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THE DIOPHANTINE EQUATION 2x2 + 1 = 3n

MING-GUANG LEU AND GUAN-WEI LI

(Communicated by David E. Rohrlich)

Abstract. Let p be a rational prime and D a positive rational integer coprime
with p. Denote by N(D, 1, p) the number of solutions (x, n) of the equation
Dx2 + 1 = pn in rational integers x ≥ 1 and n ≥ 1. In a paper of Le, he
claimed that N(D, 1, p) ≤ 2 without giving a proof. Furthermore, the state-
ment N(D, 1, p) ≤ 2 has been used by Le, Bugeaud and Shorey in their papers
to derive results on certain Diophantine equations. In this paper we point out
that the statement N(D, 1, p) ≤ 2 is incorrect by proving that N(2, 1, 3) = 3.

1. Introduction

Let D1 and D2 be coprime positive rational integers, and let p be a rational
prime coprime with D1D2. Denote by N(D1, D2, p) the number of solutions (x, n)
of the following equation:

D1x
2 +D2 = pn in rational integers x ≥ 1, n ≥ 1.

In paper [5], Le claimed that N(D1, 1, p) ≤ 2 and the proof could be found in
[3] and [4]. Le used N(D1, 1, p) ≤ 2 and related results to deduce the main result
of [5]. In the proof of Theorem 2 of [2], Bugeaud and Shorey used Le’s result
N(D1, 1, p) ≤ 2 to claim that N(2, 1, 3) = 2, by giving the solutions (x, n) = (1, 1)
and (2, 2). (See also the remarks on page 59 of [2].)

By looking at papers [3] and [4], we cannot find a proof for the statement
N(D1, 1, p) ≤ 2 which was claimed by Le [5]. Unfortunately, it is not difficult
to verify that N(2, 1, 3) ≥ 3 by considering (x, n) = (1, 1), (2, 2) and (11, 5). In this
paper we point out that the statement N(D1, 1, p) ≤ 2 is incorrect by proving that
N(2, 1, 3) = 3.

2. N(2, 1, 3) = 3

To determine positive rational integral solutions (x, n) of 2x2 + 1 = 3n we apply
unique factorization in the imaginary quadratic field Q(

√
−2) to reduce the problem

to a question about a Fibonacci-type integer sequence. Then, by Proposition 2.1,
a result of Beukers [1], we prove that the Diophantine equation 2x2 + 1 = 3n has
exactly three positive rational integral solutions, namely (x, n) = (1, 1), (2, 2) and
(11, 5).
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The following proposition is part of Lemma 7 of [1]:

Proposition 2.1. Let θ = 1 +
√
−2 and α =

√
−2. Then all rational integral

solutions n > 0 of the equations αθn − ᾱθ̄n = α− ᾱ or −(α− ᾱ) are n = 1, 2 and
5, where θ̄ and ᾱ denote the algebraic conjugates of θ and α, respectively.

Let Z be the set of rational integers and R denote the ring of algebraic integers
in the quadratic field Q(

√
−2). Then R = {a+ b

√
−2) | a, b ∈ Z}. It is known that

R is a unique factorization domain. Let θ = 1 +
√
−2 and θ̄ = 1 −

√
−2. Then

θθ̄ = 3 and θ2 = 2θ − 3. The equation 2x2 + 1 = 3n factors in R as

(1 + x
√
−2)(1− x

√
−2) = θnθ̄n, if x ∈ Z.

Note that θ and θ̄ are irreducible in R. If θθ̄ | 1 + x
√
−2, then there exist rational

integers i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ n such that 1 + x
√
−2 = uθiθ̄j , where u is either 1

or −1. Suppose i ≤ j. Then

1 + x
√
−2 = uθiθ̄j

= u(θθ̄)iθ̄j−i

= u3i(2− θ)j−i (θ̄ = 2− θ)

= u3i(2j−i −
(
j − i

1

)
2j−i−1θ +

(
j − i

2

)
2j−i−2θ2 + · · ·

+ (−1)j−iθj−i)

= u3i(A+B
√
−2),

where A and B are rational integers. Since {1,
√
−2} is an integral basis of R, the

equality 1 + x
√
−2 = u3i(A + B

√
−2) is impossible. Suppose j < i. Then by the

same argument, we also reach a contradiction. We conclude that 3 = θθ̄ does not
divide 1 + x

√
−2. Similarly, we also know that 3 = θθ̄ does not divide 1 − x

√
−2.

Hence we have θn = u(1 + x
√
−2) or θn = u(1− x

√
−2), where u is either 1 or −1.

Equivalently, we have
√
−2θn = u(

√
−2 − 2x) or

√
−2θn = u(

√
−2 + 2x). From

these equations we find that
√
−2θn = a + θ or a − θ for some rational integer a.

