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INFIMUM PRINCIPLE
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(Communicated by Alan Dow)

Abstract. We utilize the technique of dual sets to prove a theorem on the
attainment of a simultaneous infimum by a compatible family of functions.
Corollaries to the theorem include, among others, the von Neumann Minimax
Principle and Nash’s Equilibrium Theorem.

1. Introduction

J. von Neumann’s Minimax Principle (cf. [12]) is of fundamental significance in
game theory. Over the years, it has found a multitude of applications in (math-
ematical) economics, linear programing, sociology, and other sciences. It has also
been an object of intense research.

In 1950, J. Nash ([6], [7]) proved one of the most celebrated theorems of game
theory. It was the further applications of the equilibrium theorem in economics
that showered several awards on John Nash, including the Nobel Prize in 1994 (cf.
[1], [2]).

In the second half of 1950, D. Gale (cf. [3]) and H. Nikaido (cf. [9]) obtained a
theorem that was instrumental in proving the existence of a competitive equilibrium
for excess supply functions for the workability of decentralized economies (in the
Walras sense) (cf. [8]).

It seems rather unlikely that these three great classical theorems may have any-
thing in common. It is then an unexpected discovery that in fact they are all
closely related. For, in our paper, we offer a topological theorem that has the
three aforementioned theorems (along with yet another one - Kakutani’s Fixed
Point Theorem) as its particular instances (see Corollaries 3, 4, 1, and 2). In
another similar development, H. Reitberger [10] showed that the Nash equilibrium
theorem, von Neumann minimax theorem, and Kakutani fixed point theorem follow
from S. Smale’s generalization of the Vietoris mapping theorem.

Our main theorem, the Infimum Principle (see Theorem 3), is fairly general so
that it enables us to derive not only some classical theorems but also stimulates
new research. In the paper, we prove a theorem (see Corollary 2) that can be seen
as an n-dimensional version of the Minimax Principle.
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2. Dual families

Definition 1.1 For given set X , let F = {F (x) : x ∈ X} be a family of non-empty
subsets of X indexed by the elements of the set X . Such a family gives rise to a
dual family, F ′, of subsets of the set X defined as follows. For a given y ∈ X , let
F ′(y) = {x ∈ X : y ∈ F (x)}. We set

F ′ = {F ′(y) : y ∈ X}.

We have the following dichotomy:

(2.1) y ∈ F (x) if and only if x ∈ F ′(y).

Consequently,

Lemma 1. (i) If the family F consists of non-empty sets, then the dual family F ′
is a covering of X. (ii) If the family F is a covering of Y , then the dual family
F ′ consists of non-empty subsets of X. (iii) (F ′)′ = F . (iv) Let F1 = {F1(x) :
x ∈ X}, F2 = {F2(x) : x ∈ X} and F = {F1(x) ∩ F2(x) : x ∈ X}. Then
F ′ = {F ′1(y) ∩ F ′2(y) : y ∈ Y }.

In the next two theorems we introduce tools for proving our main results. The
first one is a theorem on indexed families (see [5]).

Theorem 1 (Theorem on Indexed Families). Let y0, . . . , ym be points of a lin-
ear space and let the sets U0, . . . , Um form an open covering of the convex hull,
conv{y0, . . . , ym}, of the points y0, . . . , ym. Then there exists a non-empty set of
indices {io, . . . , ik} ⊆ {1, . . . ,m} such that conv{yi0 , . . . , yik} ∩Ui0 ∩ . . .∩ Uik 6= ∅.

The second one is a fixed point type theorem for families of sets.

Theorem 2. Let F = {F (x) : x ∈ X} be a family of non-empty convex subsets of
a compact convex subspace X of a linear space such that F ′(y) is an open subset
of X for each y ∈ X. Then there exists a point a ∈ X such that

a ∈ F (a).

Proof. Since X is compact, there are points y0, y1, ..., ym ∈ Y such that

X ⊆ F ′(y0) ∪ F ′(y1) ∪ ... ∪ F ′(ym).

