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A “NONLINEAR” PROOF
OF PITT’S COMPACTNESS THEOREM

M. FABIAN AND V. ZIZLER

(Communicated by Jonathan M. Borwein)

Abstract. Using Stegall’s variational principle, we present a simple proof of
Pitt’s theorem that bounded linear operators from `q into `p are compact for
1 ≤ p < q < +∞.

Let ϕ be a bounded below lower semicontinuous function defined on a reflexive
Banach space X such that lim inf‖x‖→∞ ‖x‖−1ϕ(x) > 0. Then Stegall’s variational
principle yields x0 ∈ X and f ∈ X∗ such that ϕ + f attains its minimum at x0

(see [4], or [5], or e.g. [1, Theorem 10.20] or [3, Corollary 5.22]). Recall that a
bounded linear operator T from a Banach space X into a Banach space Y is called
a compact operator if T (BX) is a compact set in Y , where BX denotes the closed
unit ball of X .

Theorem (Pitt) (see, e.g., [2, p. 54] or [1, p. 175]). Let 1 ≤ p < q < +∞. Then
every bounded linear operator from `q into `p is compact.

Proof. Let T be a bounded linear operator from `q into `p. Then the function

ϕ(x) = ‖x‖qq − ‖Tx‖pp, x ∈ `q
is bounded below and ϕ(x) > ‖x‖q if ‖x‖q is large enough. By Stegall’s variational
principle there is a point x ∈ `q and there is ξ ∈ `q∗ such that

ϕ(x+ h)− ϕ(x) − ξ(h) ≥ 0 for every h ∈ `q.
Then from the linearity of ξ,

ϕ(x+ h) + ϕ(x− h)− 2ϕ(x) ≥ 0 for every h ∈ `q.
Thus

‖x+h‖qq+‖x−th‖qq−2‖x‖q ≥ ‖T (x+h)‖pp+‖T (x−h)‖pp−2‖Tx‖pp for all h ∈ `q.
Let (xi) be a bounded sequence in `q. By passing to a subsequence, if necessary,

we may assume that (xi) converges weakly to some y ∈ `q. We will show that
‖Txi − Ty‖ → 0 as i → ∞. Indeed, by substituting h = t(xi − y) in the last
inequality, we get

‖x+ t(xi − y)‖qq + ‖x− t(xi − y)‖qq − 2‖x‖qq

≥ ‖Tx+ tT (xi − y)‖pp + ‖Tx− tT (xi − y)‖pp − 2‖Tx‖pp
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for all i = 1, 2, . . . and all t > 0.
Thus we get that for all t > 0,

lim sup
i→∞

‖x± t(xi − y)‖qq = ‖x‖qq + tq lim sup
i→∞

‖xi − y‖qq.

In order to see this, we use the fact that if z ∈ `q and wi → 0 weakly, then

lim sup ‖z + wi‖q = ‖z‖q + lim sup ‖wi‖q.
Indeed, first assume that zi = 0 for all i ≥ i0 for some i0. Choose ‖w̃i − wi‖q → 0
where w̃i = 0 for all i ≤ i0. Since the desired equality trivially holds for w̃i and
the q-th power of the norm function is Lipschitz on bounded sets, we get that the
equality holds for all finitely supported z. The conclusion then follows from the
Lipschitz property of the function in question on bounded sets and from the density
of finitely supported elements in `q. For the same reason, since Txi → Ty weakly,
we get for all t > 0,

lim sup
i→∞

‖Tx± tT (xi − y)‖pp = ‖Tx‖pp + tp lim sup
i→∞

‖T (xi − y)‖pp.

Thus
2tq lim sup

i→∞
‖xi − y‖qq ≥ 2tp lim sup

i→∞
‖T (xi − y)‖pp

for all t > 0, and therefore, ‖T (xi − y)‖p → 0 as i→∞. �
The usual proofs of Pitt’s theorem involve the theory of Schauder bases in `p

spaces (cf., e.g., [1, p. 175] or [2, p. 54]).
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