A NEW CHARACTERIZATION OF THE UNIT BALL OF H^2

R. A. KORTRAM

(Communicated by Juha M. Heinonen)

ABSTRACT. We derive a new expression for the norm of H^2 functions; we present some well-known results in a different setting.

Introduction

In 1915, Pick [3] proved the following result.

Theorem 1. Let g be an analytic function on the unit disc Δ in the complex plane. Then $|g(z)| \leq 1$ for all $z \in \Delta$ if and only if for all $n \in \mathbb{N}$, for all sequences z_1, z_2, \ldots, z_n in Δ and for all sequences $\lambda_1, \lambda_2, \ldots, \lambda_n$ we have

(1)
$$\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{1 - g(z_k) \overline{g(z_l)}}{1 - z_k \overline{z_l}} \lambda_k \overline{\lambda_l} \ge 0.$$

Ahlfors [1], page 3, gives an elegant proof of this characterization of the unit ball of H^{∞} .

In this note we shall present a characterization of the unit ball of H^2 . Our main tool will be an explicit solution of the "minimal interpolation problem" for H^2 (see [2], page 141). As a byproduct we obtain a new proof of Pick's theorem.

DESCRIPTION OF THE MAIN RESULT

Let z_1, z_2, \ldots, z_n be a sequence in Δ , and let b be the Blaschke product generated by the sequence

(2)
$$b(z) = \prod_{j=1}^{n} \frac{z - z_j}{1 - \overline{z}_j z}.$$

We shall prove that the following conditions are equivalent for continuous functions f on Δ :

- 1) f lies in the unit ball of H^2 .
- 2) For every $n \in \mathbb{N}$ and for every sequence z_1, z_2, \ldots, z_n of mutually distinct points in Δ we have

(3)
$$\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{f(z_k)\overline{f(z_l)}}{1 - z_k \overline{z}_l} \cdot \frac{1}{b'(z_k)\overline{b'(z_l)}} \le 1.$$

Received by the editors August 13, 2002.

2000 Mathematics Subject Classification. Primary 30D55.

Preliminaries

For mutually distinct points z_1, z_2, \ldots, z_n in Δ and for w_1, w_2, \ldots, w_n in $\mathbb C$ we define

$$\Lambda = \{ f \in H^2 : f(z_i) = w_i, \ j = 1, 2, \dots, n \}.$$

 Λ is not empty; it contains the Lagrange interpolation polynomial

$$\lambda(z) = l(z) \sum_{k=1}^{n} \frac{w_k}{(z - z_k)l'(z_k)},$$

where
$$l(z) = \prod_{j=1}^{n} (z - z_j)$$
.

In the context of \mathcal{H}^p spaces it is more natural to work with the Blaschke interpolation function

$$\beta(z) = b(z) \sum_{k=1}^{n} \frac{1 - \overline{z}_k z}{z - z_k} \cdot \frac{w_k}{b'(z_k)(1 - |z_k|^2)},$$

with b(z) defined as in (2). Of course $\beta \in \Lambda$. However, for our purposes we are better off with

(4)
$$\varphi(z) = b(z) \sum_{k=1}^{n} \frac{w_k}{(z - z_k)b'(z_k)}.$$

 $\varphi \in \Lambda$, and φ is analytic on some neighbourhood of $\overline{\Delta}$. Λ is a hyperplane in H^2 . With φ and b defined as in (4) and (2) we have

$$\Lambda = \{ \varphi + bg; \ g \in H^2 \}.$$

Theorem 2. φ is the unique solution of the "minimal interpolation problem", i.e., for every $f \in \Lambda \setminus \{\varphi\}$ we have $||f||_2 > ||\varphi||_2$.

Proof. It suffices to show that $\varphi \perp (f - \varphi)$ for every $f \in \Lambda$ (since under those circumstances $||f||^2 = ||\varphi||^2 + ||f - \varphi||^2$).

From the decomposition $f = \varphi + bg$ we have

$$\langle f - \varphi, \varphi \rangle = \langle bg, \varphi \rangle = \frac{1}{2\pi} \int_{0}^{2\pi} b(e^{it}) g(e^{it}) \overline{\varphi(e^{it})} dt$$
$$= \frac{1}{2\pi} \int_{0}^{2\pi} b(e^{it}) g(e^{it}) \overline{b(e^{it})} \sum_{k=1}^{n} \frac{\overline{w}_{k}}{(e^{-it} - \overline{z}_{k}) \overline{b'(z_{k})}} dt.$$

Note that $|b(e^{it})|^2 = 1$. Thus,

$$\langle f - \varphi, \varphi \rangle = \sum_{k=1}^{n} \frac{\overline{w}_{k}}{2\pi \overline{b'(z_{k})}} \int_{0}^{2\pi} g(e^{it}) \frac{e^{it}}{1 - e^{it}\overline{z}_{k}} dt$$

$$= \sum_{k=1}^{n} \frac{\overline{w}_{k}}{\overline{b'(z_{k})}} \cdot \frac{1}{2\pi i} \int_{\Gamma} \frac{g(z)}{1 - \overline{z}_{k}z} dz = 0,$$

because the integrand is analytic on Δ .

