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ABSTRACT. We prove existence and uniqueness of integral curves to the (dis-
continuous) vector field that results when a Lipschitz continuous vector field
on a Hilbert space of any dimension is projected on a non-empty, closed and
convex subset.

1. INTRODUCTION

In this paper we study the existence of solutions for a class of ordinary differ-
ential equations with discontinuous and non-linear right-hand side, the so-called
projected differential equations. This class of equations was first introduced in [D-I]
and applied to study the dynamics of solutions to finite-dimensional variational
inequalities in [D-N], [Na2|, [Na3|, [Nad], [Naj], [Na6]. In all these works the ex-
istence theory for solutions to projected differential equations was formulated on
Euclidean space.

Finite-dimensional variational inequalities theory provides solutions to a wide
class of equilibrium problems in mathematical economics, optimization, manage-
ment science, operations research, finance, etc. (see for example [He|, [Is], [D=N],
[NaTl], [Na2], [Nah]). Therefore there has been a steady interest over the years
in studying the stability of solutions to finite-dimensional variational inequalities
(and consequently the stability of equilibria for various problems), as can be seen
in [A=C], [He], [Na2], [Is=CT], [[s=C2], [P]. In [D-N] and [Na2] this study is done by
associating a dynamical system to a variational inequality. This system is given by
the solutions to a projected differential equation.

Following the methodology employed in [D-N] and [Na2] in the finite-dimensional
case, we are interested in studying the dynamics of solutions to infinite-dimensional
equilibrium problems that can be solved via infinite-dimensional variational inequal-
ities. Examples of this kind of problems can be found among free boundary and
optimization problems (the lubrication problem, the obstacle problem, flow through
a porous medium-see [B-C] and [K-9]).

In this paper we present the first step in this study: we show that a projected
differential equation has solutions on a Hilbert space of any dimension. In brief, if
X is a Hilbert space, K C X a closed, convex subset, and F' a Lipschitz continuous
vector field, we study the vector field obtained by projecting F', at each x € K, to
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the tangent cone of K. This vector field is discontinuous on the boundary of K.
We prove the existence and uniqueness of integral curves and show they remain in
K.

Some of the problems mentioned above (for example flow through a porous
medium, see [K-S], Chapter VII) already involve time. However, the variational
inequality theory only identifies steady-state solutions for these problems. As in
the finite-dimensional case, a dynamics given by solutions to a projected differential
equation is interesting because it describes these problems as dynamical systems
and has the potential for modelling the return (or not) to steady state when the
system has been perturbed.

Our goal in this paper is to present the mathematical technique involved in
proving the existence of solutions to projected differential equations in an infinite-
dimensional setting, since this technique is different from the one used in the finite-
dimensional case in [D=I], [D-N] and [Na2].

The paper is organized as follows: in Section 2 we outline some preliminary
definitions and results, we give the definition of a projected differential equation
and show the relationship between a projected differential equation and a variational
inequality. In Section 3 we formulate the main result of the paper, Theorem 3.1,
and present its proof. We conclude with a few remarks.

2. PROJECTED DIFFERENTIAL EQUATIONS

Let X be a Hilbert space of arbitrary dimension and let K C X be a non-empty,
closed and convex subset. For any z € X, there exists a unique element in K,
denoted by Pg(z), such that ||Pk(z) — z|| = in}f{ |ly — z||. This defines a mapping

ye

Pr : X — K given by z — Pg(z), called the projection operator of the space
X onto the subset K. The properties of the projection operator on Hilbert spaces
have been studied extensively (see [Z]). In particular Pk (y) =y, for any y € K. At
this point we assume that the reader is familiar with the concepts of convex cone,
polar cone and set-valued mapping.

Definition 2.1. (i) The set Tk (z) = |J #+(K — z) is called the tangent cone to

h>0
K at the point z € K. Tk (x) is a closed convex cone.

(ii) The normal cone to the set K at the point x is the polar cone of Tk (z)
and is given by Nk (z) := {p € X|(p,z — 2’y > 0,Va’ € K}. The normal cone is a
closed, convex cone.

Lemma 2.1. The set-valued mapping x — N (x) is monotone; i.e., for any x #

y € K and any n, € Ng(x) and ny € Ng(y) it satisfies (ng —ny,x —y) > 0.

