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LIMIT SETS AND REGIONS OF DISCONTINUITY
OF TEICHMÜLLER MODULAR GROUPS
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(Communicated by Juha M. Heinonen)

Abstract. For a Riemann surface of infinite type, the Teichmüller modular
group does not act properly discontinuously on the Teichmüller space, in gen-
eral. As an analogy to the theory of Kleinian groups, we divide the Teichmüller
space into the limit set and the region of discontinuity for the Teichmüller
modular group, and observe their properties.

1. Introduction

The Teichmüller modular group Mod(R) for a hyperbolic Riemann surface R
whose Fuchsian model is of the first kind is the set of homotopy classes of quasicon-
formal automorphisms of R, and this is a group of biholomorphic automorphisms
of the Teichmüller space T (R). If R is of analytically finite type, it is well known
that Mod(R) acts properly discontinuously on T (R). However if R is of infinite
type, Mod(R) does not act properly discontinuously on T (R), in general. In [4], we
gave a sufficient condition for the proper discontinuity.

In this paper, we introduce new notions, the limit set and the region of discon-
tinuity for a Teichmüller modular group. Actually, we define these notions for the
Teichmüller modular group of a general Riemann surface whose Fuchsian model
is not necessarily of the first kind. For this purpose, we consider the reduced Te-
ichmüller modular group Mod#(R) acting on a reduced Teichmüller space T#(R),
which will be defined in the next section. The limit set Λ(G) for a subgroup G of
Mod#(R) is the set of points p in T#(R) such that the orbit of p under G is not
discrete, and the region of discontinuity Ω(G) is the complement of the limit set.
This is an analogy to the theory of Kleinian groups acting on the Riemann sphere,
and we expect that they satisfy similar properties to that of limit sets and regions
of discontinuity for Kleinian groups. We prove some of them. However it seems
that the essential natures of limit sets and regions of discontinuity for Teichmüller
modular groups are different from the case of Kleinian groups. For example, the
orbit of a point in a limit set is not dense in the limit set, in general. Hence we
have to devise the proofs.
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We say that a subgroup G of Mod#(R) is of the first kind if Ω(G) = ∅, and
otherwise of the second kind. We show sufficient conditions for Mod#(R) to be of
the first kind or of the second kind, and give various examples for each case.

2. Preliminaries

We review theories of Teichmüller spaces and Teichmüller modular groups (cf.
[5], [7] and [10]). Throughout this paper, we assume that a Riemann surface R is
hyperbolic. In other words, it is represented by H/Γ for some torsion-free Fuchsian
group Γ acting on the upper half-plane H. We also assume that R has the non-
abelian fundamental group. In other words, the Fuchsian group Γ is non-elementary.
We say that R is of analytically finite type (g, n) if it is a Riemann surface of genus
g from which n punctures are removed.

Fix a Riemann surface R. For pairs (Si, fi) of Riemann surfaces Si and quasi-
conformal maps fi of R onto Si, we say that (S1, f1) and (S2, f2) are equivalent if
there exists a conformal map h of S1 onto S2 such that f−1

2 ◦ h ◦ f1 is homotopic
to the identity by a homotopy that keeps every point of the ideal boundary fixed
throughout. The Teichmüller space T (R) with the base Riemann surface R is the
set of all the equivalence classes [S, f ] of such pairs (S, f) as above. Further we say
that (S1, f1) and (S2, f2) are weakly equivalent if there exists a conformal map h of
S1 onto S2 such that f−1

2 ◦ h ◦ f1 is homotopic to the identity on R. The reduced
Teichmüller space T#(R) with the base Riemann surface R is the set of all the
weakly equivalent classes [S, f ] of such pairs (S, f) as above.

