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TREE-LIKE CONTINUA AND 2-TO-1 MAPS

JO HEATH AND VAN C. NALL

(Communicated by Alan Dow)

Abstract. It is not known if there is a 2-to-1 map from a continuum onto a
tree-like continuum. In fact, it is not known if there is a 2-to-1 map onto a
hereditarily decomposable tree-like continuum. We show that the domain of
such a map would have to contain an indecomposable continuum.

1. Introduction

In 1983 Sam Nadler and Lew Ward [8] asked if a tree-like continuum can be
the image of a 2-to-1 map (defined on a continuum, of course). That question is
answered only for some cases. For instance, it is known that a tree-like continuum
cannot be the image of a 2-to-1 map if it is hereditarily indecomposable [10], or
if it is an indecomposable arc-continuum (every proper subcontinuum is an arc)
[3]. In the decomposable case, Gottschalk [4] showed that no dendrite can be the
image of a 2-to-1 map. Dendrites are uniquely arcwise connected, locally connected
continua.

All of the continua listed above, in fact all tree-like continua, are hereditarily
unicoherent. Nadler and Ward showed that if a continuum fails to be hereditarily
unicoherent, then it is the image of a 2-to-1 map. Thus in the study of 2-to-1
images there is no loss of generality if the continuum is assumed to be hereditarily
unicoherent. What about the case of continua that are hereditarily unicoherent
and yet are not tree-like? For some time it was conjectured that all non-tree-
like continua, including these hereditarily unicoherent ones, were 2-to-1 images.
However, it has been shown [6] that some of Jim Roger’s pseudo-solenoids refute this
conjecture. This paper considers this conjecture for the hereditarily decomposable
case, i.e. is it true that a hereditarily decomposable continuum is the image of a
2-to-1 map iff it is not tree-like? H. Cook [2] has shown that every λ dendroid, that
is, every hereditarily decomposable and hereditarily unicoherent continuum, is tree-
like. Cook’s result, combined with the result of Nadler and Ward mentioned above,
tells us that a hereditarily decomposable continuum that is not tree-like must be the
image of a 2-to-1 map from a continuum. Therefore, if it can be shown that there
is no 2-to-1 map from a continuum onto a λ dendroid; then the original conjecture
restricted to hereditarily decomposable continua would be settled affirmatively.
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However, it is not yet known if there is a 2-to-1 map from a continuum onto
a dendroid (i.e. an arcwise connected λ dendroid). Our main result is that no
hereditarily decomposable continuum maps 2-to-1 onto a dendroid. This theorem
could be greatly strengthened if it were known that there is no at most 2-to-1 map
from an indecomposable continuum onto a dendroid, and we raise this question in
the last section. On the way to the main theorem we develop structure theorems
concerning 2-to-1 maps onto dendroids or λ dendroids; for instance, every λ den-
droid that is the reduced image of a 2-to-1 map is an infinite-od. (Reduced means
that no proper subcontinuum of the image has connected preimage.)

We have included a glossary of terms just before the bibliography.

2. Structure results

Every 2-to-1 map from one continuum to another has a restriction to a sub-
continuum of the domain that is 2-to-1 and reduced. Knowing that every proper
subcontinuum of the image has disconnected preimage is a useful hypothesis, and
if the original image is tree-like or a dendroid, for instance, then the reduced map
is still onto a tree-like continuum or onto a dendroid. In this way, if one assumes
the existence of a 2-to-1 map onto a hereditarily decomposable tree-like continuum,
then there is no loss in generality if the map is assumed to be reduced. We make
this assumption often without discussion.

In the following lemma we extract the parts of [7, Lemma B] that we need. The
definition of a c-set is in the glossary.

Lemma 1 (Harlan Cross Miller). If M is a hereditarily decomposable continuum,
and a and b are points in M such that M is irreducible from a to b, then there is a
continuum K in M \ {a, b} such that M \K is the union of two mutually separated
connected sets U and V such that 1) M = U ∪ V , and 2) U ∩K is a c-set in U ,
and V ∩K is a c-set in V .

Lemma 2. Suppose M , a, b, and K are as in Lemma 1, and f is a simple map
from a continuum onto M . Then f−1(K) has at most two components.

