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THE SCENERY FACTOR OF THE [T, T−1] TRANSFORMATION
IS NOT LOOSELY BERNOULLI

CHRISTOPHER HOFFMAN

(Communicated by Michael Handel)

Abstract. Kalikow (1982) proved that the [T, T−1] transformation is not
isomorphic to a Bernoulli shift. We show that the scenery factor of the [T,T−1]
transformation is not isomorphic to a Bernoulli shift. Moreover, we show that
it is not Kakutani equivalent to a Bernoulli shift.

1. Introduction

The [T, T−1] transformation is a random walk on a random scenery. It is defined
as follows. Let X = {1,−1}Z and Y = {red, blue}Z. Let σ be the left shift on X
(σ(x)i = xi+1) and let T be the left shift on Y . Let µ′ be the (1/2,1/2) product
measure on X and µ′′ be the (1/2,1/2) product measure on Y .

We define the transformation [T, T−1] : X × Y → X × Y by

[T, T−1](x, y) =
{

(σ(x), T (y)) if x0 = 1,
(σ(x), T−1(y)) if x0 = −1.

Let F be the Borel σ-algebra and µ = µ′ × µ′′. Then the [T, T−1] transformation
is the four-tuple (X × Y, [T, T−1],F , µ).

The [T, T−1] transformation was introduced for its ergodic-theoretic properties.
It is easy to show that this transformation is a K transformation [7]. For many
years it was an open question to determine whether the [T, T−1] transformation
is isomorphic to a Bernoulli shift. Kalikow settled the question with the following
theorem [3].

Theorem 1. The [T, T−1] transformation is not isomorphic to a Bernoulli shift.
Moreover, it is not loosely Bernoulli.

The [T, T−1] transformation also has probabilistic interest. Given x let

S(i) = Sx(i) =


∑i−1

0 xj if i > 0,
−
∑−1
i xj if i < 0,

0 if i = 0.

Define C(x, y)i = yS(i). We refer to this as the color observed at time i.
Probabilists have focused on two questions. The first question is of reconstruc-

tion. In this problem you are given the sequence C(x, y)i, i ≥ 0, and you are trying
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to reconstruct y. The best result for reconstruction is the following theorem by
Matzinger [6].

Theorem 2. There exists a function F : X × Y → Y so that
(1) for all (x, y), if C(x, y)j = C(x′, y′)j for all j ≥ 0, then F (x, y) = F (x′, y′)

and
(2) there exists an even m such that F (x, y)j = yj+m for all j or F (x, y)j =

y−j+m for all j a.s.
In the course of the proof, Matzinger proves the following results. There is a func-
tion H : X × Y → ZN and sets Di such that

(3) for all (x, y) and i, if C(x′, y′)j = C(x, y)j for all j ≤ ei4 , then H(x, y)i =
H(x′, y′)i,

(4) limµ(Di) = 1, and
(5) if C(x, y)j = C(x′, y′)j for all j and there exists an even m such that

yj = y′j+m with both (x, y), (x′, y′) ∈ Di, then

yj+Sx(H(x,y)i) = y′j+Sx′ (H(x′,y′)i)
.

Note: The last half of Theorem 2 does not appear in this form in [6]. To see how
this follows, we choose Di to be the set denoted by

⋂
j≥i

(
Ej0 ∩ Ej

)
in [6]. We

choose H(x, y)i to be the value denoted by ti6 in [6]. Then Statement 3 follows from
Algorithm 7. Statement 4 follows from Lemmas 3 and 5. Statement 5 follows from
Algorithms 3 and 7.

The second question of probabilistic interest is one of distinguishability. Each y
and n determines a measure my,n on {red, blue}[n,∞) by

my,n(A) = µ′({x such that C(x, y) ∈ A}).
Call y and y′ distinguishable if my,n and my′,n are mutually singular for all n.
It is easy to see that if there exists an even m such that yi = y′i+m for all i or
yi = y′−i+m for all i, then y and y′ are not distinguishable. The following question
was raised by den Hollander and Keane and independently by Benjamini and Kesten
[1]. If y and y′ are not distinguishable, does there necessarily exist an even m such
that yi = y′i+m for all i or yi = y′−i+m for all i? This was recently answered in the
negative by Lindenstrauss [5].

In this paper we use Theorem 2 to study the ergodic-theoretic properties of the
[T, T−1] process. We call the factor that associates two points (x, y) and (x′, y′) if
C(x, y)i = C(x′, y′)i for all i the scenery factor, (X×Y, [T, T−1],G, µ). The main
result of this paper is the following.

Theorem 3. The scenery factor is not isomorphic to a Bernoulli shift. Moreover,
it is not loosely Bernoulli.

Recently, Steif gave an elementary proof of a closely related theorem. He proved
that the scenery factor is not a finitary factor of a Bernoulli shift [10].

2. Proof

The equivalence relation that associates (x, y) and (x′, y′) if
(1) C(x, y)i = C(x′, y′)i for all i and
(2) y = Tmy′ for some even m
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defines a factor, (X × Y, [T, T−1],H, µ). The factor (X × Y, [T, T−1],H, µ) is a
two-point extension of the scenery factor a.s. Both of these statements follow from
Theorem 2.

For any partition P and any a, b ∈ P Z let

d̄P[0,N ](a, b) = |{i : i ∈ [0, N ] and ai 6= bi}|/(N + 1).

