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Abstract. Let Yn,k, k = 0, 1, 2, · · · , n ≥ 1, be a collection of random vari-
ables, where for each n, Yn,k, k = 0, 1, 2, · · · , are independent. Let A = [pn,k]
be a regular summability method. We provide some rates of convergence
(Berry-Esseen type bounds) for the weak convergence of summability trans-
form (AY ). We show that when A = [pn,k] is the classical Cesáro summa-
bility method, the rate of convergence of the resulting central limit theorem
is best possible among all regular triangular summability methods with rows
adding up to one. We further provide some summability results concern-
ing `2-negligibility. An application of these results characterizes the rate of
convergence of Schnabl operators while approximating Lipschitz continuous
functions.

1. Introduction

Let Y := [Yk,m] be a matrix of random variables, where (Yk,m, k = 0, 1, 2 · · · ) is
the m-th column vector consisting of mutually independent random variables with
finite variances, m = 0, 1, 2, · · · . Let A := [pn,k] be a summability matrix. Consider

Sn :=
∞∑
k=0

pn,k(Yn,k − E(Yn,k))
‖σnpn‖2

=:
∞∑
k=0

Xn,k,

where

Xn,k :=
pn,k(Yn,k − E(Yn,k))

‖σnpn‖2
, ‖σnpn‖22 :=

∞∑
k=0

p2
n,kV ar(Yn,k) <∞.

We will present some results concerning the weak convergence of the sequence Sn,
n ≥ 1. Since different summability methods have different convergence fields, one
expects to see the dependence of rates of convergence of Sn on the choice of A.
Consequently, a natural question is to ask if there is a summability transform that
leads to the fastest rate of convergence. We will show that the classical Cesáro
transform provides the fastest rate among all regular triangular methods whose
row sums equal one.

Convergence, in probability and almost sure sense, of such transforms have al-
ready been settled by various authors ([3], [4], [13], [16]). In this paper we will show
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that through summability theory we may unify the weak convergence part with the
classical central limit theorem and the classical Berry-Esseen (BE) bound. The
Cesáro method gives the classical result and the Abel method, for instance, gives
the discounted central limit theorem of actuarial sciences ([10], [2]). The interesting
part is that the tools remain the same as found in the standard books of probability
(see [5], [8]).

The next section collects some summability results that are relevant for our later
developments, and perhaps may have some independent interest in summability
theory. Then we present results concerning the optimal rate of BE bounds among
triangular summability methods. The last section provides a link to approximation
theory.

2. Some summability results

Let A = [an,k], n, k ≥ 0, be an infinite matrix of complex numbers. We say that
a sequence x := (x0, x1, · · · ) is in the domain of A if the series

(Ax)n :=
∞∑
k=0

xk an,k

is convergent for each n = 0, 1, 2, · · · . When x is in the domain ofA, the transformed
sequence (Ax)n, n = 0, 1, 2, · · · , is denoted by (Ax). If c denotes the set of all
convergent complex sequences, then cA := A−1(c) denotes the set of all sequences
x such that (Ax) is convergent. We say that B includes A if cA ⊆ cB. If it obeys
the strict inclusion, i.e., if cA ⊂ cB, then B is said to be stronger than A. Let I
denote the identity matrix. We say A is regular if cI ⊆ cA ([11]).

One of the most well-known regular summability methods is the Cesáro method,
denoted by (C, 1), in which an,k = 1

n+1 for k = 0, 1, · · · , n, and zero otherwise. If
we define an,k =

(
n
k

)
rk(1 − r)n−k for 0 ≤ k ≤ n and n ≥ 1, a0,0 = 1, we get the

Euler method, Er, which is regular if and only if r ∈ (0, 1] (cf. [15]). A large class
of regular summability methods can be obtained by using two nonnegative integer
valued random variables as follows.

Definition 2.1. Let U and V be two nonnegative integer valued random variables.
Let V1, V2, · · · be mutually independent random variables identically distributed as
V . Let [pn,k] be a matrix whose n-th row consists of the discrete probability density
of the random variable U + V1 + V2 + · · ·+ Vn. We will call [pn,k] the convolution
method generated by U and V .

