THE DIOPHANTINE EQUATION $2 x^{2}+1=3^{n}$

MING-GUANG LEU AND GUAN-WEI LI
(Communicated by David E. Rohrlich)

Abstract

Let p be a rational prime and D a positive rational integer coprime with p. Denote by $N(D, 1, p)$ the number of solutions (x, n) of the equation $D x^{2}+1=p^{n}$ in rational integers $x \geq 1$ and $n \geq 1$. In a paper of Le, he claimed that $N(D, 1, p) \leq 2$ without giving a proof. Furthermore, the statement $N(D, 1, p) \leq 2$ has been used by Le, Bugeaud and Shorey in their papers to derive results on certain Diophantine equations. In this paper we point out that the statement $N(D, 1, p) \leq 2$ is incorrect by proving that $N(2,1,3)=3$.

1. Introduction

Let D_{1} and D_{2} be coprime positive rational integers, and let p be a rational prime coprime with $D_{1} D_{2}$. Denote by $N\left(D_{1}, D_{2}, p\right)$ the number of solutions (x, n) of the following equation:

$$
D_{1} x^{2}+D_{2}=p^{n} \quad \text { in rational integers } \quad x \geq 1, n \geq 1
$$

In paper [5], Le claimed that $N\left(D_{1}, 1, p\right) \leq 2$ and the proof could be found in [3] and 4]. Le used $N\left(D_{1}, 1, p\right) \leq 2$ and related results to deduce the main result of [5]. In the proof of Theorem 2 of [2], Bugeaud and Shorey used Le's result $N\left(D_{1}, 1, p\right) \leq 2$ to claim that $N(2,1,3)=2$, by giving the solutions $(x, n)=(1,1)$ and $(2,2)$. (See also the remarks on page 59 of [2].)

By looking at papers [3] and 4], we cannot find a proof for the statement $N\left(D_{1}, 1, p\right) \leq 2$ which was claimed by Le [5]. Unfortunately, it is not difficult to verify that $N(2,1,3) \geq 3$ by considering $(x, n)=(1,1),(2,2)$ and $(11,5)$. In this paper we point out that the statement $N\left(D_{1}, 1, p\right) \leq 2$ is incorrect by proving that $N(2,1,3)=3$.

$$
\text { 2. } N(2,1,3)=3
$$

To determine positive rational integral solutions (x, n) of $2 x^{2}+1=3^{n}$ we apply unique factorization in the imaginary quadratic field $\mathbb{Q}(\sqrt{-2})$ to reduce the problem to a question about a Fibonacci-type integer sequence. Then, by Proposition 2.1, a result of Beukers [1], we prove that the Diophantine equation $2 x^{2}+1=3^{n}$ has exactly three positive rational integral solutions, namely $(x, n)=(1,1),(2,2)$ and $(11,5)$.

[^0]The following proposition is part of Lemma 7 of [1]:
Proposition 2.1. Let $\theta=1+\sqrt{-2}$ and $\alpha=\sqrt{-2}$. Then all rational integral solutions $n>0$ of the equations $\alpha \theta^{n}-\bar{\alpha} \bar{\theta}^{n}=\alpha-\bar{\alpha}$ or $-(\alpha-\bar{\alpha})$ are $n=1,2$ and 5 , where $\bar{\theta}$ and $\bar{\alpha}$ denote the algebraic conjugates of θ and α, respectively.

Let \mathbb{Z} be the set of rational integers and R denote the ring of algebraic integers in the quadratic field $\mathbb{Q}(\sqrt{-2})$. Then $R=\{a+b \sqrt{-2}) \mid a, b \in \mathbb{Z}\}$. It is known that R is a unique factorization domain. Let $\theta=1+\sqrt{-2}$ and $\bar{\theta}=1-\sqrt{-2}$. Then $\theta \bar{\theta}=3$ and $\theta^{2}=2 \theta-3$. The equation $2 x^{2}+1=3^{n}$ factors in R as

$$
(1+x \sqrt{-2})(1-x \sqrt{-2})=\theta^{n} \bar{\theta}^{n}, \quad \text { if } \quad x \in \mathbb{Z}
$$