Proof. The conclusion follows immediately from the definition of the sets Nk (x)

and N (y). O
The following result can be found in [Ra], Theorem 2.23.

Theorem 2.1 (Moreau). If C C X is a closed convex cone and x,y,z € X, then
the following statements are equivalent:

(i)z=z+y,zeC,yeC™ and (z,y) =0;

(ii) x = Po(z) and y = Po-(z), where C~ is the polar cone of C.

We now introduce the directional derivative of the operator P .
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Proposition 2.1. For any x € K and any element v € X the limit

. Pz +6v) -2
g (z,v) == 5%&%

exists and Ik (x,v) = Pr, (2)(v).
Proof. For a proof of this result we refer to [Z], Lemma 4.6, or [J], Section 3. O

Let TIx : K x X — X be the operator given by (z,v) — IIx(x,v). Note that
whenever v € Tk (z), then g (z,v) = v. The operator Il is discontinuous on the
boundary of the set K. Next we present a characterization of this operator.

Proposition 2.2. Let X be a Hilbert space of arbitrary dimension and let K C X
be a non-empty, closed and conver subset. Then for each x € K there exists
n € Nk(z) such that Ik (z,v) =v —mn, for anyv € X.

Proof. This is a direct consequence of Theorem 2.1 above. O

We are now ready to define a projected differential equation.

Definition 2.2. Let X be a Hilbert space of arbitrary dimension and let K C X
be a non-empty, closed and convex subset. Let F' : K — X be a vector field. Then
the ordinary differential equation

1) T e (a(e), Plalr))

is called the projected differential equation associated with F' and K.

The projected differential equation is implied in [A-C|], Chapter 5, Section 6, in
[He] and in [Is-C2], if one considers the case of single-valued mappings from K to X.
However, the first formulation of equation (), in the form given above, occurred
in 1990 in the paper [D-I]. There, X = R™ and K is a convex polyhedral set. This
is then further used, in the same finite-dimensional context, in [Na2|, [Na3], [Nad],
[Na6], [Na5].

We now show that there is a fundamental relation between a projected differential
equation and a variational inequality problem.

Definition 2.3. A point z* € K is called a critical point for equation () if
g (z*, F(z*)) = 0.

Theorem 2.2. Let X be a Hilbert space of arbitrary dimension and let K C X be
a non-empty, closed and convex subset. Let F: K — X be a vector field. Consider
the variational inequality problem:

find x € K such that (—F(z),y —x) >0, Yy € K.

Then the solutions to the variational inequality problem coincide with the critical
points of the projected differential equation (1).

Proof. The proof is immediate, based on Theorem 2.1 above. O

For the dynamics of solutions to variational inequality problems in Hilbert spaces,
we refer the reader to [Cj], [[s-C1] and [Is-C2].
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3. EXISTENCE OF SOLUTIONS IN HILBERT SPACES

We now consider a vector field F' : K — X. The solvability of the initial value
problem
dzx(t)

(2) o

was shown first in [He| in 1973, Section 2, for the case where X = R", K C R" a
closed, convex subset and F : K — X an upper semicontinuous (see Definition 3.5
below) set-valued map with convex, compact values. The result appears again in
[A=C] in 1984, Chapter 5, Section 6, Theorem 1, in the same context. Another proof
was given in [D=I] in 1990, Section 5.3, Theorem 5.1, and in [D=N] in 1993, Section
3.3, Theorem 2, for the case where X := R", K C R™ a convex polyhedral set and
—F : X — X satisfying ||F(z)|| < B(1+]||z|]) and (—F(z)+F(y), z—y) < b||z—y]|*.
Finally, a proof for the existence of so-called slow solutions to problem (2) can be
found in [Hi] in 1993, Chapter 2, Section 2, Theorem 2.2.2, for the case where
X := R" and K := R}. We show in this section, after several preliminary results,
that problem (2) admits solutions in a suitable class of functions.
We now say what we mean by a solution to the initial value problem (2).

— M (a(t), F(a(t))), 2(0) = a0 € K

Definition 3.1. An absolutely continuous function = : I € R — X such that

dxz(t
x(t) € K for all t € I and % =Tk (z(t), F(z(t))), for almost all ¢ € I, is called

a solution to the initial value problem (2).
We are now ready to state the main result of this paper.