It will be convenient to have an explicit expression for $\|\varphi\|_2$:

$$\|\varphi\|_{2}^{2} = \frac{1}{2\pi} \int_{0}^{2\pi} |\varphi(e^{it})|^{2} dt = \frac{1}{2\pi} \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_{k} \overline{w}_{l}}{b'(z_{k}) \overline{b'(z_{l})}} \int_{0}^{2\pi} \frac{dt}{(e^{it} - z_{k})(e^{-it} - \overline{z}_{l})}$$

$$= \frac{1}{2\pi i} \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_{k} \overline{w}_{l}}{b'(z_{k}) \overline{b'(z_{l})}} \int_{\Gamma} \frac{dz}{(z - z_{k})(1 - \overline{z}_{l}z)}$$

$$= \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_{k} \overline{w}_{l}}{1 - z_{k} \overline{z}_{l}} \frac{1}{b'(z_{k}) \overline{b'(z_{l})}}.$$

There are, of course, many other expressions for $\|\varphi\|_2$.

Theorem 3.

$$\|\varphi\|_2 = \max \left\{ \left| \sum_{k=1}^n \frac{w_k f(z_k)}{b'(z_k)} \right| : f \in H^2, \|f\|_2 \le 1 \right\}.$$

Proof.

$$\sum_{k=1}^{n} \frac{w_k f(z_k)}{b'(z_k)} = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)\varphi(z)}{b(z)} dz;$$

hence, by Schwarz's inequality we have

$$\left| \sum_{k=1}^{n} \frac{w_k f(z_k)}{b'(z_k)} \right| \le \frac{1}{2\pi} \int_0^{2\pi} |f(e^{it})| \cdot |\varphi(e^{it})| dt \le ||f||_2 \cdot ||\varphi||_2 \le ||\varphi||_2.$$

Equality holds for the function $f: z \to \frac{1}{\|\varphi\|_2} \sum_{k=1}^n \frac{\overline{w}_k}{(1-\overline{z}_k z)\overline{b'}(z_k)}$.

An immediate result from Theorem 2 is

Corollary. For every sequence z_1, z_2, \ldots, z_n of mutually distinct points of Δ we have

$$\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{1}{1 - z_k \overline{z}_l} \cdot \frac{1}{b'(z_k) \overline{b'(z_l)}} \le 1.$$

Proof. Take $w_1 = w_2 = \ldots = w_n = 1$. Then $1 \in \Lambda$ and since

$$||1||_2=1$$

we have

$$1 \ge \|\varphi\|_2^2 = \sum_{k=1}^n \sum_{l=1}^n \frac{1}{1 - z_k \overline{z}_l} \cdot \frac{1}{b'(z_k) \overline{b'(z_l)}}.$$

The equality sign certainly occurs if $0 \in \{z_1, z_2, \dots, z_n\}$:

$$1 = \varphi(0)^2 \le \frac{1}{2\pi} \int_0^{2\pi} |\varphi(e^{it})|^2 dt = \|\varphi\|_2^2 = \sum_{k=1}^n \sum_{l=1}^n \frac{1}{1 - z_k \overline{z}_l} \cdot \frac{1}{b'(z_k) \overline{b'(z_l)}}.$$

If $0 \notin \{z_1, z_2, \dots, z_n\}$, there is strict inequality.

Because of the uniqueness of φ there can be equality only if

$$b(z)\sum_{k=1}^{n} \frac{1}{(z-z_k)b'(z_k)} = 1.$$

In this identity for rational functions we let $z \to \infty$. Since $z_j \neq 0$, $\lim_{z \to \infty} b(z)$ has a finite value. Therefore, the left-hand side has limit zero.

Remark. The corollary shows that a function satisfying (1) also satisfies (3).

The fact that $\varphi \in \Lambda$ has an interesting reformulation. We start with a lemma.

Lemma 1. The partial fraction decomposition of φ is

(5)
$$\varphi(z) = \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_k}{(1 - \overline{z}_l z)(1 - \overline{z}_l z_k)b'(z_k)\overline{b'(z_l)}}.$$

Proof. An elegant way to prove this is to compute both sides of the following identity.