Note that θ and $\bar{\theta}$ are irreducible in R. If $\theta \bar{\theta} \mid 1+x \sqrt{-2}$, then there exist rational integers $i, j, 1 \leq i \leq n, 1 \leq j \leq n$ such that $1+x \sqrt{-2}=u \theta^{i} \bar{\theta}^{j}$, where u is either 1 or -1 . Suppose $i \leq j$. Then

$$
\begin{aligned}
1+x \sqrt{-2}= & u \theta^{i} \bar{\theta}^{j} \\
= & u(\theta \bar{\theta})^{i} \bar{\theta}^{j-i} \\
= & u 3^{i}(2-\theta)^{j-i} \quad(\bar{\theta}=2-\theta) \\
= & u 3^{i}\left(2^{j-i}-\binom{j-i}{1} 2^{j-i-1} \theta+\binom{j-i}{2} 2^{j-i-2} \theta^{2}+\cdots\right. \\
& \left.\quad+(-1)^{j-i} \theta^{j-i}\right) \\
= & u 3^{i}(A+B \sqrt{-2})
\end{aligned}
$$

where A and B are rational integers. Since $\{1, \sqrt{-2}\}$ is an integral basis of R, the equality $1+x \sqrt{-2}=u 3^{i}(A+B \sqrt{-2})$ is impossible. Suppose $j<i$. Then by the same argument, we also reach a contradiction. We conclude that $3=\theta \bar{\theta}$ does not divide $1+x \sqrt{-2}$. Similarly, we also know that $3=\theta \bar{\theta}$ does not divide $1-x \sqrt{-2}$. Hence we have $\theta^{n}=u(1+x \sqrt{-2})$ or $\theta^{n}=u(1-x \sqrt{-2})$, where u is either 1 or -1 . Equivalently, we have $\sqrt{-2} \theta^{n}=u(\sqrt{-2}-2 x)$ or $\sqrt{-2} \theta^{n}=u(\sqrt{-2}+2 x)$. From these equations we find that $\sqrt{-2} \theta^{n}=a+\theta$ or $a-\theta$ for some rational integer a. Conversely, for some rational integer $m>0$, if $\sqrt{-2} \theta^{m}=a+\theta$ or $a-\theta$ for $a \in \mathbb{Z}$, then $(a \pm 1)^{2}+2=2 \times 3^{m}$. This means that either $\left(\frac{a+1}{2}, m\right)$ or $\left(\frac{a-1}{2}, m\right)$ is a solution of $2 x^{2}+1=3^{n}$. To summarize, we have proved that the equation $2 x^{2}+1=3^{n}$ has a positive rational integral solution (x, n) for $n=m$ if and only if $\sqrt{-2} \theta^{m}=a+\theta$ or $a-\theta$ for $a \in \mathbb{Z}$.

The problem now is to determine exactly those powers n such that $\sqrt{-2} \theta^{n}$ can be expressed either in the form $a+\theta$ or $a-\theta$ for $a \in \mathbb{Z}$. Since $\{1, \theta\}$ is also an integral basis of $R, \sqrt{-2} \theta^{n}$ can be expressed as $\sqrt{-2} \theta^{n}=a_{n}+b_{n} \theta$, for $a_{n}, b_{n} \in \mathbb{Z}$. By $\theta^{2}=2 \theta-3$, we have

$$
\begin{aligned}
a_{n+1}+b_{n+1} \theta & =\sqrt{-2} \theta^{n+1} \\
& =\left(\sqrt{-2} \theta^{n}\right) \theta \\
& =\left(a_{n}+b_{n} \theta\right) \theta \\
& =-3 b_{n}+\left(a_{n}+2 b_{n}\right) \theta
\end{aligned}
$$

which implies that $b_{n+2}=2 b_{n+1}-3 b_{n}$. Thus the sequence of rational integers b_{n} is completely determined by this binary linear recurrence and the initial values $b_{1}=1$
and $b_{2}=-1$. The sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ begins:

$$
1,-1,-5,-7,1,23,43,17,-95, \cdots
$$

Since $b_{1}=b_{5}=1$ and $b_{2}=-1$, we are provided with the three solutions to the equation $2 x^{2}+1=3^{n}$, namely, $(x, n)=(1,1),(2,2)$, and $(11,5)$. Now, the problem is to prove that there are no further occurrences of 1 or -1 in the sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$.
Proposition 2.2. Let the sequence of rational integers b_{n} be defined by the equations: $b_{1}=1, b_{2}=-1$ and $b_{n+2}=2 b_{n+1}-3 b_{n}$. Then $b_{n}=1$ or -1 only for $n=1$, 2 and 5.
Proof. To apply Proposition 2.1, we define $\alpha=\sqrt{-2}$. Then $\alpha \theta=\sqrt{-2}(1+\sqrt{-2})=$ $b_{2}-b_{1} \bar{\theta}$. Suppose, for all rational integers $k, 1 \leq k \leq n$, that $\alpha \theta^{k}=b_{k+1}-b_{k} \bar{\theta}$. Then we have

$$
\begin{aligned}
\alpha \theta^{n+1} & =\left(\alpha \theta^{n}\right) \theta \\
& =\left(b_{n+1}-b_{n} \bar{\theta}\right)(2-\bar{\theta}) \\
& =2 b_{n+1}-2 b_{n} \bar{\theta}-b_{n+1} \bar{\theta}+b_{n} \bar{\theta}^{2} \\
& =2 b_{n+1}-2 b_{n} \bar{\theta}-b_{n+1} \bar{\theta}+b_{n}(2 \bar{\theta}-3) \\
& =\left(2 b_{n+1}-3 b_{n}\right)-b_{n+1} \bar{\theta} \\
& =b_{n+2}-b_{n+1} \bar{\theta}
\end{aligned}
$$

By induction, we prove that $\alpha \theta^{n}=b_{n+1}-b_{n} \bar{\theta}$ for $n \geq 0$.
From $\alpha \theta^{n}=b_{n+1}-b_{n} \bar{\theta}$, it follows that $\alpha \theta^{n}-\bar{\alpha} \bar{\theta}^{n}=b_{n}(\theta-\bar{\theta})=b_{n}(\alpha-\bar{\alpha})$, which implies that

$$
b_{n}=\frac{\alpha \theta^{n}-\bar{\alpha} \bar{\theta}^{n}}{\alpha-\bar{\alpha}}
$$

By Proposition 2.1, $b_{n}=1$ or -1 only for $n=1,2$ and 5 .
To summarize, we have proved the following:
Theorem 2.3. The Diophantine equation $2 x^{2}+1=3^{n}$ has exactly three positive rational integral solutions, namely $(x, n)=(1,1),(2,2)$ and $(11,5)$.

References

[1] F. Beukers, The multiplicity of binary recurrences, Compositio Math. 40 (1980), 251-267. MR 81g:10019
[2] Y. Bugeaud and T. N. Shorey, On the number of solutions of the generalized RamanujanNagell equation, J. reine angew. Math. 539 (2001), 55-74. MR 2002k:11041
[3] M.-H. Le, Divisibility of the class numbers of a class of imaginary quadratic fields, Kexue Tongbao 32 (1987), 724-727. (in Chinese)
[4] M.-H. Le, On the Diophantine equation $D_{1} x^{2}+D_{2}=2^{n+2}$, Acta Arith. 64 (1993), 29-41. MR 94e:11030
[5] M.-H. Le, On the Diophantine equation $\left(x^{3}-1\right) /(x-1)=\left(y^{n}-1\right) /(y-1)$, Trans. Amer. Math. Soc. 351 (1999), 1063-1074. MR 99e:11033

Department of Mathematics, National Central University, Chung-Li, Taiwan 32054, Republic of China

E-mail address: mleu@math.ncu.edu.tw
Department of Mathematics, National Central University, Chung-Li, Taiwan 32054, Republic of China

[^0]: Received by the editors July 2, 2002.
 2000 Mathematics Subject Classification. Primary 11D61.
 The authors research was supported in part by grant NSC 91-2115-M-008-006 of the National Science Council of the Republic of China.