We say that two quasiconformal automorphisms h1 and h2 of R are equivalent if
h−1

2 ◦ h1 is homotopic to the identity by a homotopy that keeps every point of the
ideal boundary fixed throughout. The Teichmüller modular group Mod(R) is the
set of all the equivalent classes [h] of quasiconformal automorphisms h of R. Further
we say that two quasiconformal automorphisms h1 and h2 of R are weakly equivalent
if h−1

2 ◦ h1 is homotopic to the identity on R. The reduced Teichmüller modular
group Mod#(R) is the set of all the weakly equivalent classes [h] of quasiconformal
automorphisms h of R. If R is a Riemann surface whose Fuchsian model is of the
first kind, then T#(R) = T (R) and Mod#(R) = Mod(R).

Similar to the case of T (R), the reduced Teichmüller space T#(R) is equipped
with the reduced Teichmüller distance dT (·, ·) defined by

dT ([S1, f1], [S2, f2]) =
1
2

inf
f1, f2

logK(f1 ◦ f−1
2 ),

where K(·) is the maximal dilatation of a quasiconformal map and the infimum is
taken over all quasiconformal maps f1 and f2 determining [S1, f1] and [S2, f2] re-
spectively. It is known that, for any quasiconformal map f of R onto S, there exists
a quasiconformal map that has the smallest maximal dilatation in the homotopy
class of f . This is called an extremal quasiconformal map.

The reduced Teichmüller space T#(R) is a complete metric space with respect
to dT . An element ω = [h] ∈Mod#(R) induces an automorphism of T#(R) by

[S, f ] 7→ [S, f ◦ h−1].

This is an isometric automorphism with respect to dT and denoted by ω∗. Namely,
we have a homomorphism of Mod#(R) to the automorphism group Aut(T#(R))
of T#(R). With a few exceptional surfaces which do not appear in our present
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case, the above homomorphism Mod#(R)→ Aut(T#(R)) is faithful. This was first
proved in [2]. Another proof was given in [3]. Therefore we can identify ω∗ with ω
and omit the asterisk hereafter.

For a non-trivial simple closed curve c on R, we denote the simple closed geodesic
that is homotopic to c by c∗. Then for a quasiconformal map f of R, an inequality

K(f)−1`(c∗) ≤ `(f(c)∗) ≤ K(f)`(c∗)

holds, where `(·) is the hyperbolic length of a curve ([12, Lemma 3.1]).

3. The limit set and the region of discontinuity

In this section, as an analogy to the theory of Kleinian groups, we introduce
notions of the limit set and the region of discontinuity for a reduced Teichmüller
modular group, and investigate these properties. We begin by giving their defini-
tions.

Definition 1. We say that a point p in T#(R) is a limit point for a subgroup G of
Mod#(R) if there exist a point q ∈ T#(R) and a sequence {χn} of distinct elements
of G such that limn→∞ dT (χn(q), p) = 0. The set of the limit points is called the
limit set of G, and denoted by Λ(G). The complement T#(R)− Λ(G) of the limit
set is denoted by Ω(G), and called the region of discontinuity of G. Similarly, for a
subgroup G of the ordinary modular group Mod(R), we can define Λ(G) and Ω(G)
in T (R).

For a Riemann surface R of analytically finite type, Λ(Mod(R)) = Λ(Mod#(R))
= ∅. On the other hand, for a Riemann surface R whose Fuchsian model is of the
second kind, we always have Ω(Mod(R)) = ∅, since a slight change of the value of a
quasiconformal map on the ideal boundary produces a different element of Mod(R).
This is the reason why we consider the reduced modular group Mod#(R), not the
ordinary modular group Mod(R), for Riemann surfaces R of infinite type. In the
next section, we exhibit an example of a Riemann surface R which satisfies both
Λ(Mod#(R)) 6= ∅ and Ω(Mod#(R)) 6= ∅.

We investigate certain properties of the limit set and the region of discontinuity.
There are other equivalent definitions of the limit set.