For $z \in \Delta$ we have

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{\varphi(\zeta)}{1 - \overline{\zeta}z} \cdot \frac{d\zeta}{\zeta} = \frac{1}{2\pi i} \int_{\Gamma} \frac{\overline{\varphi(\zeta)}}{1 - \zeta\overline{z}} \cdot \frac{d\zeta}{\zeta}.$$

The left-hand side is equal to

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{\varphi(\zeta)}{\zeta - z} dz = \varphi(z),$$

while the right-hand side is equal to the complex conjugate of

$$\frac{1}{2\pi i} \int_{\Gamma} \overline{b(\zeta)} \sum_{k=1}^{n} \frac{\overline{w}_{k}}{(\overline{\zeta} - z_{k})b'(z_{k})} \cdot \frac{1}{1 - \zeta \overline{z}} \cdot \frac{d\zeta}{\zeta},$$

i.e., to the complex conjugate of

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{1}{b(\zeta)} \sum_{k=1}^{n} \frac{\overline{w}_{k}}{(1 - \overline{z}_{k}\zeta)\overline{b'(z_{k})}} \frac{d\zeta}{1 - \overline{z}\zeta}.$$

Calculation of the residues at the points z_1, z_2, \ldots, z_n lead to (5).

The condition $\varphi \in \Lambda$ implies that $\varphi(z_j) = w_j, j = 1, ..., n$, i.e.,

$$\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_k}{(1 - \overline{z}_l z_j)(1 - \overline{z}_l z_k)b'(z_k)\overline{b'(z_l)}} = w_j.$$

This is equivalent to the assertion that the matrices

$$B = (\beta_{lk})$$

and its conjugate $\overline{B} = (\overline{\beta}_{lk})$ where

$$\beta_{lk} = \frac{1}{(1 - \overline{z}_l z_k)b'(z_k)}$$

are inverses of each other, i.e., B and \overline{B} are unitary.

PROOF OF THE MAIN RESULT

Theorem 4. Let f be a continuous function on the unit disc in the complex plane. Then the following conditions are equivalent:

- 1. f is analytic and f lies in the unit ball of H^2 .
- 2. For every $n \in \mathbb{N}$ and for every sequence z_1, z_2, \ldots, z_n of mutually distinct points in Δ we have

(3)
$$\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{f(z_k)\overline{f(z_l)}}{1 - z_k \overline{z}_l} \cdot \frac{1}{b'(z_k)\overline{b'(z_l)}} \le 1.$$

Proof. We split up the proof into two lemmas.

Lemma 2. Let f belong to the unit ball of H^2 , and let a sequence of mutually distinct points z_1, z_2, \ldots, z_n in Δ be given. Then (3) holds.

Proof. Define $w_j = f(z_j)$. f lies in the hyperplane Λ and the element φ of Λ with minimal norm satisfies

$$\|\varphi\|_2 \le \|f\|_2 \le 1.$$

Use of the explicit expression for $\|\varphi\|_2$ leads to (3).

Lemma 3. Let f be continuous and assume that f satisfies (3). Then f is analytic and f lies in the unit ball of H^2 .

Proof. We apply (3) for the case n = 1; an easy computation shows that

(6)
$$|f(z)| \le \frac{1}{\sqrt{1 - |z|^2}}$$

for every choice of $z \in \Delta$.

Let $0 < r < \rho < 1$, and let z_1, z_2, z_3, \ldots be an enumeration of the rational points of $\overline{\Delta}_{\rho}$. For every n there is a function φ_n with

$$\varphi_n(z_j) = f(z_j), \quad j = 1, 2, \dots, n,$$

and

$$\|\varphi_n\|_2^2 = \sum_{k=1}^n \sum_{l=1}^n \frac{f(z_k)\overline{f(z_l)}}{1 - z_k \overline{z_l}} \cdot \frac{1}{b'(z_k)\overline{b'(z_l)}} \le 1.$$

Thus, φ_n lies in the unit ball of H^2 , and so by Lemma 2, we have for every sequence $\zeta_1, \zeta_2, \ldots, \zeta_n$ in Δ

$$\sum_{k=1}^{m} \sum_{l=1}^{m} \frac{\varphi_n(\zeta_k) \overline{\varphi_n(\zeta_l)}}{1 - \zeta_k \overline{\zeta}_l} \cdot \frac{1}{b'(z_k) \overline{b'(z_l)}} \le 1.$$

