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A q-ANALOGUE
OF THE WHITTAKER-SHANNON-KOTEL’NIKOV

SAMPLING THEOREM

MOURAD E. ISMAIL AND AHMED I. ZAYED

(Communicated by David R. Larson)

Abstract. The Whittaker-Shannon-Kotel’nikov (WSK) sampling theorem
plays an important role not only in harmonic analysis and approximation
theory, but also in communication engineering since it enables engineers to
reconstruct analog signals from their samples at a discrete set of data points.
The main aim of this paper is to derive a q-analogue of the Whittaker-Shannon-
Kotel’nikov sampling theorem. The proof uses recent results in the theory of
q-orthogonal polynomials and basic hypergeometric functions, in particular,
new results on the addition theorems for q-exponential functions.

1. Introduction

Let σ > 0 and 1 ≤ p ≤ ∞, and denote by Bpσ the set of all entire functions f of
exponential type with type at most σ that belong to Lp(R) when restricted to the
real line. That is, f ∈ Bpσ if and only if f is an entire function satisfying

|f(z)| ≤ sup
x∈R
|f(x)| exp (σ|y|) , z = x+ iy,

and ∫ ∞
−∞
|f(x)|p dx <∞, if 1 ≤ p <∞ , sup

x∈R
|f(x)| <∞, if p =∞.

A function f is said to be band-limited to [−σ, σ] if and only if f ∈ B2
σ. A nice

characterization of the space B2
σ is given by the Paley-Wiener theorem [11]. It may

be stated as follows: A function f belongs to B2
σ if and only if it is representable

in the form

(1.1) f(t) =
∫ σ

−σ
eixtg(x) dx (t ∈ R), for some function g ∈ L2(−σ, σ).

The Whittaker-Shannon-Kotel’nikov (WSK) sampling theorem states that if a
function f is band-limited to [−σ, σ], then f can be reconstructed from its samples,
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f(kπ/σ), that are taken at the equally spaced nodes kπ/σ on the time axis R. The
construction formula is

f(t) =
∞∑

k=−∞
f

(
kπ

σ

)
sin (σt− kπ)

(σt− kπ)
(t ∈ R),(1.2)

the series being absolutely and uniformly convergent on R. See, e.g., [13, p. 16].
The series in (1.2) can be put in the form

f(t) =
∞∑

k=−∞
f(tk)

G(t)
G′(tk)(t− tk)

,(1.3)

where G(t) = sinσt, and tk = kπ/σ. We shall call any series of the form (1.3)
a Lagrange-type interpolation series whether G(t) = sinσt or not. This series is
reminiscent of the Lagrange interpolation formula

n∑
k=0

f(tk)
Gn(t)

G′n(tk)(t− tk)
, where Gn(t) =

n∏
k=0

(t− tk),

which gives a polynomial of degree n that coincides with f at the points tk , k =
0, 1, 2, . . . , n.

One of the important generalizations of the WSK sampling theorem is the Paley-
Wiener-Levinson Sampling Theorem, which can be stated as follows: Let {tk}k∈ZZ
be a sequence of real numbers such that

D = sup
k∈ZZ
|tk − k| <

1
4
,

and let

G(t) = (t− t0)
∞∏
k=1

(
1− t

tk

)(
1− t

t−k

)
.

Then for any f ∈ B2
π, we have

f(t) =
∞∑

k=−∞
f(tk)

G(t)
G′(tk)(t− tk)

(t ∈ R),(1.4)

the series being uniformly convergent on compact sets ([10], [13, p. 24]). When
tk = k, G(t) reduces to sinπt/π and we obtain the WSK theorem.

The purpose of this paper is to derive a q-analogue of the WSK sampling theorem.
Although the proof of the WSK is simple, finding its q-analogue was at first far from
obvious, because there are several q-generalizations of the exponential function that
can play the role of the exponential function in (1.1). Even after we found the right
kind of exponential function, we needed a multiplication formula for it, as well as
an integration formula for the product. Fortunately, these formulae have recently
been discovered by one of the authors and Stanton [8].