Theorem 3.1. Let X be a Hilbert space of arbitrary dimension and let K C X be
a non-empty, closed and convexr subset. Let F': K — X be a Lipschitz continuous
vector field with Lipschitz constant b. Let xog € K and L > 0 such that ||z|| < L.

dx(t
Then the initial value problem % = g (x(t), F(2(t))), x(0) =20 has a unique
L
solution on the interval [0,1], where | == —————F———.
0.1 [|F' (o)l + bL

The proof of Theorem 3.1 is based on several technical results (which are going
to be presented next) and uses elements from the theory of differential inclusions.
Under the hypothesis of Theorem 3.1, and inspired by Proposition 2.2, we can
consider the projected differential equation (1) as a particular case of the differential

dx(t
inclusion Zi ) € F(z(t))—Nk(z(t)), for all t € [0,!]. It is then natural to consider
the following initial value problem:
dz(t
(3) d(t ) € F(z(t)) — Ng(z(t)), =(0) =z € K.

Obviously, any solution to problem (2) is a solution to problem (@). In fact we have
the following result (JA-C], Chapter 5, Section 6, Proposition 2):

Theorem 3.2. Any solution to problem B) coincides with a solution to problem
(2), and vice versa.

Now consider the set N (z) = {n € Ng(z)| ||n]| < ||F(z)||} € N (z), for each
x € K. The set Nig(x) is non-empty and for each x € K contains the unique
element n such that g (x, F(z)) = F(x) — n.
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Definition 3.2. An absolutely continuous function = : I C R — X such that

dz(t)

x(t) € K forallt € I and ——= € F(x(t)) — Ng(x(t)), for almost all ¢ € I, is called
a solution to the initial value problem

dz -
(4) 7 € F(z(t)) — Ng(z(t)), =(0) =z € K.

Obviously, any solution to problem () is a solution to problem (3)) and, in view
of Theorem 3.2, is a solution to problem (2). Our aim now is to show that problem
(@) has solutions.

Lemma 3.1. The set-valued mapping x — F(x) — Nk (z) has non-empty, closed
and convez values for each x € K.

Proof. The proof is immediate from the construction of the set N (). O

Definition 3.3. For any subset D C X, the function op : X — (—o0, +0o0], given
by op(p) := sup(p,y), is called the support function of D.
yeD
For convenience we write op(p) = (D, p). The support functions characterize
any non-empty closed and convex set K C X by K :={y € Y| Vp € X, (p,y) <
o(K,p)}. Let E and F be two Hausdorff topological vector spaces, let f: R — R
be a function and let G : E — 2% be a set-valued mapping.

Definition 3.4. The function f is upper semicontinuous (as a single-valued
function) at x € R if for all € > 0, there exists § > 0 such that |y —z| < § =

fy) < flz) +e

Definition 3.5. The mapping G is called upper semicontinuous at z; € E
(u.s.c.) if for each open neighbourhood V' of G(x1), there exists a neighbourhood
U of z1 such that G(U) C V. G is called upper semicontinuous if it is so at
each z1 € E.

Assume we are given a set-valued map G from K into X. For every p € X, we
can consider the function from K to (—oo, +00|, given by x — o(G(z),p).

Definition 3.6. We say that G is upper hemicontinuous at z; € K (u.h.c.)
if, for every p € X, the function © — o(G(x),p) is upper semicontinuous as a
single-valued function at z1. G is called upper hemicontinuous if it is u.h.c. at each
1 € K.

Proposition 3.1. Let X be a Hilbert space of arbitrary dimension and K C X a
non-empty, closed and convex subset. Let F : K — X be a Lipschitz continuous
vector field with Lipschitz constant b, so that on K N B(xo,L), with L > 0 and
xo € K arbitrarily fized, we have ||F(z)|| < M := ||F(xo)|| + bL. Then the set-
valued mapping N, : K N B(zo, L) — R given by x — (—NK(m),p> has a closed
graph.

Proof. Tt is obvious that for each p € X, the set-valued map N, : KNB(xp,L) — R
maps K N B(xg, L) into 2-MIPILMIPIL Tet {(z,,,2,)}n € graph(N,) and such
that (z,,2,) — (z,2), where (z,2) € X x 2[=MIPILMIIPI We want to show that
(x,2) € graph(N,). From z, € N,(x,), for all n, we deduce that z, := (yn,p),
with y, € —Ng(x,). Since the set —Ng(z,) C B(0, M) and B(0, M) is weakly
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compact, then there exists y € X such that (5,y,) — (8,y) for all 8 € X and a
suitable subsequence of {y,}, denoted by {y,} as well.