Lemma 1. For a subgroup G of Mod#(R), let Λ′(G) be the set of points p ∈
T#(R) such that limn→∞ dT (ωn(p), q′) = 0 for a point q′ ∈ T#(R) and a sequence
{ωn} of distinct elements of G, and Λ′′(G) the set of points p ∈ T#(R) such that
limn→∞ dT (φn(p), p) = 0 for a sequence {φn} of distinct elements of G. Then
Λ(G) = Λ′(G) = Λ′′(G).

Proof. For any point p ∈ Λ(G), there exist a point q ∈ T#(R) and a sequence {χn}
of distinct elements of G such that limn→∞ dT (χn(q), p) = 0. Since the action of
Mod#(R) on T#(R) is isometric, we have

lim
n→∞

dT (q, χ−1
n (p)) = lim

n→∞
dT (χn(q), p) = 0,

which means that p ∈ Λ′(G).
For any point p ∈ Λ′(G), there exist a point q′ ∈ T#(R) and a sequence {ωn} of

distinct elements of G which satisfy limn→∞ dT (ωn(p), q′) = 0. Set φn = ω−1
n+1 ◦ωn.

Then limn→∞ dT (φn(p), p) = 0. If {φn} contains infinitely many distinct elements,
then this means that p ∈ Λ′′(G). If {φn} consists of finitely many elements, then
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there exists an element φ such that φn = φ for infinitely many n and φ(p) = p. We
see that φ is of infinite order. Indeed, suppose that φ is of finite order k ≥ 1. Since
ωn+1 = ωn ◦ φ−1, we have ωn+k = ωn ◦ φ−k = ωn. This contradicts that all ωn are
distinct. Hence φ is of infinite order. Thus φn(p) = p implies that p ∈ Λ′′(G).

Obviously Λ′′(G) ⊂ Λ(G). �
First, we show basic properties of the limit set.

Lemma 2. For a subgroup G of Mod#(R), the limit set Λ(G) is G-invariant and
closed.

Proof. We may assume that Λ(G) 6= ∅. Let p ∈ Λ(G) and χ ∈ G. Since p is a
limit point, there exists a sequence {χn} of distinct elements of G which satisfies
limn→∞ dT (χn(p), p) = 0 by Lemma 1. Since χ is an isometry,

lim
n→∞

dT (χ ◦ χn(p), χ(p)) = 0.

Setting ωn = χ ◦ χn, we have limn→∞ dT (ωn(p), χ(p)) = 0. Thus χ(p) ∈ Λ(G)
by Lemma 1, and hence χ(Λ(G)) ⊂ Λ(G). Similarly we have χ−1(Λ(G)) ⊂ Λ(G).
Thus χ(Λ(G)) = Λ(G), which means that Λ(G) is G-invariant.

Let {pn} be a sequence of points in Λ(G) that converges to a point p ∈ T#(R).
For each pn ∈ Λ(G), we can take a sequence {χn,i}∞i=1 of distinct elements of G such
that limi→∞ dT (χn,i(pn), pn) = 0. For each n, choose i(n) so that dT (χn,i(n)(pn), pn)
≤ 1/n and all χn,i(n) are distinct. Since χ is an isometry, we have

dT (χn,i(n)(p), p) ≤ dT (χn,i(n)(p), χn,i(n)(pn))
+ dT (χn,i(n)(pn), pn) + dT (pn, p)

≤ 2dT (p, pn) + 1/n.

Then limn→∞ dT (χn,i(n)(p), p) = 0. Hence p ∈ Λ(G), which means that Λ(G) is
closed. �

We classify the limit points for a subgroup G of Mod#(R) into three types,
Λ0(G), Λ1

∞(G) and Λ2
∞(G), according to their stabilizer.

Definition 2. In a subgroup G of Mod#(R), the stabilizer of a point p ∈ T#(R)
is defined by StabG(p) = {χ ∈ G | χ(p) = p}.