From Theorem 1 there is a point a ∈ conv{yi0 , yi1 , ..., yik}∩F ′(yi0)∩F ′(yi1)∩ ...∩
F ′(yik). It follows from (2.1) that {yi0 , yi1 , ...yik} ⊆ F (a). Since F (a) is convex,
conv{yi0 , yi1 , ..., yik} ⊆ F (a). Since a ∈ conv{yi0 , yi1 , ..., yik}, a ∈ F (a). �

Definition 2. Let X be a linear space. A real function f : X → R is said to be
quasi-convex if f−1((−∞, z)) is convex for each z ∈ R.

Definition 3. Let f : X × Y → Z be a map defined on the product of two sets. If
x ∈ X and y ∈ Y , then fx and fy denote the partial maps of the map f, i.e.,

fx(y) = f(x, y) = fy(x).

1The definition of families {F (x) : x ∈ X} and their duals can also be given in terms of set-
valued mappings F : X → 2Y or in terms of subsets of the product X ×Y . For instance, if F was
considered as a map F : X → 2Y , then F ′ : Y → 2X and F ′ would be a kind of inverse map to
F . For our exposition, we prefer that both F and F ′ be regarded as families of sets.
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Definition 4. For each i = 1, 2, ..., n, let gi : X × Y → Z.
We say that the family of functions {gi : i = 1, 2, ..., n} is n-compatible with

respect to the first variable if for each y ∈ Y and for each x1, x2, ..., xn ∈ X there
exists x0 ∈ X such that gi(xi, y) = gi(x0, y) for each i = 1, 2, ..., n.

We say that the family of functions {gi : i = 1, 2, ..., n} is n-compatible with
respect to the second variable if for each x ∈ X and for each y1, y2, ..., yn ∈ Y there
exists y0 ∈ Y such that gi(x, yi) = gi(x, y0) for each i = 1, 2, ..., n.

Theorem 3 (The Infimum Principle). Let X and Y be compact and convex sub-
spaces of linear spaces. Let continuous functions gi : X × Y → R, i = 1, 2, ..., n+
1, ..., n+m, satisfy conditions:

(gn1) The partial function gyi : X → R is quasi-convex for each y ∈ Y and
i = 1, 2, ..., n. The partial function gix : Y → R is quasi-convex for each
x ∈ X and i = n+ 1, n+ 2, ..., n+m.

(gn2) The family of functions {gi : i = 1, 2, ..., n} is n-compatible with respect to
the first variable. The family of functions {gi : i = n+ 1, n+ 2, ..., n+ m}
is m-compatible with respect to the second variable.

Then there exists a point (a, b) ∈ X × Y such that

gi(a, b) = inf
x∈X

gi(x, b) for each i = 1, 2, ..., n, and(2.2)

gn+j(a, b) = inf
y∈Y

gn+j(a, y) for each j = 1, 2, ...,m.(2.3)

Proof. For each i, i = 1, 2, ..., n, let gi be a function given by

gi(y) = inf
x∈X

gi(x, y).

For each j = 1, 2, ...,m, let gn+j be a function given by

gn+j(x) = inf
y∈Y

gn+j(x, y).

By continuity of the functions gi, the functions gi, i = 1, . . . , n+m, are continuous.
Let ε > 0 be given. For each y ∈ Y and for each i = 1, ..., n, the set Ai(y) is given
by

Ai(y) = {x ∈ X : gi(y) + ε > gi(x, y)}.
By (gn1), Ai(y) is non-empty and convex for each y ∈ Y and i = 1, ..., n.

For each x ∈ X and for each j = 1, ...,m, the set Bj(x) is given by

Bj(x) = {y ∈ Y : gn+j(x) + ε > gn+j(x, y)}.
By (gn1), Bj(x) is non-empty and convex for each x ∈ X and j = 1, ...,m.

By continuity of gi’s, the dual sets

(2.4) A′i(x) = {y ∈ Y : gi(y) + ε > gi(x, y)}
and

(2.5) B′j(y) = {x ∈ X : gn+j(x) + ε > gn+j(x, y)}
are open for each x ∈ X, y ∈ Y, i = 1, . . . , n, and j = 1, 2, ...,m.

