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SOME REMARKS ON TOTALLY IMPERFECT SETS

ANDRZEJ NOWIK AND TOMASZ WEISS

(Communicated by Carl G. Jockusch, Jr.)

Abstract. We prove the following two theorems.

Theorem 1. Let X be a strongly meager subset of 2ω×ω. Then it is dual
Ramsey null.

We will say that a σ-ideal I of subsets of 2ω satisfies the condition (‡) iff
for every X ⊆ 2ω , if

∀f∈ω↑ω{g ∈ ω
↑ω : ¬(f ≺ g)} ∩X ∈ I,

then X ∈ I.

Theorem 2. The σ-ideals of perfectly meager sets, universally meager sets
and perfectly meager sets in the transitive sense satisfy the condition (‡).

0. Preliminaries

In this paper we continue our investigation of totally imperfect subsets of 2ω (see
[N], [NW1], and [NW2] for related results).

We divide it into two parts, the first one is devoted to some properties of strongly
meager sets and the second one deals with combinatorial properties of perfectly
meager sets.

We use standard set theoretic notation. We recall here the main notation and
definitions from the paper [CS].

By a partition we mean a collection of pairwise disjoint, nonempty subsets of ω
whose union is ω. By (ω)≤ω, (ω)<ω and (ω)ω we denote the set of all partitions,
the set of all finite partitions and the set of all infinite partitions, respectively. If
X,Y ∈ (ω)≤ω , then we say that Y is coarser than X iff ∀A∈X∃B∈YA ⊆ B and we
write Y ≤ X .

For any collection of sets A, let us define ‖A‖ =
⋃
A. For X ∈ (ω)ω and n ∈ ω,

we put X [n] = {x∩ n : x ∈ X} \ {∅}. Suppose that s is a (finite) partition of some
n ∈ ω. We write s ≺ X iff s = X [n], where n = ‖s‖. We say that s ≤ t iff ‖s‖ = ‖t‖
and s is coarser than t. Finally, s ≤ X iff s ≤ X [‖s‖]. For every s,X such that
s ≤ X , we define (s,X) = {Y ∈ (ω)ω : s ≺ Y ≤ X}, and following [CS] we call it a
dual Ellentuck neighborhood.

A set D ⊆ (ω)ω is said to be a dual Ramsey null iff for each dual Ellentuck
neighborhood (s,X), there exists Y ∈ (s,X) such that (s, Y ) ∩D = ∅.
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Notice that each X ∈ (ω)ω can be identified with an element X̃ ∈ 2ω×ω by the
following correspondence: X̃(〈m,n〉) = 1 iff ∃x∈Xm,n ∈ x. Thus, we can assume
that (ω)ω is a subset of 2ω×ω.

We recall that E ⊆ 2ω×ω is said to be strongly meager iff for each measure zero
set N included in 2ω×ω, E +N 6= 2ω×ω (see for example [BJ]).

1. Strongly meager sets

The proof of our main result of this part is based on the following well-known
Lorentz’s theorem (see [L]) which has many interesting applications in the area of
special subsets of the reals (see, for example, [NSW] and [NW2]).

Theorem 1.1 (Lorentz). If (G,+) is a finite group and if H is a nonempty subset
of G, then there is a subset F of G such that

(1) the cardinality of F is at most |G| · (1+ln(|H|)
|H| ), and

(2) G = F +H.

Lemma 1.2. For any dual Ellentuck neighborhood (s,A), there exists a measure
zero set H ∈ N (2ω×ω) such that for each t ∈ 2ω×ω, one can find B ∈ (s,A) such
that (s,B) ⊆ H + t.

Proof. For every n ∈ ω, choose Kn ∈ ω such that
ln(Kn) + 1

Kn
≤ 1

2n
.

Since one can easily find a partition A′ ∈ (s,A) such that ∀x∈A′ |x| = ω, we may
further assume, without loss of generality, that ∀x∈A|x| = ω. Let (A(k)

n )n∈ω,0≤k≤Kn
be an enumeration of all elements of the set A \ {x ∈ A : x ∩ ‖s‖ 6= ∅}. For each
n, k ∈ ω pick an arbitrary a(k)

n ∈ A(k)
n . Next, for every n ∈ ω, define

In = {a(k)
n : 0 ≤ k ≤ Kn}

and Jn = In × In. For each n ∈ ω and k ∈ [0,Kn), let a function b
(k)
n : Jn → 2 be

defined by the following conditions:

b(k)
n (〈m1,m2〉) =

{
1 if k(m1), k(m2) ≤ k ∨ k(m1), k(m2) > k,
0 otherwise,

where k(m) denotes a (unique) k ∈ [0,Kn] such that m ∈ A(k)
n . Put

Bn = {b(k)
n : 0 ≤ k < Kn}.