Proof. Let C be a component of f−1(K), and let C1, C2, ... be a nested sequence of
continua containing C properly whose intersection is C. If f(Ci)∩U 6= ∅, then each
component of f(Ci)∩U runs to the boundary of f(Ci)∩U . That is, the boundary
relative to f(Ci). Therefore, there is a component of f(Ci)∩U that contains points
in U and U \ U , and U \ U is contained in K. Therefore, f(Ci) contains K ∩ U ,
since it is a c-set in U . Similarly if f(Ci)∩V 6= ∅, then it contains K∩V . It follows
that f(C) contains either U ∩K or V ∩K. Since (U ∩K) ∩ (V ∩K) 6= ∅, f−1(K)
has at most two components. �

In the following lemma the notation C(A) represents the number of components
of a set A.

Lemma 3. Suppose f is a reduced map from the continuum X onto the continuum
Y . If K is a proper subcontinuum of Y whose inverse has finitely many components,
then Y \K has fewer components than does the inverse of K.

Proof. Let E denote the finite collection of components of f−1(K). Then E has at
least two elements since f is reduced. There is a component D1 of Y \K such that
f−1(D1) contains a continuum that intersects two of the elements of E, say C1 and



TREE-LIKE CONTINUA AND 2-TO-1 MAPS 285

C2. If f−1(K∪D1) is not yet connected, then there is a component D2 of Y \K and
another element C3 of E such that f−1(D2) contains a continuum that intersects
(C1∪C2) and C3. Continuing by induction we have a collectionD1, D2, D3, ..., Dn−1

such that f−1(K ∪D1 ∪D2 ∪ ... ∪Dn−1) is connected and f−1(K) has at least n
components. Therefore, the continuum K ∪D1 ∪D2 ∪ ... ∪Dn−1 = Y , since f is
reduced. That is, Y \K has at most n− 1 components. �
Corollary 1. Suppose f is a reduced map from the continuum X onto an ∞-od Y
and K is a subcontinuum of Y whose complement has infinitely many components.
Then the inverse of K has infinitely many components.

Lemma 4. If f is a reduced 2-to-1 map from a continuum onto the continuum M ,
then M does not contain a pair of disjoint continua E and F such that M/{E,F}
is hereditarily decomposable and irreducible from E to F .

Proof. If M does contain such a pair of continua, then from Lemma 1 and Lemma
2 there is a continuum K contained in M \ (E ∪ F ) that separates M , and such
that f−1(K) has at most two components. This contradicts Lemma 3. �
Theorem 1. If a unicoherent, hereditarily decomposable continuum is the image
of a reduced 2-to-1 map from a continuum, then it is an ∞-od.

Proof. Assume Y is a unicoherent, hereditarily decomposable continuum that is
the image of a 2-to-1 map from a continuum. According to [5] we must produce
for each n a continuum Kn such that Y \Kn has at least n components. Since Y
is decomposable and unicoherent, there is a continuum K2 that separates Y .

Assume there is a continuum Kn−1 such that Y \ Kn−1 has at least n − 1
components. If Y \ Kn−1 has infinitely many components, then we are done. So
assume the number of components of Y \ Kn−1 is finite. Let C be one of these
components. Now C is the union of two proper subcontinua A andB, and E = A∩B
is a continuum since Y is unicoherent. If E ∩Kn−1 6= ∅, let Kn = Kn−1 ∪E.

If E ∩ Kn−1 = ∅, assume without loss of generality that B ∩ Kn−1 6= ∅, and
A∩Kn−1 = ∅. By Lemma 4, there is a proper subcontinuum N of Y that contains
A and Y \C. IfKn = Kn−1∪(N∩C)∪E, then Y −Kn has at least n components. �
Corollary 2. If a λ-dendroid does not contain an ∞-od, then it is not the image
of a 2-to-1 map from a continuum.

3. The main results

Now we must review a couple of earlier results about dendroids. In [1] Borsuk
showed that in a dendroid the closure of the union of a nested collection of arcs
is an arc. Also in [9] Smithson showed that if a continuum has this nested arc
property, then it is not the image of a 2-to-1 map from an arc-connected continuum.
However, Smithson’s proof relies on a slightly weaker assumption which we state in
the following lemma.

Lemma 5. There does not exist a 2-to-1 map from a continuum onto a dendroid
such that the preimage of each point in the range is contained in an arc in the
domain.

Lemma 6. If f is a simple map from a hereditarily decomposable continuum X
onto a dendroid D, and a and b are distinct points of X such that f(a) = f(b), then
there is an arc in X that contains a and b.
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Proof. Suppose there is a point y of D such that no arc in X contains the two
inverse points, a and b, of y.