It is easy to see that the Euler method Er is a convolution method. When we
take U and V as Poisson(1) random variables, the resulting convolution method
is known as the Borel matrix method. By using U and V as geometric, or shifted
geometric random variables, one gets the Taylor and Meyer-König summability
methods. By using the Silverman-Teoplitz theorem one can easily show that the
convolution method is regular if and only if P (V = 0) < 1.

Definition 2.2. We say A = [an,k] is `2-negligible if

‖an‖22 :=
∞∑
k=0

|an,k|2 → 0, as n→∞.
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The `2-negligibility concept is closely tied to the asymptotic negligibility concept
that applies in the central limit theorem. It happens to be the case that most of the
standard regular summability methods are `2-negligible. For instance, the Euler
method is `2-negligible as long as the parameter r ∈ (0, 1). We will show that the
regular convolution methods (different from the identity matrix) are `2-negligible.
Further, we will show that any method which includes an `2-negligible regular
summability method is also `2-negligible. The following proposition contains a
result which, for the most part, is well known in probability literature (see for
instance [5]). The last part is a relevant addition to it, using the Pringsheim double
limit concept.

Proposition 2.1. Let T = [tn,k] be a complex matrix. Then

lim
n→∞

∑
k

|tn,k|2 = 0 ⇒ lim
n→∞

max
k
|tn,k| = 0.

Also, if T satisfies the condition∑
k

|tn,k| ≤ M <∞, for all n ≥ 0,(2.1)

then the following are equivalent:
(1) limn→∞maxk |tn,k| = 0.
(2) T is `2-negligible.

Furthermore, if [tn,k] satisfies the uniform boundedness condition (2.1) and its
columns tend to zero, then the above two statements are equivalent to

(3) limn,k→∞ |tn,k| = 0,
where limn,k represents the Pringsheim double limit in the sense that for any ε > 0
there exists an N so that |tn,k| < ε for both n, k > N .

Proof. Since maxk |tn,k|2 ≤
∑

k |tn,k|2 → 0, the first part follows trivially. To show
the converse after assuming (2.1), note that∑

k

|tn,k|2 ≤
(

max
k
|tn,k|

)∑
k

|tn,k| ≤
(

max
k
|tn,k|

)
M → 0.

Now to prove that (3) implies (1), let ε > 0. Then by (3), there exists an N1 such
that |tn,k| < ε for all k, n ≥ N1. Since the columns tend to zero, we can make the
tail entries of the first N1 columns less than ε for large n. That is, there is an N2

such that |tn,k| < ε for 0 ≤ k < N1 for all n ≥ N2. Thus, maxk |tn,k| < ε for all
n ≥ max{N1, N2}. To prove the converse, assume that (2) is true but (3) is false.
Then, there exists an ε > 0 and infinitely many nj and kj = k(nj) such that both
are increasing to infinity and

|tnj ,kj | > ε, j = 1, 2, · · · .
But then ∑

k

|tnj ,k|2 ≥ |tnj ,kj |2 > ε2

for infinitely many j contradicting (2). �

The following proposition is well known in probability literature when the matrix
is row finite ([5], [9]). The proof remains similar; therefore, it is omitted.
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Proposition 2.2. Let [tn,k] be a complex matrix which satisfies the following con-
ditions :

(1)
∑

k |tn,k| ≤M <∞, for all n ≥ 0,
(2)

∑
k tn,k → 1 as n→∞ and

(3) the matrix [tn,k] is `2-negligible.
Then for any complex number z we have

lim
n→∞

∞∏
k=1

(1 + tn,kz) = ez.

The following result shows that for two regular methods A and B, if B includes
A and A is `2-negligible, then so is B.

Theorem 2.3. If A = [an,k] and B = [bn,k] are regular matrices such that

lim
n,k

an,k = 0 and lim
n,k

bn,k 6= 0,

then B cannot include A.

Proof. We will use the classical sliding-hump argument for the proof. First note
that since the rows of A are null sequences, the fact that limn,k an,k = 0, we have

lim
k→∞

max
n
|an,k| = 0.(2.2)

Also, since limn,k bn,k 6= 0, we can choose increasing sequences of row and column
indices satisfying

|bν(m),κ(m)| ≥ δ > 0, for all m.

Then use (2.2) to choose a subsequence of these pairs (ν(m), κ(m)) such that

max
n
|an,κ(m)| < 2−m.