For each y ∈ Y , A(y) is given by A(y) =
⋂
{Ai(y) : i = 1, 2, ..., n}. For each

x ∈ X , B(x) is given by B(x) =
⋂
{Bj(x) : j = 1, 2, ...,m}. We shall show that

each of the sets A(y) as well as B(x) is non-empty.
Appealing to the definition of gi(y), for each i = 1, 2, ..., n, there exists xi ∈ X

such that gi(y) + ε > gi(xi, y). Since the family {gi : i = 1, 2, ..., n} is n-compatible
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with respect to the first variable, there exists x0 ∈ X such that gi(xi, y) = gi(x0, y)
for each i = 1, 2, ..., n. Hence gi(y) + ε > gi(x0, y) for each i = 1, 2, ..., n, which
means that x0 ∈

⋂
{Ai(y) : i = 1, 2, ..., n} = A(y).

For similar reasons the set B(x) is non-empty for each x ∈ X .
Let F (x, y) = A(y) × B(x). Then F (x, y) is a non-empty convex subset of the

product of linear spaces for each (x, y) ∈ X × Y . We have

F ′(u, v) = {(x, y) ∈ X × Y : (u, v) ∈ F (x, y)}
= {(x, y) ∈ X × Y : (u, v) ∈ A(y)×B(x)}
= {(x, y) ∈ X × Y : (x, y) ∈ B′(v)×A′(u)} = B′(v)×A′(u).

By Lemma 1(iv) and (2.4), (2.5), the dual sets F ′(u, v) are open for each (u, v) ∈
X × Y .

Theorem 2 applied to the product of compact and convex spaces yields a point
(aε, bε) ∈ X × Y such that (aε, bε) ∈ F (aε, bε) =

⋂
{Ai(bε) : i = 1, 2, ..., n} ×⋂

{Bj(aε) : j = 1, 2, ...,m}. Hence, for each i = 1, ..., n, gi(bε)̇ + ε > gi(aε, bε), and,
for each j = 1, 2, ...,m, gn+j(aε)̇ + ε > gn+j(aε, bε).

For a given ε > 0, we set

K(ε) =

{
(x, y) ∈ X × Y : ∀i=1,...,n∀j=1,...,m gi(x, y)− gi(y) ≤ ε

and gn+j(x, y)− gn+j(x) ≤ ε

}
.

We just showed that the sets K(ε) are non-empty for each ε > 0, and since
each of the functions gi and gi is continuous, the sets K(ε) are also closed. By
compactness of the product space X × Y , there exists a point (a, b) ∈ X × Y such
that (a, b) ∈ K(ε) for each ε > 0. This is only possible if the point (a, b) is as
required. �

Remark 1. Condition (gn1) in versions of Theorem 3 when n = 0, 1 and/or m = 0, 1
is superfluous.

Remark 2. If the version of our main Theorem 3 with conclusions (2.2) and (2.3)
was called the inf/inf theorem, then one could have three more versions of the
theorem specified as: (1) sup/inf, (2) inf/sup, and (3) sup/sup. To state and to
prove one of the three new versions, one would have to replace quasi-convexity
by quasi-concavity (cf. Definition 5) in part (gn1) that pertains to supremum
and make the appropriate adjustment in the original proof. This is because of the
following trivial fact: inf(−g) = − sup g. One can also observe that compatibility
(with respect to any of the two variables) of a family {gk : k = 1, ..., l} remains in
place for the family {−gk : k = 1, ..., l}. Since we do not need any of the other
three versions of our main Theorem 3 in the forthcoming study, we decided not to
pursue this venue.

3. Consequences

We are going to derive four important results as easy corollaries from the Infimum
Principle. They will be proved for normed linear spaces despite the feasibility of
obtaining substantially more general statements.

Definition 5. A real function f : X → R is said to be quasi-concave if f−1((z,∞))
is convex for each z ∈ R.
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Corollary 1 (Nash Equilibrium Theorem). Let X1, . . . , Xn be non-empty compact
convex subsets of normed spaces and let X = X1 × . . . ×Xn be their product. For
points x = (x1, . . . , xn) and y = (y1, . . . , yn) of X, the point x

i· y is given by

x
i· y = (x1, . . . , xi−1, yi, xi+1, ..., xn).

Suppose that f1, . . . , fn are continuous real functions defined on the space X and
let hi : X ×X → R, i = 1, 2, ..., n, be given by

hi(x, y) = fi

(
y
i· x
)
.