Conversely, for some rational integer m > 0, if
√
−2θm = a+ θ or a− θ for a ∈ Z,

then (a±1)2 +2 = 2×3m. This means that either (a+1
2 ,m) or (a−1

2 ,m) is a solution
of 2x2 + 1 = 3n. To summarize, we have proved that the equation 2x2 + 1 = 3n has
a positive rational integral solution (x, n) for n = m if and only if

√
−2θm = a+ θ

or a− θ for a ∈ Z.
The problem now is to determine exactly those powers n such that

√
−2θn can

be expressed either in the form a + θ or a − θ for a ∈ Z. Since {1, θ} is also an
integral basis of R,

√
−2θn can be expressed as

√
−2θn = an + bnθ, for an, bn ∈ Z.

By θ2 = 2θ − 3, we have

an+1 + bn+1θ =
√
−2θn+1

= (
√
−2θn)θ

= (an + bnθ)θ

= −3bn + (an + 2bn)θ,

which implies that bn+2 = 2bn+1−3bn. Thus the sequence of rational integers bn is
completely determined by this binary linear recurrence and the initial values b1 = 1
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and b2 = −1. The sequence {bn}∞n=1 begins:

1, −1, −5, −7, 1, 23, 43, 17, −95, · · · .
Since b1 = b5 = 1 and b2 = −1, we are provided with the three solutions to the
equation 2x2 + 1 = 3n, namely, (x, n)=(1, 1), (2, 2), and (11, 5). Now, the problem
is to prove that there are no further occurrences of 1 or −1 in the sequence {bn}∞n=1.

Proposition 2.2. Let the sequence of rational integers bn be defined by the equa-
tions: b1 = 1, b2 = −1 and bn+2 = 2bn+1−3bn. Then bn = 1 or −1 only for n = 1,
2 and 5.

Proof. To apply Proposition 2.1, we define α =
√
−2. Then αθ =

√
−2(1+

√
−2) =

b2 − b1θ̄. Suppose, for all rational integers k, 1 ≤ k ≤ n, that αθk = bk+1 − bkθ̄.
Then we have

αθn+1 = (αθn)θ

= (bn+1 − bnθ̄)(2 − θ̄)
= 2bn+1 − 2bnθ̄ − bn+1θ̄ + bnθ̄

2

= 2bn+1 − 2bnθ̄ − bn+1θ̄ + bn(2θ̄ − 3)

= (2bn+1 − 3bn)− bn+1θ̄

= bn+2 − bn+1θ̄.

By induction, we prove that αθn = bn+1 − bnθ̄ for n > 0.
From αθn = bn+1 − bnθ̄, it follows that αθn − ᾱθ̄n = bn(θ − θ̄) = bn(α − ᾱ),

which implies that

bn =
αθn − ᾱθ̄n
α− ᾱ .

By Proposition 2.1, bn = 1 or −1 only for n = 1, 2 and 5. �
To summarize, we have proved the following:

Theorem 2.3. The Diophantine equation 2x2 + 1 = 3n has exactly three positive
rational integral solutions, namely (x, n) = (1, 1), (2, 2) and (11, 5).

References

[1] F. Beukers, The multiplicity of binary recurrences, Compositio Math. 40 (1980), 251–267. MR
81g:10019

[2] Y. Bugeaud and T. N. Shorey, On the number of solutions of the generalized Ramanujan-
Nagell equation, J. reine angew. Math. 539 (2001), 55-74. MR 2002k:11041

[3] M.-H. Le, Divisibility of the class numbers of a class of imaginary quadratic fields, Kexue
Tongbao 32 (1987), 724–727. (in Chinese)

[4] M.-H. Le, On the Diophantine equation D1x2 + D2 = 2n+2, Acta Arith. 64 (1993), 29–41.
MR 94e:11030

[5] M.-H. Le, On the Diophantine equation (x3 − 1)/(x − 1) = (yn − 1)/(y − 1), Trans. Amer.
Math. Soc. 351 (1999), 1063-1074. MR 99e:11033

Department of Mathematics, National Central University, Chung-Li, Taiwan 32054,

Republic of China

E-mail address: mleu@math.ncu.edu.tw

Department of Mathematics, National Central University, Chung-Li, Taiwan 32054,

Republic of China

http://www.ams.org/mathscinet-getitem?mr=81g:10019
http://www.ams.org/mathscinet-getitem?mr=2002k:11041
http://www.ams.org/mathscinet-getitem?mr=94e:11030
http://www.ams.org/mathscinet-getitem?mr=99e:11033

	1. Introduction
	2. N(2, 1, 3)=3
	References