We define Λ0(G) as the set of points p ∈ Λ(G) such that there exists a sequence
{χn} of distinct elements of G that satisfies limn→∞ dT (χn(p), p) = 0 and that
χn(p) 6= p for all n, and Λ∞(G) as the set of points p ∈ Λ(G) such that StabG(p)
consists of infinitely many elements. Furthermore we divide Λ∞(G) into two disjoint
subsets, Λ1

∞(G) and Λ2
∞(G). The Λ1

∞(G) is the set of points p ∈ Λ∞(G) such that
there exists an element in StabG(p) that is of infinite order, and the Λ2

∞(G) is the
set of points p ∈ Λ∞(G) such that all elements in StabG(p) are of finite order.

It might be the case that Λ0(G) ∩ Λ∞(G) 6= ∅.
Lemma 3. The sets Λ0(G), Λ1

∞(G) and Λ2
∞(G) are G-invariant.

Proof. Let p ∈ Λ0(G). We can take a sequence {χn}∞n=1 of distinct elements of
G so that limn→∞ dT (χn(p), p) = 0 and χn(p) 6= p for all n. For any χ ∈ G,
we have limn→∞ dT (χ ◦ χn(p), χ(p)) = 0 and χ ◦ χn(p) 6= χ(p), which means that
χ(p) ∈ Λ0(G). Similarly, we have χ−1(p) ∈ Λ0(G). Thus Λ0(G) is G-invariant.

The fact that StabG(χ(p)) = χ◦StabG(p)◦χ−1 implies that the sets Λ1
∞(G) and

Λ2
∞(G) are G-invariant. �
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We exhibit examples of limit points in Λ0(Mod#(R)).

Example 1. Set

R = C−
∞⋃
n=1

⋃
m∈Z

{m
n

+ (2n+ 1)
√
−1
}
.

By Example 2 in [4], we see that the base point [R, id] belongs to Λ0(Mod#(R)).

Example 2. Set

zn =

{
n+

√
−1

j(n)+1 (n 6= 0),
0 (n = 0)

where j(n) is the power of the factor 2 when we decompose |n| to the product of
primes. Set R = C−

∑∞
n=−∞{zn}. By Example 6 in [4], we see that the base point

[R, id] belongs to Λ0(Mod#(R)).

We also have an example of a limit point in Λ1
∞(Mod#(R)).

Example 3. Let R̂ be a compact Riemann surface of genus g ≥ 2, and R a normal
covering surface of R̂ whose covering transformation group is a cyclic group 〈φ〉
generated by a conformal automorphism φ of R. Then p0 = [R, id] ∈ T#(R) and
[φ] ∈ Mod#(R) satisfy [φ](p0) = p0. Hence p0 belongs to Λ1

∞(Mod#(R)).

We see that if the limit set has an isolated point, the isolated point belongs to
Λ2
∞(G). However, we do not know whether the limit set has an isolated point.

Theorem 1. For a subgroup G of Mod#(R), the set Λ(G)−Λ2
∞(G) does not have

an isolated point.

Proof. We will show that, for any point p ∈ Λ(G)−Λ2
∞(G), there exists a sequence

{pn} of distinct elements in Λ(G)− Λ2
∞(G) such that limn→∞ dT (pn, p) = 0.

If p ∈ Λ0(G), then we can take a sequence {χn}∞n=1 of distinct elements of G so
that limn→∞ dT (χn(p), p) = 0 and χn(p) 6= p for all n. It follows from Lemma 3
that χn(p) belongs to Λ0(G) for all n.

If p = [S, f ] ∈ Λ1
∞(G), then there exists an element χ = [h] ∈ StabG(p) such that

all χk are distinct for k ∈ N. Since χ(p) = p, the quasiconformal automorphism
f ◦ h−1 ◦ f−1 of S is homotopic to a conformal map ψ. Note that ψ does not have
a fixed point in S. Indeed, if ψ has a fixed point x in S, then x is fixed by infinitely
many elements ψk ∈ Aut(S). However it is known that the action of Aut(S) is
properly discontinuous if S has the non-abelian fundamental group ([11, Theorem
X. 48]). Thus we have a contradiction. We consider the quotient S/〈ψ〉 by the
cyclic group 〈ψ〉, and denote it by Ŝ. The Riemann surface Ŝ is also of hyperbolic
type.