If the partial function hix is quasi-concave for each x ∈ X and i = 1, 2, ..., n, then
there is a point a ∈ X such that

fi(a) = sup
{
fi

(
a
i· x
)

: x ∈ X
}

for each i = 1, 2, ..., n.

Proof. Let us begin by verifying that the family of functions {hi(x, y) : i = 1, 2, ..., n}
is n-compatible with respect to the first variable.

Take n points xi = (xi1, . . . , x
i
n), i = 1, 2, ..., n, from the space X . Then consider

the diagonal point x0 = (x1
1, x

2
2, . . . , x

n
n). It is obvious that

hi (xi, y) = fi

(
y
i· xi
)

= fi

(
y
i· x0

)
= hi (x0, y) for each y ∈ X and i = 1, 2, ..., n.

Let the function gi, i = 1, 2, ..., n, be given by

gi(x, y) = −hi(x, y),

and let gn+1 be given by
gn+1(x, y) = ||x− y||.

Theorem 3 applied to the functions gi, i = 1, 2, ..., n, and gn+1 yields a point
(a, b) ∈ X ×X such that

gi(a, b) = inf
x∈X

gi(x, b) for each i = 1, 2, ..., n, and gn+1(a, b) = inf
y∈Y

gn+1(a, y) .

Hence

hi(a, b) = sup
x∈X

hi(x, b) for each i = 1, 2, ..., n, and ‖a− b‖ = inf
y∈Y

‖a− y‖ = 0.

Thus a = b and since a
i· a = a,

fi(a) = sup
{
fi

(
a
i· x
)

: x ∈ X
}

for each i = 1, 2, ..., n.

�

Corollary 2 (n-Minimax Principle). Let X and Y be compact and convex subsets
of normed spaces and let hi : X × Y → R, i = 1, 2, ..., n, be a continuous function.
Suppose further that the partial function hyi is quasi-concave for each y ∈ Y and
for each i = 1, 2, ..., n, and that the partial function hix is quasi-convex for each
x ∈ X and i = 1, 2, ..., n. If the family {hi : i = 1, 2, ..., n} is n-compatible with
respect to the first and with respect to the second variable, then there exists a point
(a, b) ∈ X × Y such that

max
x∈X

min
y∈Y

hi(x, y) = min
y∈Y

max
x∈X

hi(x, y) = hi(a, b) for each i = 1, 2, ..., n.
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Proof. The following inequality holds true for arbitrary function. In particular for
every function hi,

(3.1) sup
x∈X

inf
y∈Y

hi(x, y) ≤ inf
y∈Y

sup
x∈X

hi(x, y).

Let the function gi be given by

gi(x, y) =
{
−hi(x, y) if i = 1, 2, ..., n,
hi(x, y) if i = n+ 1, n+ 2, ..., 2n.

We can apply our Theorem 3 to the functions gi, i = 1, 2, ..., 2n. There exists a
point (a, b) ∈ X × Y such that

gi(a, b) = inf
x∈X

gi(x, b) for each i = 1, 2, ..., n,

and
gn+j(a, b) = inf

y∈Y
gn+j(a, y) for each j = 1, 2, ..., n.

Hence

(3.2) −hi(a, b) = − sup
x∈X

hi(x, b) and hi(a, b) = inf
y∈Y

hi(a, y).

Incorporating (3.2) into (3.1) we get

hi(a, b) = inf
y∈Y

hi(a, y) ≤ sup
x∈X

inf
y∈Y

hi(x, y) ≤ inf
y∈Y

sup
x∈X

hi(x, y)

≤ sup
x∈X

hi(x, b) = hi(a, b).

Because of compactness of X and Y and continuity of the functions hi, both
max
x∈X

min
y∈Y

hi(x, y) and min
y∈Y

max
x∈X

hi(x, y) exist. Hence

max
x∈X

min
y∈Y

hi(x, y) = min
y∈Y

max
x∈X

hi(x, y) = hi(a, b) for each i = 1, 2, ..., n.

�

Definition 6. Let X and Y be topological spaces and let T : X → 2Y be a set
valued map. The map T is said to be upper semicontinuous if T−1(V ) = {x ∈ X :
T (x) ⊆ V } is an open set in X provided that V is an open set in Y .