Next, the fact that the columns of A and B are null sequences, we choose a further
subsequence so that for all m (i.e., for all κ(m)), ν(m) is chosen so that k < κ(m),
n > ν(m) implies

|ank| < 2−m and |bnk| < 2−m.

Use the fact that the rows of B tend to zero in order to get |bnk| < 2−m for all
k > κ(m) and n < ν(m). Define the sequence x by

xk :=
{
m+ 1 if k = κ(m), for m = 0, 1, · · · ,

0 if k 6= κ(m), for m = 0, 1, · · · .(2.3)

This yields (for n > ν(m))

|(Ax)n| =

∣∣∣∣∣∣
∞∑
j=0

an,κ(j) (j + 1)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
j≤m

2−m (j + 1)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
j>m

2−j (j + 1)

∣∣∣∣∣∣
= 2−m

(m+ 1)(m+ 2)
2

+Rm,
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where Rm → 0. Therefore, (Ax) converges to zero. Also,

(Bx)ν(m) =
∞∑
j=0

bν(m),κ(j)xk(j)

= bν(m),κ(m)(m+ 1) +
∑
j 6=m

bν(m),κ(j)(j + 1)

= bν(m),κ(m)(m+ 1) +
∑
j≤m

2−m(j + 1) +
∑
j>m

2−j(j + 1)

= bν(m),κ(m)(m+ 1) + 2−m−1m(m+ 1) +Rm.(2.4)

Since the first term in (2.4) is unbounded and the latter two terms tend to zero,
it follows that (Bx) is not even bounded and hence could not be convergent. This
shows that B cannot include A. �
Remark 2.4. It is not necessary to assume the full strength of regularity to have
the proof work. It would be sufficient to assume (2.2) instead of assuming that
limn,k an,k = 0 and that A and B have null columns and rows. Or, it would be
sufficient to assume the existence of {κ(m)} such that limk maxm |an,κ(m)| = 0, and
for a corresponding {ν(m)} we have |bν(m),κ(m)| 6→ 0.

3. BE bounds for summability transforms

In this section we present the summability analog of the BE bound and show
that the Cesáro transform provides, in some sense, the best rate of convergence.
By using Propositions 2.1 and 2.2 and the standard results of probability theory
one can verify the following version of Lyapunov’s theorem.

Theorem 3.1. Let Sn =
∑∞
k=0 Xn,k be a random series, where Xn,k, k = 0, 1, 2 · · · ,

are independent. Further, assume that E|Xn,k|3 = γn,k < ∞, E(Xn,k) = 0, and∑∞
k=0 V ar(Xn,k) = 1. If

Γn := ‖γ1/3
n ‖33 =

∞∑
k=0

γn,k → 0, as n→∞,

then Sn converge in distribution to the standard normal random variable.

We now present Berry-Esseen type bounds for Sn. The results are derived from
the generalization of the classical Berry-Esseen theorem ([5], [4]) to particular
summability methods such as the Abel method and the Zeta method ([6], [10],
and [14]). The approach of this proof uses the technique of characteristic functions
that is already available in the literature ([4] and [5]), however, with an appropriate
modification to incorporate infinitely many terms in the sums. We will omit the
details. The central limit theorem for summability methods considered in [7] and
[12] deal primarily with non-uniform rates of convergence.

Theorem 3.2. Let Sn =
∑∞
k=0 Xn,k be a random series, where Xn,k, k = 0, 1, 2, · · · ,

are independent. Further, assume that E|Xn,k|3 = γn,k < ∞, E(Xn,k) = 0, and∑∞
k=0 V ar(Xn,k) = 1. Then∣∣∣∣P (Sn ≤ x)− 1√

2π

∫ x

−∞
e−u

2/2 du

∣∣∣∣ ≤ CΓn,

where C is an absolute constant and Γn := ‖γ1/3
n ‖33 =

∑∞
k=0 E(|Xn,k|3).
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We will now examine the bound, Γn, when

Xn,k :=
pn,kYk
‖σpn‖2

, E(Yk) = 0, ‖σpn‖22 := σ2
∞∑
k=0

p2
n,k,

and Y0, Y1, · · · are iid random variables with V ar(Y0) = σ2. The aim is to discover
which summability transform gives the best rate. The following theorem shows
that the class of convolution summability methods cannot be the one that gives the
best rate.