First, suppose that Ŝ is not of analytically finite type (0,3). We take a sequence
of quasiconformal maps {ĝn} of Ŝ which are not homotopic to a conformal map on
Ŝ for all n and satisfy limn→∞K(ĝn) = 1. In particular, a lift g̃n of ĝn to H is not
the restriction of a conformal map on the limit set Λ(Γ̂) of the Fuchsian model Γ̂
of Ŝ. Here we note the following lemma.

Lemma 4 ([9, Lemma 2.22]). For a normal subgroup Γ of a non-elementary Fuch-
sian group Γ̂, we have Λ(Γ) = Λ(Γ̂) if Γ 6= {id}. Here Λ(·) means the limit set of
a Fuchsian group.
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Since S is a normal covering surface of Ŝ, Lemma 4 says that the lift g̃n is not
the restriction of a conformal map on Λ(Γ), either. Here Γ is the Fuchsian model
of S. Then a lift gn of ĝn to S is not homotopic to a conformal map on S, and
pn = [gn(S), gn ◦ f ] ∈ T#(R) is different from p for each n. We also have

lim
n→∞

dT (p, pn) ≤ lim
n→∞

logK(gn) = 0.

Since dT (χk(pn), pn) = logK(gn ◦ψk ◦ gn−1) and since gn ◦ψk ◦ gn−1 (k = 1, 2, · · · )
are distinct conformal automorphisms of gn(S), we see that pn belongs to Λ1

∞(G).
Thus {pn} is a desired sequence.

If Ŝ is of analytically finite type (0,3), then we consider 〈ψ2〉 instead of 〈ψ〉.
Then S/〈ψ2〉 is not of analytically finite type (0,3), and the same proof can be
applied. �
Corollary 1. For a subgroup G of Mod#(R) such that Λ(G)−Λ2

∞(G) is not empty,
the limit set Λ(G) is an uncountable set.

Proof. By Theorem 1, the closure Λ(G)− Λ2
∞(G) of Λ(G) − Λ2

∞(G) is a perfect
closed set. In a complete metric space, every non-empty perfect closed set is an
uncountable set (Cantor; cf. [6, p. 156]). Then Λ(G)− Λ2

∞(G) is an uncountable
set. Since Λ(G)− Λ2

∞(G) ⊂ Λ(G), the limit set Λ(G) is also an uncountable set. �

Remark 1. The Riemann surfaces R in Examples 1, 2 and 3 satisfy Λ(Mod#(R))−
Λ2
∞(Mod#(R)) 6= ∅.
In the theory of Kleinian groups, it is known that the limit set of a non-

elementary Kleinian group Γ coincides with the closure of the loxodromic fixed
points of Γ, and it also coincides with the closure of the set of limit points that
are not fixed by any elements of Γ. On the analogy of this fact, we propose the
following problems.

Problem 1. For a subgroup G of Mod#(R), the set Λ0(G) is dense in Λ(G) −
Λ2
∞(G). The closure of Λ∞(G) coincides with Λ(G).

Next, we consider the proper discontinuity of G on the region of discontinuity.

Definition 3. We say that a subgroup G ⊂ Mod#(R) acts on a subregion Ω ⊂
T#(R) properly discontinuously if for any p ∈ Ω, there exists a constant r > 0
such that the set {χ ∈ G | χ(B(p, r)) ∩ B(p, r) 6= ∅} consists of only finitely many
elements. Here B(p, r) is an open ball centered at p with radius r.

Proposition 1. Let G be a subgroup of Mod#(R). For any point p in T#(R) −
Λ0(G), there exists a constant r > 0 such that χ(B(p, r)) ∩ B(p, r) = ∅ for any
χ ∈ G− StabG(p).