Suppose y ¢ —Ng(x) := {n| (w —z,n) >0, Yw € K and ||n|| < ||F(z)|| < M}.
Then there exists w € K such that (w — z,y) < A < 0. Since (B,y.) — (B,v)
for all § € X this implies that for sufficiently large n, (w — z,y,) < % < 0. But:
(W= Ty, Yn) = (W — T, yn) + (x — Tp,yn) and since x,, — =z, there exists ng > 0
such that Vn > ng, we have (x — Tp,yn) < ||z — xn|| - |lynl] < %M = %.

Thus (w — Zp,Yn) < % < 0, for all n > ng. But this contradicts the fact that

Yn € —Ngc(2,,). This proves y € —Ng(z) and therefore (x,z) € graph(N,). O

Proposition 3.2. Let X be a Hilbert space of arbitrary dimension, let K C X be
a non-empty closed and convez subset and let F': K — X be as in Proposition 3.1.
Then, for each p € X, the set-valued mapping x — (F(xz) — Ni(x),p) has a closed
graph.

Proof. This proof is immediate, based on Proposition 3.1 above. O

Theorem 3.3. Let X be a Hilbert space of arbitrary dimension and let K C X be a
non-empty closed, convexr subset. Let F': K — X be a Lipschitz continuous vector
field so that on K N B(xo, L), with L > 0 and zo € K, we have ||F(z)|| < M :=
|F(z0)|| + bL. Letl:= & and I := [0,1]. Then there exists a sequence {xy(-)}
of absolutely continuous functions defined on I, with values in K, such that for all
k>0, 2(0) = 2o and for almost allt € I, {zx(t)} and {z},(t)} (the sequence of its
derivatives) have the following property: for every neighbourhood M of 0 in X x X,
there exists ko = ko(t, M) such that

VE > ko, (z1(t), 4 (t)) € graph(F — Ni) + M.

P hF —
Proof. Let r > 0 and y € K be arbitrarily fixed. Since iy + - W) -y N

Uk (y, F(y)) as h — 01, we deduce that we can choose a scalar 0 < h, < r such

that Py +h F))
y+ Y)Y r
Mk (. F(y) = ———— <5
Y

By the continuity of the mapping Pk (idx + hyF') — idx we have that there exists
p € (0,7) such that for all x € B(y, p) N K,

hy hy 2
Combining these we have that for any y € X, there exist 0 < hy <rand 0 < p <r
such that Yz € B(y,p) N K, there exists z, := Pg(z + hyF(z)) € K with the
property

Zy — X
hy

Applying the preceding discussion with y = xzg, we see that there exist scalar

0 < hp <rand0 < py <r such that Vo € B(xg,po) N K, there exist 2o € K and

up := #—* with the properties

0
o 2o+ houl e K,
e (zg,u") € graph(F — NK) +1r(B X B), where B is the open unit ball of X,
e hy > %sup h, where the sup is taken over all pairs (h,u) satisfying these
conditions.

|k (y, F(y)) — ul| <r, where u :=
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Now let ! := 29 + h%u® € K. Then there exist hy; < 7 and 0 < p; < r such that
Vo € B(z',p1) N K, there exist 21 := Pr(z + hiF(z)) € K and uy := Z=% with
the properties

o 2t +hlul € K,

e (z',u') € graph(F — Ng) +r(B x B),

e hy > %sup h, where the sup is taken over all pairs (h,u) satisfying these

conditions.
Now let 22 := z' +h'u' € K. Continuing this construction, we obtain sequences of
2”’s and uP’s, such that 2Pt := P +hPuP and (2P, uP) € graph(F—N*)+r(BxB).
We note that if the sequence of scalars h? — 0, the sequence {zP} is Cauchy, for
then ||zP*! — 2P|| < hP||F(2P)|| — 0. This means that zP has a limit in X, say
x*. Then for any neighbourhood U of the limit z*, there exists p° > 0 such that
Vp > p°, 2P € U. In particular, if U = B(z*, p*), then for p > p°, h? > %h*. This
proves that we cannot have h? — 0. That is, we can be sure that there exists an
index m > 0 so that h9 + At + ... + ™ <[ < hl 4+ ... + AL,
We now apply this construction with a succession of values of r, thereby creating

a sequence of piecewise continuous approximate solutions to the projected differ-