The paper is organized as follows. In the next section we introduce some of the
preliminary material that will be used in the sequel. The main result will then be
presented in Section 3.
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2. Preliminaries

We use the notation

(a; q)0 = 1, (a; q)n =
n∏
k=1

(1− aqk−1),(2.1)

(a; q)α =
(a; q)∞

(aqα, q)∞
, (a1, ..., am; q)n =

m∏
l=1

(al; q)n, |q| < 1,(2.2)

where n = 1, 2, . . . or ∞, as in [4], [1]. There are a number of q-analogues of the
cosine and sine functions (see [3], [7], [4]); however, the ones we shall adopt in this
paper are the ones introduced by Ismail and Zhang in [7] and use the latter notation
as in [8]. The q-cosine and sine functions are defined by

Cq(cos θ;ω) =
(−ω2; q2)∞
(−qω2; q2)∞

2φ1(−qe2iθ,−qe−2iθ; q; q2,−ω2)

and

Sq(cos θ;ω) =
(−ω2; q2)∞
(−qω2; q2)∞

(
2q1/4ω

1− q

)
cos θ

×2φ1(−q2e2iθ,−q2e−2iθ; q3; q2,−ω2).

The symbol r+1φr stands for the function

r+1φr(a1, . . . , ar+1; b1, . . . , br; q, z) =
∞∑
n=0

(a1, . . . , ar+1; q)n
(q, b1, . . . , br; q)n

zn.

Set

w(cos θ) =
(e2iθ, e−2iθ; q)∞

sin θ (q1/2e2iθ, q1/2e−2iθ; q)∞
, W (x) =

√
1− x2 w(x).(2.3)

It has been shown that, [3], [6],∫ 1

−1

Cq(x;ω)Cq(x;ω′)w(x) dx =
∫ 1

−1

Sq(x;ω)Sq(x;ω′)w(x) dx = 0 ,∫ 1

−1

Cq(x;ω)Sq(x;ω′)w(x) dx = 0,∫ 1

−1

C2
q (x;ω)w(x) dx =

∫ 1

−1

S2
q (x;ω)w(x) dx

= π
(q1/2,−q1/2ω2; q)∞

(q,−ω2; q)∞
(−ω2; q2)∞
(−qω2; q2)∞

2φ1(q1/2,−ω2;−q1/2ω2; q, q)

where ω and ω′ are different solutions of the equation

Sq

(
1
2

(q1/4 + q1/4);ω
)

=

(
−iω;

√
q
)
∞ −

(
iω;
√
q
)
∞

2i(−qω2; q2)∞
= 0.(2.4)

We have denoted the nonnegative zeros of the above equation by ωn where ω0 =
0, ω1 < ω2 < ... .

Ismail and Zhang [7] defined the q-sine and q-cosine functions through their
q-exponential function in the standard way, i.e.,

Eq(x; iω) = Cq(x;ω) + iSq(x;ω).(2.5)
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Bustoz and Suslov [3] proved that {Eq(x; iωn)}∞n=−∞ is a complete orthogonal sys-
tem in L2(−1, 1) with respect to the weight function w(x) and a simple proof and
generalizations thereof were given by Ismail in [6]. More precisely, the system
{Eq(x; iωn)}∞n=−∞ is a complete orthogonal system whose orthogonality relation is∫ 1

−1

Eq(x; iωm) Eq(x;−iωn)w(x)dx = 2k(ωn)δm,n(2.6)

and

(2.7) k(ω) = π
(q1/2,−q1/2ω2; q)∞(−ω2; q2)∞

(q,−ω2; q)∞(−qω2; q2)∞
2φ1(q1/2,−ω2;−q1/2ω2; q, q).

To derive the classical Shannon sampling theorem, recall that if f(x) is band-limited
to [−π, π], then f is an entire function of order one by the Paley-Wiener theorem
and

f(x) =
1√
2π

∫ π

−π
f̂(ω)eiωxdω =

1√
2π

∫ π

−π

( ∞∑
n=−∞

f̂ne
−inω

)
eiωxdω

where

f̂n =
1

2π

∫ π

−π
f̂(ω)einωdω =

1√
2π
f(n).

Thus,

f(x) =
1

2π

∞∑
n=−∞

f(n)
∫ π

−π
eiω(x−n)dω =

∞∑
n=−∞

f(n)Sinc (x− n) ,(2.8)

where

Sincx =
sinπx
πx

.(2.9)

If f is bandlimited to [−1, 1], then

f(x) =
∞∑

n=−∞
f(nπ)

sin(x− nπ)
(x− nπ)

.