For any two measures µ and ν on P Z define

d̄P[0,N ](µ, ν) = inf
m

∫
d̄[0,N ](a, b)dm

where the infinum is taken over all joinings of µ and ν. We set P to be the time
zero partition of X ×Y . A point (x, y) in X ×Y defines a sequence in P Z with ith
component P ([T, T−1]i(x, y)) = (xi, Ci(x, y)).

Theorem 4. (X × Y, [T, T−1],F , µ) is isomorphic to (X × Y, [T, T−1],H, µ) ×
(Ω, σ,Σ, ν), where (Ω, σ,Σ, ν) is a Bernoulli shift.

Proof. An atom of H is given by z, a ∈ {red, blue}Z such that there exists an x
so that zi = C(x, a)i for all i. The atoms given by z, a and z′, a′ are equivalent if
z = z′ and there exists an even m such that ai = a′i+m. Given an atom z, a of H
define µ̃z,a by

µ̃z,a(A) = µ{(x, y) ∈ A | C(x, y)i = zi ∀i
and there exists an even m such that y = Tma}.

Given x ∈ X define x̄ = {x′ : xi = x′i ∀ i ≤ 0}. Also define µ(x,y) by

µ(x,y)(A) = µ{(x′, y′) ∈ A | x′ ∈ x̄ and C(x, y)i = C(x′, y′)i ∀i}.
By Thouvenot’s relative isomorphism theory, the theorem is equivalent to checking
that the [T, T−1] transformation is relatively very weak Bernoulli with respect
to (X × Y, [T, T−1],H, µ) (see [11], [8], [4]). This means that given almost every
atom z, a of H and any ε > 0 there exists an N and a set G such that

(1) µ̃z,a(G) > 1− ε and
(2) for any (x, y), (x′, y′) ∈ G,

d̄P[0,N ](µ(x,y), µ(x′,y′)) < ε.

Fix z and a. Let

SM =
{

(x, y) : µ(x,y) {(x̃, ỹ) : (x̃, ỹ) ∈ DM} > 1− ε
}
.

Let M be such that µ̃z,a(SM ) > 1−ε. This exists for almost every atom by Theorem
2. Now let G be SM restricted to the atom defined by z, a.

Let (c, d), (e, f) ∈ DM both be points in the atom determined by z and a. By
item 5 of Theorem 2 we have that for all j,

dj+S(H(c,d)M ) = fj+S(H(e,f)M ).

For any (x, y), (x′, y′) ∈ G, let

V = {(c, d), (e, f) : dj+S(H(c,d)M ) = fj+S(H(e,f)M ) for all j}.
Thus for any (x, y), (x′, y′) ∈ G and any joining γ of µ(x,y) and µ(x′,y′) by Theorem
2 we have

γ(V ) > 1− 2ε.
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We now alter γ to obtain a new joining Γ in the following way. Partition V into
subsets such that (c, d, e, f) and (c′, d′, e′, f ′) are in the same set if

(1) ci = c′i for all i = 1, . . . , H(c, d)M ,
(2) d = d′,
(3) ei = e′i for all i = 1, . . . , H(c, d)M = H(e, f) and
(4) f = f ′.

This partitions V into at most countably many sets of positive γ measure. We
define Γ so that on each of these sets Q we have Γ(Q) = γ(Q). On each Q we define
Γ such that

Γ (Q ∩ {(c, d), (e, f) : cj = ej for all j > H(c, d)M}) = γ(Q).

Then we get that

Γ{(c, d), (e, f) : cj = ej and C(c, d)j = C(e, f)j for all j > H(c, d)M} > 1− 2ε.

Let N > eM
4
/ε > H(c, d)M/ε. Thus the joining Γ shows that

d̄P[0,N ](µ(x,y), µ(x′,y′)) < 3ε.

�

Proof of Theorem 3. By Theorem 1 the [T, T−1] transformation is not isomorphic
to a Bernoulli shift [3]. By Theorem 4 the [T, T−1] transformation is the direct
product of the factor (X × Y, [T, T−1],H, µ) with a Bernoulli shift. Thus the
factor (X × Y, [T, T−1],H, µ) is not isomorphic to a Bernoulli shift. By [3] the
[T, T−1] transformation is not loosely Bernoulli. Since the direct product of a
loosely Bernoulli transformation and a Bernoulli shift is loosely Bernoulli, the fac-
tor (X × Y, [T, T−1],H, µ) is not loosely Bernoulli either.

The factor (X × Y, [T, T−1],H, µ) is a two-point extension of the scenery factor.
It is weak mixing since it is the factor of the [T, T−1] transformation that is K (and
thus weak mixing). The two-point extension of a Bernoulli shift that is weak mixing
is isomorphic to a Bernoulli shift [9]. Thus the scenery factor is not isomorphic to
a Bernoulli shift.

Similarly we can show that the scenery factor is not loosely Bernoulli. The factor
(X×Y, [T, T−1],H, µ) is not loosely Bernoulli. The two-point extension of a loosely
Bernoulli transformation is loosely Bernoulli [9]. Thus if the scenery factor were
loosely Bernoulli, then the factor (X×Y, [T, T−1],H, µ) would be as well. This can
not be; so the scenery factor is not loosely Bernoulli and is not Kakutani equivalent
to a Bernoulli shift [2]. �
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