Consider the collection of triples of the form (M,A,B) where M is a continuum
in X , (A,B) is a crisp pair of arcs in X (meaning that they are disjoint arcs and f
restricted to each is a homeomorphism onto the same arc in D), a is an endpoint
of A, b is an endpoint of B, and either

Case (1). A ∩ M = {a′}, where a′ is the other endpoint of A, and either
B ∩M = {b′}, where b′ is the other endpoint of B, or B ∩M is a subarc of B
containing b′; or

Case (2). B ∩M = {b′} and either A ∩M = {a′} or A ∩M is a subarc of A
containing a′.

We say that (M1, A1, B1) < (M2, A2, B2) if M2 is a proper subcontinuum of M1,
A1 is a proper subarc of A2, and B1 is a proper subarc of B2. (So the continua
shrink as the arcs elongate.)

Claim 1. The collection is non-empty.
Let I be a subcontinuum of X irreducible from a to b and decompose I into

H ∪K, two proper subcontinua. One, say H , must contain a and the other b and
neither a nor b is in the intersection H ∩ K. Let λ be the arc in D from y to
f(H ∩K), so that only its endpoint p is in f(H ∩K). Denote by q a point in H ∩K
that maps to p. Then, since a maps to y, q maps to p and {a, q} is a subset of H ,
f(H) contains the arc λ. We use here and later that dendroids are uniquely arcwise
connected. Also, f(K) contains λ. Let {pi} be a sequence of points in λ converging
to p (but none equal to p). Since the arc 〈y, pi〉 is contained in f(H \K)∩f(K \H)
for each i, and since f is simple, there is an arc Ai in H \ K such that f |Ai is a
homeomorphism onto 〈y, pi〉. (Also, a similar arc exists in K \H .) Let U =

⋃
iAi.

Since U \ U maps to p and is a continuum, U \ U is a single point that maps to p
and U is an arc A that lies in H \K, except possibly for the endpoint that maps
to p. The same thing happens in K \H and these endpoints that map to p cannot
be the same point (or else the inverse of y is contained in an arc). Let B be the
similar arc that is in K \H except possibly for its endpoint that maps to p. Note
that (A,B) is a crisp pair of arcs.

One of A or B has as its endpoint the point q in H ∩K. If it is A, we have Case
(1). If it is B, we have Case (2). Suppose it is A. Since p is the only point of λ in
f(H ∩K), the arc A lies outside of K except for its endpoint q, so if K is used as
our continuum M in the construction of a triple, then A ∩M is a single point and
the arc B is entirely inside M .

Claim 2. Each chain in the collection has an upper bound.
Suppose {(Mi, Ai, Bi)} is an ascending chain from the collection of triples. Let

M =
⋂
iMi, and let A and B be the closures of

⋃
iAi and

⋃
iBi, respectively. The

nesting property of D and our assumption on y ensure that these closures add but a
single point a′ to

⋃
iAi and a single point b′ to

⋃
iBi, and these are distinct points

that map to the same point in D. So (A,B) is a crisp pair of arcs since (Ai, Bi) is
a crisp pairs of arcs for each i.

Subclaim. If, for infinitely many i, Case (1) holds for the triple (Mi, Ai, Bi), then
Case (1) holds for (M,A,B).

Since Ai ∩Mi = {ai} for infinitely many i, the union of these Ai (which equals
the union of all of them) does not intersect M , and since A adds only a′ to the
union and a′ is in M , we have that M ∩A = {a′}.



TREE-LIKE CONTINUA AND 2-TO-1 MAPS 287

If Bi∩Mi is a single point for infinitely many i, then we are done since M ∩B =
{b′} satisfies Case (1). So, suppose without loss of generality that for every integer
i, the intersection Bi ∩ Mi is a subarc of Bi, one of whose endpoints is bi, the
endpoint of Bi that is not b. We only need that M ∩ B is connected, since Case
(1) allows this intersection to be the point b′ or an arc in B containing b′, and we
know that b′ is in both B and M .