In the special case where f̂ is even or odd, then

f(x) =

√
2
π

∫ π

0

f̂(ω) cosωxdω, or f(x) = i

√
2
π

∫ π

0

f̂(ω) sinωxdω,

respectively. In the former case the sampling expansion takes the form

f(x) =
∞∑

n=−∞
f(n)

sinπ(x − n)
π(x− n)

= f(0)
sinπx
πx

+
∞∑
n=1

f(n)
2x sinπ(x− n)
π(x2 − n2)

,

because f(n) = f(−n). If f is band-limited to [−1, 1], then

f(x) = f(0)
sinx
x

+
∞∑
n=1

f(nπ)
2x sin(x− nπ)
x2 − (nπ)2

.

Similar results hold if f̂ is odd, and we have

f(x) =
∞∑
n=1

f(nπ)
(2nπ) sin(x− nπ)

x2 − (nπ)2
.
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For the q-cosine and sine functions, we have similar results. It is clear that θ → π−θ
maps x to −x. Hence Cq(x;ω) is even in x and Sq(x;ω) is odd in x. Furthermore,
the weight function w(x) is also even in x. Therefore, it is more general to work
with Eq(x; iω) than with Cq(x; iω) or Sq(x; iω).

3. A q-sampling theorem

We start by defining a q-analogue of band-limitedness.

Definition 1. We say that a function f(x) is q-band-limited to [−1, 1] if it can be
written in the form

(3.1) f(t) =
∫ 1

−1

g(x)Eq(x; it)w(x)dx =
∫ π

0

g(cos θ)Eq(cos θ; it)W (cos θ)dθ,

for some g ∈ L2(−1, 1) or g ∈ L1(−1, 1), where w(x) and W (x) are as in (2.3).

The function g(x) plays the role of the Fourier transform of f(t). We may call
g the q-Fourier transform of f. This should not be confusing despite the fact that
there are other definitions of the q-Fourier transform of f ; see [4], [9].

Since {Eq(x; iωn)}∞n=−∞ is a complete orthogonal set in a weighted L2(−1, 1),
we have

(3.2) g(x) =
∞∑

n=−∞
ĝnEq(x;−iωn),

where

ĝn =
1

2k(ωn)

∫ 1

−1

g(x)Eq(x, iωn)w(x) dx.(3.3)

Substituting (3.2) into (3.1) and using Parseval’s relation, we have

f(t) =
∞∑

n=−∞
ĝn

∫ π

0

Eq(cos θ;−iωn)Eq(cos θ; it)W (cos θ) dθ.(3.4)

But in view of (3.1) and (3.3), Equation (3.4) becomes

f(t) =
∞∑

n=−∞

1
2k(ωn)

f(ωn)S̃incq(t, n),(3.5)

where

S̃incq(t, n) =
∫ π

0

Eq(cos θ;−iωn)Eq(cos θ; it)W (cos θ) dθ.(3.6)

The function, S̃incq(t, n), is an analogue of the standard sinc function defined by
(2.9). To evaluate the last integral, we use formula (5.5) in [8], which states that∫ π

0

Eq(cos θ;α)Eq(cos θ;β)
(e2iθ, e−2iθ; q)∞

(γe2iθ, γe−2iθ; q)∞
dθ

=
2π(γ, qγ,−αβq1/2; q)∞

(q, γ2; q)∞(qα2, qβ2; q2)∞
2φ2

(
−q1/2α/β,−q1/2β/α

qγ, ,−αβγq1/2

∣∣∣∣ q,−αβγq1/2

)
.(3.7)
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With γ = q1/2, α = it, β = −iωn, we have∫ π

0

Eq(cos θ; it)Eq(cos θ;−iωn)W (cos θ)dθ

=
2π(q1/2, q3/2,−tωnq1/2; q)∞
(q, q; q)∞(−qt2,−qω2

n; q2)∞
2φ2

(
q1/2t/ωn, q

1/2ωn/t
q3/2,−tωnq1/2

∣∣∣∣ q,−tωnq) .(3.8)

To simplify (3.8), we use Formula (III.4) in Appendix III [4]:

2φ2(A,C/B;C,AZ; q,BZ) =
(Z; q)∞

(AZ; q)∞
2φ1(A,B;C; q, Z)

where A = q1/2t/ωn, B = qt/ωn, C = q3/2, Z = −ω2
n to get

∫ π

0

Eq(cos θ; it)Eq(cos θ;−iωn)W (cos θ) dθ

=
2π(q1/2, q3/2,−tωnq1/2; q)∞
(q, q; q)∞(−qt2,−qω2

n; q2)∞
(−ω2

n; q)∞
(−tωnq1/2; q)∞

2φ1

(
q1/2t/ωn, qt/ωn

q3/2

∣∣∣∣ q,−ω2
n

)
=

2π(q1/2; q)∞(q3/2; q)∞(−ω2
n; q)∞

(q; q)∞(q; q)∞(−qt2; q2)∞(−qω2
n; q2)∞

2φ1

(
q1/2t/ωn, qt/ωn

q3/2

∣∣∣∣ q,−ω2
n

)
.