Obviously, Bn ⊆ 2Jn . By Lorentz’s theorem, there exist sets Hn ⊆ 2Jn , so that
(1)

Hn +Bn = 2Jn ,
(2)

|Hn| ≤
ln(|Bn|) + 1
|Bn|

· 2|Jn| ≤ 1
2n
· 2|Jn|.

Define
H = {x ∈ 2ω×ω : ∃∞n x |̀ Jn ∈ Hn}.

It is easy to see that H ∈ N (2ω×ω). Let t ∈ 2ω×ω be arbitrary. For each n ∈ ω,
choose k(n) ∈ [0,Kn) such that b(k(n))

n ∈ Hn + (t |̀ Jn). Notice that the relation
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b
(k)
n can be identified with the partition {D(k)

n , D̃
(k)
n } of the set In, where D(k)

n =
{a(l)
n : l ≤ k} and D̃

(k)
n = {a(l)

n : l > k}. Let us fix another partition {B(k)
n , B̃

(k)
n } of

the set
⋃

0≤k≤Kn A
(k)
n , where B(k)

n =
⋃
l≤k A

(l)
n and B̃

(k)
n =

⋃
l>k A

(l)
n . Finally, for

k = k(n), we define a partition B by

B = {x ∈ A : x ∩ ‖s‖ 6= ∅} ∪ {
⋃
n∈ω

B(k)
n } ∪ {B̃(k)

n : n ∈ ω}.

Clearly, B ∈ (ω)ω and s ≺ B ≤ A; thus, B ∈ (s,A). Let C ∈ (s,B) be arbitrary.
Identify a partition C with a function C̃ : ω × ω → 2. Then for each n ∈ ω, the
relation C̃ |̀ Jn is equal to b

(k(n))
n or to 1 |̀ Jn, where 1(〈m1,m2〉) = 1. If we had

∀∞n∈ωC |̀ Jn = 1 |̀ Jn, then C would be finite which is impossible, since C ∈ (ω)ω.
Thus, we have ∃∞n∈ωC |̀ Jn = b

(k(n))
n . Hence, C ∈ H+ t which finishes the proof. �

As a consequence we obtain the main theorem of this section.

Theorem 1.3. Suppose that X is a strongly meager set in 2ω×ω. Then it is dual
Ramsey null.

Proof. Immediately follows from Lemma 1.2. �

We will say that X ⊆ 2ω×ω is a very meager (V FC) set iff for each measure zero
set N , there is a sequence {Xn}n∈ω such that X ⊆

⋃
n∈ωXn and Xn +N 6= 2ω×ω,

for every n ∈ ω.
Let us notice that the above argument gives us the following lemma.

Lemma 1.4. For any dual Ellentuck neighborhood (s,A), there exists a measure
zero set H ∈ N (2ω×ω) such that for each sequence {tn}n∈ω ⊆ 2ω×ω, one can find
B ∈ (s,A) with ∀n∈ω(s,B) ⊆ H + tn.

Corollary 1.5. Assume that X is a very meager set in 2ω×ω. Then it is dual
Ramsey null.

Proof. Straightforward application of Lemma 1.4. �

2. Perfectly meager sets

Throughout this part we write f ≺ g, where f, g ∈ ω↑ω, iff ∀∞n f(n) ≤ g(n).
Depending on the context, a function f ∈ ω↑ω is identified with the characteristic
function of its range, and t ∈ 2ω is often conflated with a function that increasingly
enumerates the set {n : t(n) = 1}. We assume that the reader is familiar with the
notions of perfectly meager and universally meager sets (see, for example, [G1],
[G2], and [NW1]). We recall below a definition of perfectly meager sets in the
transitive sense which originally appeared in [NSW].

Definition 2.1. Let X be a subset of the Cantor set 2ω. We say that X is an
AFC′ set (perfectly meager in the transitive sense) iff for every perfect set P ⊆ 2ω,
one can find F , an Fσ set containing X , such that for every t ∈ 2ω, (F + t) ∩ P is
meager in the relative topology of P .

We will use the following lemma which characterizes perfectly meager in the
transitive sense subsets of 2ω.
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Lemma 2.2. Let X ⊆ 2ω. The following conditions are equivalent:
(1) X 6∈ AFC′.
(2) There exists a sequence {Qn}n<ω of perfect subsets of 2ω such that if X ⊆⋃

n<ω Fn, Fn = Fn, then there exist n,m < ω, t ∈ 2ω such that Qm + t ⊆
Fn.

Proof. See [NW1], Lemma 6.