Theorem 4. Let X and Y be compact convex subspaces of a normed space. Sup-
pose that g : X × Y → R and T : X → 2Y satisfy the following conditions:

(kk1) g is continuous and the partial function gy is quasi-convex for each y ∈ Y ;
(kk2) T is upper semicontinuous and T (x) is a non-empty closed convex subset

of Y for each x ∈ X.
Then there exists a point (a, b) ∈ X × Y such that

g(a, b) = inf
x∈X

g(x, b) and b ∈ T (a).

Proof. (I). First assume that T : X → Y is a continuous map. Let g1 and g2 be
given by

g1(x, y) = g(x, y) and g2(x, y) = ||y − T (x)||.
The functions g1, g2 : X×Y → R are continuous. Since any open ball in a normed
space is convex, the partial functions g2x and gy1 (by assumption) are quasi-convex
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for each x ∈ X and y ∈ Y. As 1-compatibility always holds, we can apply our
Theorem 3 (in the case n = 1 = m). There is a point (a, b) ∈ X × Y such that

g(a, b) = g1(a, b) = inf
x∈X

g(x, b) and ||b − T (a)|| = inf
y∈Y
||y − T (a)|| = 0.

Hence b = T (a) and g(a, b) = inf
x∈X

g(x, b).

(II). Now, let T : X → 2Y be a set-valued map satisfying the assumptions (kk2).
From part (I) and Lemma 11.2 of [4], there are sequences {an}, {a′n} , {bn}, {b′n}
of points of X and there are continuous maps Tn : X → Y , n = 1, 2, . . ., such that
||an − a′n||+ ||bn − b′n|| < 1

n and

(3.3) g(an, bn) = g(bn) = inf
x∈X

g(x, bn), bn = Tn(an), and b′n ∈ T (a′n).

Since X and Y are compact we may assume that an → a and bn → b, and,
in consequence, a′n → a and b′n → b. From continuity of g and g we infer that
g(a, b) = g(b) = inf

x∈X
g(x, b), and by upper semicontinuity of T , b ∈ T (a). �

Corollary 3 (Kakutani’s Fixed Point Theorem). Let T : X → 2X be an upper
semicontinuous map from a compact convex subspace X of a normed space such
that T (x) is a non-empty closed and convex subset of X for each x ∈ X. Then
the map T has a fixed point, i.e., there exists a point a ∈ X such that a ∈ T (a).

Proof. Apply Theorem 4 to X = Y , the given set-valued map T , and g1 given by

g1(x, y) = ||x− y||.
Clearly, gy1 satisfies the condition (kk1). There are points a, b ∈ X such that

‖a− b‖ = g1(a, b) = inf{||x− b|| : x ∈ X} = 0 and b ∈ T (a).

Hence a = b, so a ∈ T (a). �

Corollary 4 (Gale-Nikaido Theorem). Let T : ∆n → 2C be an upper semicontinu-
ous map from the n-dimensional standard simplex ∆n such that T (x) is a non-empty
closed and convex subset of a compact convex set C ⊆ Rn. Suppose further, the
Walras law in the general sense holds:

(3.4) 〈x, y〉 =
n∑
i=1

xi · yi ≥ 0 for each x ∈ ∆n and y ∈ T (x).

Then there exists a ∈ ∆n and b ∈ T (a) such that bi ≥ 0 for each i = 1, . . . , n.

Proof. Apply Theorem 4 to X = ∆n, Y = C, the given set-valued map T , and g1

given by g1(x, y) = 〈x, y〉 . Since gy1 is a linear map restricted to the simplex ∆n,
the condition (kk1) holds. There is a point (a, b) ∈ ∆n × C such that

(3.5) 〈a, b〉 = g1(a, b) = inf{〈x, b〉 : x ∈ ∆n} and b ∈ T (a).

By (3.4), 〈a, b〉 ≥ 0. By (3.5), 0 ≤ 〈a, b〉 ≤ 〈x, b〉 for each x ∈ ∆n. Since ei ∈
∆n, 0 ≤ 〈ei, b〉 = bi for each i = 1, 2, ..., n. �
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