(3.9)

This formula is initially valid for |ωn| < 1, but it can be analytically continued for
all ωn. We begin by 2φ1 on the right-hand side of (3.9):

2φ1

(
q1/2t/wn, qt/ωn

q3/2

∣∣∣∣ q,−ω2
n

)
=
∞∑
k=0

(√
qt/ωn; q

)
k

(qt/ωn; q)k
(q, q3/2; q)k

(−ω2
n)k

=

(
1−√q

)
iωn

∞∑
k=0

(√
qt/ωn;

√
q
)

2k(√
q;
√
q
)

2k+1

(iωn)2k+1,

or

2φ1

(
q1/2t/wn, qt/ωn

q3/2

∣∣∣∣ q,−ω2
n

)
= Aq(t, ωn)

[ ∞∑
k=0

(
t/ωn;

√
q
)
k

(iωn)k(√
q;
√
q
)
k

−
∞∑
k=0

(
t/ωn;

√
q
)
k

(−iωn)k(√
q;
√
q
)
k

]
,

because
(
h;
√
q
)

2k+1
= (1− h)

(√
qh;
√
q
)

2k
, where

Aq(t, ωn) =

(
1−√q

)
2iωn (1− t/ωn)

.

But in view of the q-binomial theorem,

1φ0(a,−; q, z) =
∞∑
k=0

(a; q)k
(q, q)k

zk =
(az; q)∞
(z; q)∞

, |z| < 1,
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we conclude that

2φ1

(
q1/2t/ωn, qt/ωn

q3/2

∣∣∣∣ q,−ω2
n

)
=

(
1−√q

)
2i(ωn − t)

[ (
it;
√
q
)
∞(

iωn;
√
q
)
∞
−
(
−it;√q

)
∞(

−iωn;
√
q
)
∞

]

=

(
1−√q

)
2i(ωn − t)

(
it,−iωn;

√
q
)
∞ −

(
−it, iωn;

√
q
)
∞(

iωn,−iωn;
√
q
)
∞

=

(
1−√q

)
2i(ωn − t)

(
it,−iωn;

√
q
)
∞ −

(
−it, iωn;

√
q
)
∞

(−ω2
n; q)∞

.(3.10)

Thus, by substituting (3.10) into (3.9), we obtain∫ π

0

Eq(cos θ; it)Eq(cos θ;−iωn)W (cos θ) dθ(3.11)

=
π(q1/2; q)2

∞
[(
it,−iωn;

√
q
)
∞ −

(
−it, iωn;

√
q
)
∞
]

i(ωn − t)(q; q)2
∞(−qt2,−qω2

n; q2)∞
.

Notice that t = ωn is not a pole since the quantity in the square brackets, [..],
also vanishes when t = ωn. Other possible poles of the right-hand side are at
ω2
n = −q−(2k+1) and t2 = −q(2k+1), for k = 0, 1, . . . , which are ruled out since ωn

and t are real. Thus, the left-hand side is defined for all ωn and it is analytic for t
real.

Since
(q1/2; q)∞

(q; q)∞
= (q1/2, q)1/2,

we have ∫ π

0

Eq(cos θ; it)Eq(cos θ;−iωn)W (cos θ) dθ(3.12)

=
2π(q1/2; q)2

∞ Im h(t, ωn, q)
(q, q; q)∞(ωn − t)(−qt2,−qω2

n; q2)∞
,

where h(t, ωn, q) = (it,−iωn;
√
q)∞.

