expansions of F,, and G, we see, in particular, that
for any = # 0 in A we have either 7(¢(z)p(u)) = 0 or 7(au) = 7(¢(z)¢p(u)) and
7(22u) = 7(é(x)%¢(u)). Both conditions are trivially satisfied for x = 0.

If 7(¢p(x)p(u)) = 0 for all x € A, then we would have ¢(u)p(z)p(u) = 0 for
every x € A. However, since ¢ is onto and B is semisimple (and so, in particular,
semiprime) this would yield ¢(u) = 0, a contradiction. Thus 7(¢(x1)d(u)) # 0
for some 71 € A. Then of course 7(23u) = 7(¢(z1)*¢(u)). Now suppose there
exists 2 € A such that 7(23u) # 7(¢d(x2)?¢(u)). Then 7(¢p(x2)d(u)) = 0; hence
7(p(z1 +pxe)p(u)) # 0 for any p € C, which in turn implies that 7((x1 + pxs)?u) =
7(¢(x1 + pao)®p(u)). That is,

u(T(xlxzu + zoxyu) — 7(P(1)P(w2)d(u) + ¢(w2)¢(w1)¢(u)))
+ i (r(adu) = 7(é(w2)?0(w)) ) =0

for every u € C, which clearly contradicts our assumption that 7(x3u) #
7(¢(w2)?p(u)). This means that 7(x?u) = 7(p(z)?¢(u)) for every z € A. In a
similar (but of course shorter) fashion one shows that also 7(zu) = 7(¢(z)¢(u)) for
every z € A.

Proof of Theorem [[1l Let z € A and let u € Fi(A). From the first identity in

Lemma 22 we see that 7(2%u) = 7(¢(2%)é(u)) and from the second one we see

that 7(z?u) = 7(¢(z)?¢(u)). Comparing we get 7((p(z?) — ¢(z)?)p(u)) = 0. Set
v = ¢ Hp(z?) — ¢(2)?), and note that 7(zou) = T(¢(x0)p(u)) = 0 for every
u € Fi1(A). But this yields that xou = 0 for every u € F1(A). Indeed, if zgug
was not 0 for some ug € F1(A), then, by the semisimplicity of A, there would be
x € A such that o(xouo - x) # {0}, meaning that 7(z¢ - upz) # 0, a contradiction.
Accordingly, zg - soc(A) = 0. O
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