Theorem 2.3. Let X ⊆ 2ω be a set which satisfies the condition

∀f∈ω↑ω{g ∈ ω↑ω : f 6≺ g} ∩X ∈ AFC′.
Then X is an AFC′ set.

Proof. The following lemma will be needed to prove our theorem.

Lemma 2.4. For every perfect set Q ⊆ 2ω, there exists fQ ∈ ω↑ω such that

∀t∈2ω (Q+ t) ∩ {g ∈ ω↑ω : g ≺ fQ} 6= ∅.

Proof. Let T ⊆ 2<ω be a perfect tree of the perfect set Q, i.e., [T ] = {x ∈ 2ω :
∀k∈ωx |̀ k ∈ T } = Q. Choose a sequence {ts : s ∈ 2<ω} ⊆ T such that

∀s∈2<ω∀i∈2ts_〈i〉 ⊇ ts _ 〈i〉.
Define

fQ(l) =
(

max
s∈2l
|ts|
)
.

It is easy to see that fQ ∈ ω↑ω.
Suppose that t ∈ 2ω. We construct a sequence (sk)k∈ω by induction as follows.

Let s0 = ∅. Define nk = |tsk | and put sk+1 = sk _ 〈1 − t(nk)〉. Finally, let z =⋃
k∈ω tsk . Obviously, z ∈ [T ] = Q. Since tsk+1 = tsk_〈1−t(nk)〉 ⊇ tsk _ 〈1 − t(nk)〉

and |tsk | = nk, we obtain that tsk+1(nk) = 1 − t(nk); thus, z(nk) + t(nk) = 1.
Moreover, |sk| = k and therefore nk = |tsk | ≤ max

s∈2k
|ts| = fQ(k). This implies that

z + t ≺ fQ. �

Fix {Qn}n∈ω to be a sequence of perfect sets, and choose f ∈ ω↑ω such that

∀n<ωf � fQn .
Define

f∗(n) = f(n) + 1.

Notice that the set {f ∈ [ω]ω : f � f∗} is an Fσ set in the space ω↑ω. Let F̂ be
defined as

F̂ = {f ∈ [ω]ω : f � f∗} ∪ [ω]<ω.

We easily see that F̂ is an Fσ set. Now let t ∈ 2ω and n ∈ ω be given. There exists
q ∈ Qn such that

q + t ∈ {g ∈ ω↑ω : g ≺ fQn} ⊆ {g ∈ ω↑ω : g ≺ f}.

We have that q+ t 6∈ F̂ , since otherwise q+ t ∈ [ω]ω and q+ t � f∗. In this case
f∗ ≺ f which contradicts the choice of f∗. This means that

∀n<ω∀t∈2ωQn + t 6⊆ F̂ .
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By our assumption, {f ∈ ω↑ω : ¬(f∗ ≺ f)} ∩ X is an AFC′ set, so by the char-
acterization of AFC′ sets, we obtain that there exists a sequence of closed sets
(Fn)n∈ω ⊆ 2ω such that

(1)

{f ∈ ω↑ω : ¬(f∗ ≺ f)} ∩X ⊆
⋃
n∈ω

Fn,

(2)

∀n,m<ω∀t∈2ω t+Qn 6⊆ Fm.
We have that

X ⊆ F̂ ∪
[
{f ∈ ω↑ω : ¬(f � f∗)} ∩X

]
⊆ (F̂ ∪

⋃
n∈ω

Fn).

Since
∀t∈2ω∀m,n<ωQn + t 6⊆ Fm

and
∀t∈2ω∀n<ωQn + t 6⊆ F̂ ,

it follows that X is an AFC′ set. �
Conclusion 2.5. Assume b = d. Let {fα : α < b} ⊆ ω↑ω be a dominating family
of elements from ω↑ω such that

∀α<βfα ≺ fβ.
Then {fα : α < b} is an AFC′ set.

Proof. This follows immediately from the fact that non(AFC′) ≥ d (see [N]). �
For a finite set s ∈ [ω]<ω and an infinite A ⊆ ω with max(s) < min(A), let

[s,A] = {B ∈ [ω]ω : s ⊆ B ⊆ s ∪ A}. A tree T ⊆ ω<↑ω is said to be a Laver tree
iff for each s, with stem(T ) ⊆ s, the set of all immediate successors of s is infinite
(see [NW2] for details).

Definition 2.6. W shall say that X ⊆ 2ω is a completely Ramsey null (CR0) set
iff for every [s,A], there is an infinite B ⊆ A such that [s,B] ∩X = ∅. An X ⊆ 2ω

will be called an l0-set iff for every Laver tree T , there exists a Laver tree S ⊆ T
with {ran(x) : x ∈ [S]} ∩X = ∅.