Thus,

S̃incq(t, n) =
∫ π

0

Eq(cos θ; it)Eq(cos θ;−iωn)W (cos θ) dθ

=
2π(q1/2; q)2

1/2 Im h(t, ωn, q)

(ωn − t)(−qt2,−qω2
n; q2)∞

.(3.13)

Substituting (3.13) into (3.5) and noting that

k(ωn) =
π(q1/2,−q1/2ω2

n; q)∞(−ω2
n; q2)∞

(q,−ω2
n; q)∞(−qω2

n, q
2)∞

2φ1

(
q1/2,−ω2

n

−q1/2ω2
n

∣∣∣∣ q, q) ,
we obtain

(3.14) f(t) =
∞∑

n=−∞
f(ωn)

(q1/2; q)1/2(−ω2
n; q)∞ Imh(t, ωn, q)

(−q1/2ω2
n; q)∞(−ω2

n,−qt2; q2)∞(ωn − t)Φ(ωn, q)
,
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where

Φ(ωn, q) = 2φ1

(
q1/2,−ω2

n

−q1/2ω2
n

∣∣∣∣ q, q) .
To write (3.14) in a more symmetric form, we observe that

2iImh(t, ωn, q) = (it,−iωn;
√
q)∞ − (−it, iωn;

√
q)∞

=
[
(it;
√
q)∞ − (−it;√q)∞

]
(−iωn;

√
q)∞

+
[
(−iωn;

√
q)∞ − (iωn;

√
q)∞

]
(−it;√q)∞,

which in view of (2.4) is zero if t = ωm for any m. Therefore, from (2.6) and (3.13),
the constant k(ωn) can be written in the form

k(ωn) =
π(q1/2; q)2

1/2

(−qω2
n,−qω2

n; q2)∞
∂

∂t
Imh(t, ωn, q)

∣∣∣
t=ωn

,(3.15)

which is obtained by taking the limit in (3.13) as t→ ωn.
Thus, formula (3.14), with the aid of (3.5) and (3.15), can be written in the form

f(t) =
∞∑

n=−∞
f(ωn)

(−qω2
n; q2)∞ Imh(t, ωn, q)

(−qt2; q2)∞(ωn − t) ∂∂t Imh(t, ωnq)
∣∣∣
t=ωn

=
∞∑

n=−∞
f(ωn)Sincq(t, n),(3.16)

where

Sincq(t, n) =
(−qω2

n; q2)∞ Imh(t, ωn, q)

(−qt2; q2)∞(ωn − t) ∂∂t Imh(t, ωn, q)
∣∣∣
t=ωn

.

Notice that Sincq(t, n) is an analogue of the Sinc function defined in (2.9) and
satisfies the relation

Sincq(ωm, n) = δm,n.

Now we state the q-analogue of the Whittaker-Shannon-Kotel’nikov sampling the-
orem.

Theorem 3.1. Let f(t) be a q-band-limited function according to Definition 1.
Then the function

F (t) = (−qt2; q2)∞f(t)

is an entire function of order zero that can be reconstructed by the formula

F (t) =
∞∑

n=−∞
F (ωn)

Imh(t, ωn, q)

(ωn − t) ∂∂t Imh(t, ωn, q)
∣∣∣
t=ωn

=
∞∑

n=−∞
F (ωn)

Gn(t)
(ωn − t)G′n(ωn)

,(3.17)

where Gn(t) = Imh(t, ωn, q).
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Proof. To show that F (t) is an entire function of order zero, we first observe that
the function eq(cos θ; t) = (−qt2; q2)∞Eq(cos θ; t) is an entire function of order zero
(see [3]). Thus,

F (t) = (−qt2; q2)∞
∫ π

0

g(cos θ)Eq(cos θ; it)(e2iθ, e−2iθ; q)1/2dθ

=
∫ π

0

g(cos θ)eq(cos θ; t)(e2iθ , e−2iθ; q)1/2dθ.

The integral converges uniformly in t over compact sets whenever g(cos θ) ∈
L1([0, π], W̃ ), where W̃ (θ) = (e2iθ, e−2iθ; q)1/2. Hence F is analytic on any com-
pact set, i.e., F is entire. The order of F is the same as that of eq(cos θ, t).

By setting f(t) = F (t)/(−qt2; q2)∞ in (3.5) we obtain (3.17). �
Because formula (3.17) resembles (1.4) and the sampling points are not equally

spaced, Theorem 1 may be considered as a q-analogue of the Paley-Wiener-Levinson
(PWL) Sampling Theorem. As is known, the PWL Sampling Theorem reduces to
the WSK Sampling Theorem when tn = n. It remains an open question as to
whether Theorem 1 reduces to the WSK Sampling Theorem when q → 1−.

References

[1] G. E. Andrews, R. A. Askey, and R. Roy, Special Functions, Cambridge University Press,
Cambridge, 1999. MR 2000g:33001

[2] R. Askey and M. E. H. Ismail, A generalization of ultraspherical polynomials, in “Studies in
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