Proof. Suppose that, for any n ∈ N, there exists an element χn ∈ G − StabG(p)
such that χn(B(p, 1/n)) ∩ B(p, 1/n) 6= ∅. We take a point qn ∈ B(p, 1/n) so that
χn(qn) ∈ B(p, 1/n). Since χn is an isometry, we have

dT (p, χn(p)) ≤ dT (p, χn(qn)) + dT (χn(qn), χn(p)) ≤ 2/n.

Hence limn→∞ dT (p, χn(p)) = 0. If {χn} contains infinitely many distinct elements,
then p ∈ Λ0(G) since χn(p) 6= p for all n. This contradicts p /∈ Λ0(G). If {χn}
consists of finitely many elements, then χn(p) = p for a sufficiently large n. This
contradicts χn /∈ StabG(p). �
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If p ∈ Ω(G), then StabG(p) consists of only finitely many elements. Thus we
have the following corollary.

Corollary 2. Let G be a subgroup of Mod#(R). Then G acts on Ω(G) properly
discontinuously.

Remark 2. In general, for a group consisting of isometric transformations acting
on a complete metric space, the limit set and the region of discontinuity can be
defined as in Definition 1, and they satisfy the same properties as in Lemmas 1, 2,
3 and Proposition 1.

In the last of this section, we propose problems on properties of the limit sets
and the regions of discontinuity.

Problem 2. For a subgroup G of Mod#(R) such that Ω(G) is not empty, the limit
set Λ(G) is nowhere dense in T#(R).

Problem 3. For a subgroup G of Mod#(R) such that Ω(G) is not empty, the
region of discontinuity Ω(G) is connected.

4. Teichmüller modular group of the second kind

In this section, we consider sufficient conditions for Mod#(R) to have a non-
empty region of discontinuity. The conditions are given in terms of hyperbolic
geometry on R.

Definition 4. For a subgroup G of Mod#(R), we say that G is of the first kind if
Ω(G) = ∅, and otherwise of the second kind.

Definition 5. For a constant M > 0, we define RM to be the subset of points
p ∈ R such that there exists a non-trivial simple closed curve passing through p
whose hyperbolic length is less than M . The set Rε is called the ε-thin part of R
if ε > 0 is smaller than the Margulis constant. Further, a connected component of
the ε-thin part that corresponds to a puncture is called the cusp neighborhood.

The conditions mentioned above are given as follows.

Definition 6. We say that R satisfies the lower bound condition if there exists a
constant ε > 0 such that the ε-thin part of R consists only of cusp neighborhoods
and neighborhoods of geodesics which are homotopic to boundary components.
Further we say that R satisfies the upper bound condition if there exist a constant
M > 0 and a connected component R∗M of RM such that a homomorphism of
π1(R∗M ) to π1(R) that is induced by the inclusion map of R∗M into R is surjective.

Remark 3. The lower and upper bound conditions are invariant under quasiconfor-
mal deformations ([4, Lemma 8]). In other words, they are regarded as conditions
for the Teichmüller space.

The following theorem gives a sufficient condition on Riemann surfaces R for
Mod#(R) to be of the first kind.

Theorem 2. If R does not satisfy the lower bound condition, then Mod#(R) is of
the first kind.
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Proof. Since R does not satisfy the lower bound condition, R has a sequence {cn∗}
of distinct simple closed geodesics that are not homotopic to boundary components
with `(cn∗)→ 0 (n→∞).

Let [hn] be an element of Mod#(R) that is the Dehn twist along cn for each n.
By the assumption, we can take a representative hn so that limn→∞K(hn) = 1.
Indeed, the collar C(cn) of cn is conformally equivalent to an annulus An = {z |
1 < |z| < rn}, and we can take rn so that limn→∞ rn = ∞ by the collar lemma
(cf. [8]). Further we can take hn so that hn is the identity on the complement of
C(cn) and that the restriction of hn to C(cn) is conjugate to a map h̃n : An → An
defined by

h̃n(z) = z exp
(

2πi
log |z|
log rn

)
.