We have the following consequence of Theorem 2.3.

Theorem 2.7. Assume CH. Then there is an AFC′ set X ⊆ 2ω which is not a
CR0 set.

Proof. Assume that {gα}α<ω1 is an enumeration of [ω]ω. Given {xα}α<β<ω1, so
that

(1)

∀α<βxα ⊆ gα,
(2)

∀α<α′<βxα ≺ xα′ ,
find xβ ⊆ gβ which satisfies

∀α<βxα ≺ xβ .
Clearly, {xα}α<ω1 is an AFC′ set which is not CR0. �
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Corollary 2.8. Assume CH. Then there is an AFC′ set X ⊆ 2ω which is not an
l0-set.

Proof. First notice that for a given Laver tree T , one can find an x ∈ [T ] that
dominates a countable family of elements from ω↑ω and then repeat the above
argument. �

Motivated by Theorem 2.3 we introduce the following notion.

Definition 2.9. We say that a σ-ideal I of subsets of 2ω satisfies condition (‡) if
and only if the following holds.

For every X ⊆ 2ω, if

∀f∈ω↑ω{g ∈ ω↑ω : ¬(f ≺ g)} ∩X ∈ I,(1)

then X ∈ I.

Let us denote for brevity the set {g ∈ ω↑ω : ¬(f ≺ g)} as Gf .

Observation 2.10. The σ-ideals AFC, of perfectly meager sets, and AFC = UM ,
of universally meager sets, satisfy condition (‡).

Proof. Suppose that a set X ⊆ 2ω satisfies condition (1) from above for I = AFC.
Let Q be a perfect set and a sequence (Qn)n∈ω be an enumeration of all nonempty
elements of the class {Q ∩ [s] : s ∈ 2<ω}. For each n ∈ ω, choose a function
fn ∈ ω↑ω∩Qn. Let f∗ ∈ ω↑ω be such that ∀n∈ωfn ≺ f∗ and define f̄(n) = f∗(n)+1.
Assume that there is an n ∈ ω such that Qn ⊆ Q \ Gf̄ . Then Qn ⊆ Q \ Gf̄ ⊆
Q \Gfn+1, since fn + 1 ≺ f̄ . But fn ∈ Qn, so fn 6∈ Gfn+1 and hence fn + 1 ≺ fn
which is a contradiction. This finishes the proof that Q \Gf̄ ∈ MGR(Q), the set
of meager subsets of Q in the relative topology of Q. Therefore, X ∈ AFC. �

We now proceed to prove that AFC satisfies (‡). To begin this proof we quote
a characterization of AFC sets which may be found in [B].

Characterization 2.11 (T. Bartoszyński [B]). A set X is an AFC set iff for
every sequence of perfect sets (Pn)n∈ω there exists an Fσ set E such that X ⊆ E
and E is meager in Pn, for every n ∈ ω.

Let (Pn)n∈ω be a sequence of perfect sets. For n ∈ ω, let (Qn,m)m∈ω be an
enumeration of all nonempty elements of the family {Pn ∩ [s] : s ∈ 2<ω}. For every
n,m ∈ ω choose fn,m ∈ ω↑ω ∩Qn,m. Let f∗ ∈ ω↑ω be such that ∀n,m∈ωfn,m ≺ f∗

and define f̄ = f∗+1. Suppose thatQn,m ⊆ 2ω\Gf̄ . Since fn,m 6∈ Gf̄ , f∗+1 ≺ fn,m
and hence f∗+1 ≺ fn,m ≺ f∗, which is impossible. Therefore, ∀n∈ω(2ω \Gf̄ )∩Pn ∈
MGR(Pn). Let us denote E = 2ω \Gf̄ . By assumption, we have Gf̄ ∩X ∈ AFC,
so there is an Fσ set Ẽ such that Gf̄ ∩X ⊆ Ẽ and ∀n∈ωPn∩Ẽ ∈MGR(Pn). Define
E∗ = E ∪ Ẽ. Obviously, E∗ is an Fσ set. Moreover, X ⊆ (X ∩Gf̄ ) ∪ (2ω \Gf̄ ) ⊆
Ẽ ∪E = E∗ and for each n ∈ ω, E∗ ∩Pn = (Ẽ ∩Pn)∪ (E ∩Pn) ∈MGR(Pn). This
proves that X ∈ AFC. �

We finish this paper with the following question we are unable to answer.

Problem 2.12. Is it true that the σ-ideal of λ′ subsets of 2ω satisfies condition
(‡)?
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Added in proof

A. Miller proved recently (see [M]) that it is independent from the ZFC axioms
whether or not every λ′-set satisfies condition (‡).
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