It follows from (6) that

$$|\varphi_n(\zeta)| \le \frac{1}{\sqrt{1-|\zeta|^2}},$$

hence the sequence $\varphi_1, \varphi_2, \ldots$ is uniformly bounded on $\overline{\Delta}_{\rho}$. Therefore, it contains a locally uniformly convergent subsequence φ_{n_j} . At the points z_1, z_2, \ldots the subsequence converges to f. By the continuity of f and the fact that $\{z_1, z_2, \ldots\}$ is dense in Δ_{ρ} we see that

$$\lim_{n_j \to \infty} \varphi_{n_j} = f.$$

This shows that f is analytic on Δ_{ρ} for all $\rho < 1$. Because of uniform convergence on Γ_r , we have

$$\frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^2 dt = \lim_{n_j \to \infty} \frac{1}{2\pi} \int_0^{2\pi} |\varphi_{n_j}(re^{it})|^2 dt \le 1.$$

Thus, $f \in H^2$ and $||f||_2 \le 1$.

Lemma 2 and Lemma 3 together constitute a proof of the theorem.

Corollary. For $f \in H^2$ we define

$$\nu(f) = \sup \left\{ \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{f(z_k)\overline{f(z_l)}}{1 - z_k \overline{z}_l} \cdot \frac{1}{b'(z_k)\overline{b'(z_l)}}; \right.$$

$$z_1, z_2, \ldots, z_n$$
 mutually distinct points of Δ .

Then $\nu(f) = ||f||_2^2$.

Proof. Assume that $\nu(f)=1$. Then by Lemma 3 $||f||_2^2 \le 1$. If $||f||_2^2 < \lambda^2 < 1$ for some λ , then we have $\left\|\frac{1}{\lambda}f\right\| < 1$ but $\nu\left(\frac{1}{\lambda}f\right) > 1$ which is impossible by Lemma 2.

In a similar way we can show that $||f||_2^2 = 1$ implies that $\nu(f) = 1$. By the homogeneity of ν and $|| \quad ||_2^2$ it follows that for all $f \in H^2$: $\nu(f) = ||f||_2^2$.

PICK'S THEOREM

As an application of our results we shall give a proof of Pick's theorem.

Let g belong to the unit ball of H^{∞} , and let z_1, z_2, \ldots, z_n be a sequence of mutually distinct points in Δ . Let w_1, w_2, \ldots, w_n be an arbitrary sequence of complex numbers. We consider the hyperplanes Λ and Λ_g where

$$\Lambda_q = \{ f \in H^2 : f(z_i) = w_i g(z_i), j = 1, 2, \dots, n \}.$$

Of course, if $f \in \Delta$, then $g \cdot f \in \Delta_g$, and by Theorem 2 applied to Λ_g we have

$$||gf||_2^2 \ge \sum_{k=1}^n \sum_{l=1}^n \frac{w_k g(z_k) \overline{w_l g(z_l)}}{1 - z_k \overline{z}_l} \frac{1}{b'(z_k) \overline{b'(z_l)}}.$$

Let φ be, as before, the element of Λ with smallest norm. From $||g||_{\infty} \leq 1$ we obtain

$$||g\varphi||_2 \le ||\varphi||_2.$$

Combining these steps leads to

$$\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_k \overline{w}_l}{1 - z_k \overline{z}_l} \cdot \frac{1}{b'(z_k) \overline{b'(z_l)}}$$

$$= \|\varphi\|_2^2 \ge \|g\varphi\|_2^2 \ge \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_k \overline{w}_l g(z_k) \overline{g(z_l)}}{1 - z_k \overline{z}_l} \cdot \frac{1}{b'(z_k) \overline{b'(z_l)}},$$

i.e., to

$$\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{1 - g(z_k)\overline{g(z_l)}}{1 - z_k \overline{z_l}} \cdot \frac{w_k \overline{w_l}}{b'(z_k)\overline{b'(z_l)}} \ge 0,$$

and since the sequence w_1, w_2, \ldots, w_n is arbitrary, we have for all choices of λ_1 , $\lambda_2, \ldots, \lambda_n,$

$$\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{1 - g(z_k) \overline{g(z_l)}}{1 - z_k \overline{z}_l} \cdot \lambda_k \overline{\lambda}_l \ge 0.$$
 By the choice $n = 1$, $\lambda_1 = 1$ we see that the converse is trivial.

References

- 1. Lars V. Ahlfors, Conformal Invariants, McGraw Hill (New York), 1973. MR 50:10211
- 2. P.L. Duren, Theory of H^p spaces, Academic Press (New York, London), 1970. MR 42:3552
- 3. G. Pick; Über die Beschränkungen analytischer Funktionen, welche durch vorgeschriebene Werte bewirkt werden, Math. Ann. 77 (1915), 7-23.

Department of Mathematics, Catholic University, Toernooiveld, 6525 ED Nijmegen, The Netherlands

 $E ext{-}mail\ address: kortram@math.kun.nl}$