Then limn→∞K(h̃n) = 1. Hence limn→∞ dT ([hn](p0), p0) = 0, where p0 = [R, id] is
the base point of T#(R). This means that p0 ∈ Λ(Mod#(R)). Further [hn](p0) 6= p0

implies that p0 ∈ Λ0(Mod#(R)).
Let f be an arbitrarily quasiconformal map of R onto S. If f is a K-quasicon-

formal map, the geodesic f(cn)∗ that is homotopic to f(cn) satisfies

K−1`(cn∗) ≤ `(f(cn)∗) ≤ K `(cn∗).

Then S also has the sequence {f(cn)∗} of distinct simple closed geodesics with
`(f(cn)∗) → 0 (n → ∞), and the quasiconformal map f ◦ h−1

n ◦ f−1 is the Dehn
twist along each f(cn). Hence, for any point p = [S, f ] ∈ T#(R), we have
limn→∞ dT ([hn](p), p) = 0, which means that p ∈ Λ(Mod#(R)). In fact, T#(R) =
Λ(Mod#(R)) = Λ0(Mod#(R)). �

In [4], we gave a sufficient condition on Riemann surfaces R for some subgroup
G of Mod#(R) to satisfy Λ(G) = ∅.

Proposition 2 ([4]). Suppose that R satisfies the lower and upper bound conditions.
For a simple closed geodesic c on R, we set

Mod#
c (R) = {[f ] ∈Mod#(R) | f(c) is freely homotopic to c}.

Then Λ(Mod#
c (R)) = ∅.

Using this result, we have a sufficient condition on Riemann surfaces R for
Mod#(R) to be of the second kind.

Theorem 3. If R satisfies the lower and upper bound conditions, then Mod#(R)
is of the second kind.

To prove this theorem, we use the following lemma.

Lemma 5. Let R be a Riemann surface satisfying the lower bound condition for a
constant ε > 0, and c0 a simple closed geodesic on R. Then there exist a positive
constant α < ε and a quasiconformal map f of R such that `(f(c0)∗) < α and
`(f(c)∗) > α for any other simple closed geodesics c 6= c0 on R.

Proof. We take two adjacent pairs of pants P j (j = 1, 2) with three geodesic bound-
aries, c0, c

j
1 and cj2, so that the five geodesics are mutually disjoint. We fix j,

and denote c1 and c2 instead of cj1 and cj2 respectively. Set ai = (1/2)`(ci) and



LIMIT SETS OF TEICHMÜLLER MODULAR GROUPS 125

bi = dR(ci−1, ci+1) for i = 0, 1, 2 (if i = 0, then we put i− 1 = 2, and if i = 2, then
we put i+ 1 = 0). Here dR(·, ·) is the hyperbolic distance on R. Further, set

A0 = arccosh
(

1 + cosh a1 cosha2

sinh a1 sinh a2

)
and α = min{ε/2, A0, b1, b2}. We can take a quasiconformal map f on R so that
`(f(c0)∗) < α and the restriction of f to the complement of P 1 ∪P 2 is the identity.
In particular, f(ci) = ci for i = 1, 2, and f(c) = c for any non-trivial simple closed
curve c on R that is not through P j (j = 1, 2). Therefore, from the lower bound
condition, `(f(c)∗) > ε for such c. Further, for any non-trivial simple closed curve
c through P j , we have `(f(c)∗) > α.

Indeed, set a′i = (1/2)`(f(ci)∗) and b′i = df(R)(f(ci−1)∗, f(ci+1)∗) for i = 0, 1, 2
(if i = 0, then we put i−1 = 2, and if i = 2, then we put i+ 1 = 0). Here df(R)(·, ·)
is the hyperbolic distance on f(R). Then a′i = ai for i = 1, 2. For any non-trivial
simple closed curve c through P j, we have `(f(c)∗) > b′i for some i = 0, 1, 2. By
the formula for a right-angled hexagon ([1, Theorem 7.19.2]), we have

cosh b(
′)
i =

cosha(′)
i + cosha(′)

i−1 cosha(′)
i+1

sinha(′)
i−1 sinh a(′)

i+1

.