Theorem 3.3. Let [pn,k] be the convolution summability method generated by U

and V . If U and V have finite variances, then, Γn = O(n−1/4) as n → ∞. Fur-
thermore, this rate cannot be improved.

Proof. Since

‖pn‖3 ≤
(

max
k
|pn,k|

∑
k

|pn,k|2
)1/3

,

we have ‖pn‖3 ≤ ‖pn‖1/3∞ ‖pn‖2/32 . This gives that

‖pn‖3
‖pn‖2

≤ ‖pn‖
1/3
∞ ‖pn‖2/32

‖pn‖2
=
‖pn‖1/3∞
‖pn‖1/32

.

Let Sn = U+V1+V2+· · ·+Vn and let S
′

n be independent and identically distributed
as Sn. Note that∑

k

p2
n,k =

∑
k

P (Sn = k)P (S
′

n = k) = P (Sn = S
′

n).

Let Zi := Vi − V
′

i , i = 1, 2, · · · , n, where V
′

i are independent and identically dis-
tributed as Vi. If V ar(V1) = σ2, we have (see, for instance, [5])

n1/2P

(
n∑
k=1

Zk = j

)
→ 1

2σ
√
π
, pn,k = P (Sn = k) ≤ C√

n

for any integer j, for all k and some absolute constant C. Hence,

n1/2P (Sn − S
′

n = 0) = n1/2
∞∑

j=−∞
qj P

(
n∑
k=1

Zk = j

)

→
∞∑

j=−∞
qj

1
2σ
√
π
,

where {qj} is the probability density of U − U ′. Therefore, [pn,k] is `2-negligible,
and

n1/4 ‖pn‖2 →
1√

2σπ1/4
.

We have
‖pn‖3
‖pn‖2

≤ ‖pn‖
1/3
∞

‖pn‖1/32

≤ Cn−1/12,

for some constant C > 0. This gives the required assertion.
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To prove that the rate is best possible, take [pn,k] to be the Euler method. If
|k−nr|/

√
nr(1 − r) < K, then there exists a constant D > 0 (which depends only

on r and K) such that∣∣∣∣∣
(
n

k

)
rk(1− r)n−k − 1√

2πr(1− r)n
exp{−(k − nr)2/(2nr(1− r))}

∣∣∣∣∣ ≤ D

n
.

Thus, if An,K := {k : |k − nr|/
√
nr(1 − r) < K} is the set of all non-negative

integers k for which the stated inequality holds, we have
∞∑
k=0

p3
n,k ≥

∑
k∈An,K

p3
n,k

≥ min
k∈An,K

p2
n,k

∑
k∈An,K

pn,k

≥
{

e−2K2

(2πr(1 − r)n)2/2
+O

(
1
n1.5

)} ∑
k∈An,K

pn,k.

By the central limit theorem,∑
k∈An,K

pn,k = P ((Sn − nr)/
√
nr(1 − r) < K)→ P (|Z| < K),

where Z is the standard normal random variable. Thus, for any K > 0, we have

lim inf
n

n

∞∑
k=0

p3
n,k ≥

{
e−2K2

(2πr(1 − r))

}
P (|Z| < K) > 0.

That is, there exists a δ > 0 such that

lim inf
n

n1/3‖pn‖3 ≥ δ > 0.

Since

lim
n
n1/4‖pn‖2 =

1
π1/4

√
2r(1− r)

,

we see that

lim inf
n

n1/12 ‖pn‖3
‖pn‖2

= lim inf
n

n1/3‖pn‖3
n1/4‖pn‖2

≥ C > 0.

This proves the theorem. �

In the statistical literature the concept of a minimum variance unbiased estima-
tor is used to identify a best possible estimator (among the class of all unbiased
estimators). Since the variance usually goes to zero as the sample size gets large,
one only compares the variances of competing unbiased estimators that rely upon
the same sample size. In a similar context, the comparison of rates of convergence
in the central limit theorem will make sense if the competing summability methods
use the same “sample size”. Hence, if we identify X0, X1, X2, · · · , Xn−1 as our sam-
ple of size n, then the n-th terms of the competing transforms could be compared
if the summability methods are forced to be triangular. In the following theorem
we therefore assume that the summability methods are triangular.