Suppose B ∩M is not an endarc of B (or just the point b′). Let z be the first
point of B (in the order from b to b′) that lies in M . Since B ∩M is not an endarc,
there is a point w ∈ B \M between z and b′. Since b′ is the only point of B that
is not in

⋃
iBi, there is a j such that w is in Bj . If w is not in Mj, then z is not

either, since Bj ∩Mj is an endarc of Bj and z comes before w. But z not in Mj

means z is not in M . This is a contradiction and we see that if w is in any Bi,
then w must be in Mi. But w ∈ Bj implies that w ∈ Bk for every k > j, since the
arcs are ascending. Therefore w ∈ Mk for all k > j. This means that w is in M .
Another contradiction.

Let (M,A,B) be a maximal triple. Without loss of generality we will assume
that (M,A,B) is a Case (1) triple and that B ∩M is an arc rather than just a
point. Let I be an irreducible continuum in M from a′ (the other endpoint of A,
the one in M) to the arc B ∩M.

We need to see that B∩I is connected and contains b′, the endpoint of B that is
not b. It is non-empty since I is irreducible from a′ to B, so let z be the first point
of B (in the order from b to b′) that lies in I, and denote by γ the subarc 〈z, b′〉
of B. Now, suppose there is a point w of γ, excluding b′, that is not in I. Note
that it is not possible for b′ to be the only point of γ that is not in I. Consider the
inverse of f(w). One point, w, of B \ I maps to f(w); another point, w′, of A maps
to f(w), where w′ lies in A \ I since only the point a′ of A lies in M or in I; and
yet, because both z and a′ are in I, a third point, a point in I, maps to f(w) since
both γ and I map onto the (only) arc from f(z) to f(a′) = f(b′). This contradicts
the fact that f is simple.

Decompose I into H ∪K, two proper subcontinua. One, say H , will contain a′,
K will contain the endarc γ of B, and neither γ nor a′ will intersect H ∩K since
I is irreducible from a′ to M ∩B.

Recall that a′ and b′ map to the same point, say y′, in D. Let λ be the arc in
D from y′ to f(H ∩K), so that only its endpoint p is in f(H ∩K). As before, in
the proof of Claim 1, we get a crisp pair of arcs, say (α, β), from each of a′ and b′,
respectively, to points q and s that map to p, where q is in H ∩K. Here is where
one of the special properties of the triples is used: the arc α from a′ to either q
or s lies in M and the arc A from a to a′ lies outside of M , except for a′ only, so
their union, say A′, is an elongated arc and not some other continuum. We need
to see now that the other continuum B ∪ β = B′ is also an arc and that (A′, B′) is
a crisp pair of arcs. Each of A and B maps onto f(A) since (A,B) is a crisp pair,
and so, since f is simple, there are no other points that map to f(A). So f(α) is
disjoint from f(A) except for y′, and f(β) maps onto f(α), so no point of β is in
B, except for their common endpoint, b′. Thus B′ is an arc and (A′, B′) is a crisp
pair of arcs.

The arc λ from y′ to p has only the point p in f(H ∩ K), so one of A′ or B′,
whichever contains q, intersects H ∩K exactly in the one point q. If q is in A′, then
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the larger triple is (K,A′, B′). If q is in B′, then the larger triple is (H,A′, B′).
Thus the triple (M,A,B) was not maximal, a contradiction. �

The following theorem follows easily from the previous two lemmas.

Theorem 2. There does not exist a 2-to-1 map from a hereditarily decomposable
continuum onto a dendroid.

Question. Is there an indecomposable continuum that admits a simple map onto
a dendroid?

4. Glossary

(1) A topological space is a continuum if it is compact, connected and metriz-
able.

(2) A 2-to-1 map is crisp if the preimage of each proper subcontinuum in the
image consists of two components, each of which maps homeomorphically
onto the subcontinuum.

(3) If M is a continuum, a subcontinuum of N of M is a c-set in M provided
N is a subset of any subcontinuum of M that contains both a point in N
and a point not in N .

(4) A continuum is a dendrite if it is hereditarily decomposable, hereditarily
unicoherent, arc connected, and locally connected.

(5) A continuum is a dendroid if it is hereditarily decomposable, hereditarily
unicoherent, and arc connected.

(6) A continuum is an ∞-od if it contains a subcontinuum whose complement
has infinitely many components.

(7) A continuum is a λ dendroid if it is hereditarily decomposable and heredi-
tarily unicoherent.

(8) A map between continua is reduced if no proper subcontinuum of the image
has connected preimage.

(9) A map is simple if the inverse of each point in the range contains at most
two points.
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