Hence b′0 > A0. Since a′0 < a0, we see that b′i > bi for i = 1, 2. Then, for any
non-trivial simple closed curve c through P j , we have `(f(c)∗) > min{A0, b1, b2}.
Hence `(f(c)∗) > α. �
Proof of Theorem 3. Let c0 be a simple closed geodesic on R, and let f be a quasi-
conformal map onR obtained by Lemma 5. Setting S = f(R), we will show that the
point p = [S, f ] ∈ T#(R) belongs to Ω(Mod#(R)). Suppose that p ∈ Λ(Mod#(R)).
Then there exist distinct elements [hn] in Mod#(R) such that [hn](p)→ p (n→∞).
Let gn be an extremal quasiconformal automorphism of S in the homotopy class
of f ◦ h−1

n ◦ f−1. Then K(gn) → 1. Letting α be a constant in Lemma 5, we may
assume that K(gn) < α/`(f(c0)∗) for all n. Then the geodesic gn(f(c0))∗ satisfies
`(gn(f(c0))∗) ≤ K(gn)`(f(c0)∗) < α. By Lemma 5, f(c0)∗ is the only geodesic on
S whose length is less than α. Thus gn(f(c0)) is homotopic to f(c0), which implies
that [hn] ∈Mod#

c0(R). However this contradicts Proposition 2. �
The following proposition gives examples of Riemann surfaces that satisfy the

lower and upper bound conditions.

Proposition 3. Let R̂ be an analytically finite Riemann surface, and R a normal
covering surface of R̂ which is not a universal cover. Then R satisfies the lower
and upper bound conditions.

Proof. The lower bound condition is clearly satisfied. We set R̂≥ε = R̂− R̂ε, where
R̂ε is the ε-thin part of R̂. The lift R0 of R̂≥ε to R is connected and a homomorphism
of π1(R0) to π1(R) which is induced by the inclusion map of R0 into R is surjective.
We will show that R0 ⊂ RM for some M > 0. Then the upper bound condition is
satisfied for the constant M . Since R is a normal covering surface of R̂ which is not
a universal cover, we can take a simple closed geodesic ĉ∗ on R̂ so that the lifts of
ĉ∗ to R are closed geodesics. For an arbitrary point p ∈ R0, let p̂ be the projection
of p. We connect p̂ and ĉ∗ by the shortest geodesic ˆ̀. Since R̂≥ε is compact, there
exists a constant M1 such that the hyperbolic length of ˆ̀ is less than M1 for all
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p̂ ∈ R̂≥ε. Hence there exists a non-trivial simple closed curve ĉp through p̂ whose
hyperbolic length is less than M = 2M1 +M2, where M2 is the hyperbolic length of
ĉ∗. Considering the lift cp of ĉp which is through p, we conclude that p ∈ RM . �

By Theorem 3 and Proposition 3, we have the following.

Corollary 3. Let R̂ be an analytically finite Riemann surface, and R a normal
covering surface of R̂ which is not a universal cover. Then Mod#(R) is of the
second kind.

Example 4. Let R be a Riemann surface as in Example 3. Then the base point
[R, id] belongs to Λ1

∞(Mod#(R)). On the other hand, Mod#(R) is of the second
kind by Corollary 3. Thus both Λ(Mod#(R)) 6= ∅ and Ω(Mod#(R)) 6= ∅ are
satisfied.

We conjecture that the sufficient condition for Mod#(R) to be of the second
kind can be weakened as follows. A partial solution will be given in the author’s
forthcoming paper.

Conjecture. If R satisfies the lower bound condition, then Mod#(R) is of the
second kind. That is, considering Theorem 2, we conjecture that Mod#(R) is of the
second kind if and only if R satisfies the lower bound condition.
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