The Silverman-Toeplitz theorem states that if the method is regular, then its
row sums (even though they may not equal one for any row) must, in the limit,
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become one. To avoid the “contamination” in the BE rate that is caused by the
row sums not being equal to one, but converging to one, we assume that each row
of the summability method adds up to one.

Theorem 3.4. For the case of iid sequences of random variables, over the class
of all triangular real regular summability methods (with rows adding up to one) the
rate of convergence, Γn, in the Berry-Esseen bound has the fastest rate of decrease
when we use the Cesáro summability method.

Proof. Let r, s > 0 so that 1
r + 1

s = 1. For any numbers ak
n∑
k=1

|ak|p =
n∑
k=1

|ak|p · 1

≤
{

n∑
k=1

|ak|pr
}p/(pr)

· n1/s = ‖a‖ppr · n1/s.

This gives that ‖a‖pp ≤ ‖a‖ppr · n
r−1
r or ‖a‖p ≤ ‖a‖pr · n

r−1
pr . The equality holds if

and only if the vector a and the constant vector 1 are parallel. For p = 2, and
r = 3

2 we get
‖a‖2 ≤ ‖a‖3 · n

1
6 .

In the Hölder inequality the equality takes place if and only if the vectors are
parallel. That is, the vector a is a constant vector. Since the rows have to add up
to one, the constant vector must be (1/n, 1/n, · · · , 1/n). �

4. Schnabl approximation operators

Let X0, X1, · · · be a sequence of independent and identically distributed random
variables taking values in an interval I. We will assume that the third moment
exists and denote E(X0) = x. Let A = [ank] be a regular summability method
with rows adding up to one. The Schnabl approximation operator, [1], is defined
by

Ln(f, x) := Ef((AX)n), n = 1, 2, · · · .
Usually A is assumed to be triangular. Let ω be a modulus of continuity defined
over [0,∞) i.e., ω(t) is a non-decreasing continuous function with ω(0+) = ω(0) = 0
and ω(t+ s) ≤ ω(t) +ω(s). The space Hω(I) consists of those functions f : I → <
so that |f(u) − f(v)| ≤ ω(|u − v|), and is called the Lipschitz space generated by
ω. The following result quantifies the rate of convergence of Schnabl operators.

Theorem 4.1. For the above Schnabl operators, we have
(1) For any f ∈ Hω(I), |Ln(f, x)− f(x)| = O(ω(‖an‖2)).
(2) If V ar(X0) > 0 and ‖an‖3 = o(‖an‖2), then the rate cannot be improved in

(1).

Proof. We will use the fact that if ω is a modulus of continuity, then there exists a
concave modulus of continuity ω∗ so that ω ≤ ω∗ ≤ 2ω. When f ∈ Hω(I), we have

|Ln(f, x)− f(x)| ≤ E|f((AX)n)− f(x)|
≤ Eω(|(AX)n − x|)
≤ 2ω(E|(AX)n − x|)

≤ 2ω(‖an‖2)
(

1 + E
|(AX)n − x|
‖an‖2

)
.
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The last expression remains bounded. To prove the reverse inequality, take f(t) =
ω(|t− x|) which belongs to Hω(I). Since

|f(t)| ≤ (|t|+ 1)ω(1) + ω(|x|),

we see that Ln(f, x) is well defined. Next let Zn,x := ((AX)n − x)/‖an‖2. Note
that

|Ln(f, x)− f(x)| = Eω(‖an‖2|Zn,x|)

≥ ω(‖an‖2)E
(
|Zn,x|

1 + |Zn,x|

)
≥ c ω(‖an‖2),

for a c > 0 and all large n, since when ‖an‖3 = o(‖an‖2),

E

(
|Zn,x|

1 + |Zn,x|

)
→ E

(
|Z|

1 + |Z|

)
> 0, Z ∼ N(0, 1).

�

Among the regular triangular methods that have row sums one, Theorem 4.1
suggests that the best rate of convergence for the Schnabl operators is achieved if we
use the Cesaro summability method. This class contains the classical approximation
operators such as Bernstein, Szasz, Baskakov, Gamma and Weierstrass operators.
For each one of them, the rate is ω(n−1/2) ([1]). On the other hand, when A is taken
to be the Euler method, the resulting Schnabl operators inherit the rate ω(n−1/4).
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