1

ential equation. With r := T e let 7/ = h + ...+ h?!, and 70 = 0. Evidently,
-t =hit < =

We parametrize the curve by interpolating x(t) := #?~! + (t — 7~ )uP~L. Let
t € (771, 7F) be fixed. We claim that there exists a pair (z,v) € graph(F — Ng)
such that ||zx(t) — z|| < e, and ||z} (t) — v|| < €; where ¢, — 0 when k& — oc.
The existence of the pair (z,v) with the claimed properties is a consequence of
the construction of the sequence {z)}. We have (2P~ uP~1) € graph(F — Ng) +

#(B x B). That is, there exists (z,v) € graph(F — Ni) such that ||z — 2?7 1|| < 1
and [[uP~! — v|| < 1. Therefore
_ _ 1
[k (t) = 2|l < flaw(t) =l + {27 =2l < b =] P + 4
1 1
< TP +1) < (M +1) =
1
and ||z}, (t) — v]| = [[uP~! —v|| < T In conclusion, we have (zx(t),z}(t)) €
graph(F — Ng) + e,(B x B) where ¢, — 0, when k — oo. O

Absolutely continuous functions with values in a Hilbert space X can be char-
acterized as follows.

Theorem 3.4. If f,g:I:=[0,l]] = X and tg € I, then the following conditions
are equivalent:

(i) f is absolutely continuous and a.e. differentiable and f'(t) = g(t), for a.a.
tel. .

(ii) g is Bochner integrable and f(t) = f(to) —I—/ g(s)ds, foralltel.

to
Proof. The proof can be found in [Hk|], Chapter 6, Section 4, Theorem 1.4.6. O

For a brief account of Bochner integrability, as well as the relationship between
the spaces L'(I, X) and L*>(I, X), which will be used in the following, we refer
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the reader to [Sw], Chapter 26, Section 3, and [D-S], Part I, Chapter IV, Section 8.
Note especially that L>°(I, X) is the dual of the space L'(I, X) (see [D-5], Part I,
Chapter IV, Section 8, Theorem 5). We consider the Lebesgue measure on I. We
are now ready to prove the main result of this paper, namely Theorem 3.1. We do
this by showing that the sequence of approximate solutions constructed in Theorem
3.3 has a subsequence that converges uniformly to an absolutely continuous curve
and that this limit curve is a solution to the differential inclusion (4). A simple
argument at the end of the proof will establish uniqueness.

Proof of Theorem 3.1. (i) We begin by proving the uniform convergence of the se-
quence {zj(-)} constructed in Theorem 3.3. By Theorem 3.3 we know that there ex-
ists a pair (ug(t), F(ug(t))—ng) € graph(—F —Ng) such that zy(t) —ug(t) = €1 x(t)
and z (t) — F (ug(t))+ni = €2,5(t), where € 1 (t) and €3 1 (t) are vector functions, not
necessarily continuous, satisfying ||e; x(t)|| < €x and ||e2 x(t)|| < € where € — 0

1d
as k — oo. Let k,m be two indexes. Then we evaluate §E||xk(t) —z,@)|? =

(@ (8) =@, (8), 21 () = 2 (£)) = (F(ug (1)) = ng = F(um () + 1, 24 (8) — 2 (1)) +
(€2, (t) —€2,m(t), 2k (t) —xm(t)), where ny, € N (ur(t)) and ny, € Ng (um(t)). Then

SN (t) = 2m (B> = (F(up(t) = F (25 (8) = F (umn(t) + F(2m (1)), 25 () =2 (1))
+(F(zr(t) = F(zm(t), 26 (t) — 2m (1))
+ (=1 4 N, U () — un (1))
+ (=1 + Ny —uk(t) + 25 () + um(t) — zm (1))
+ (e2,k(t) — €2,m(t), 21 () — zm (1))
<A(F(z(t) = F(zm (1), 2 (t) = 2m (t)) + (€ +€m) | [ — 1|
+bek + em) |z (t) — 2m )] + (ek + em)|[zk(t) — 2m ()],

where to obtain the last inequality we used the fact that = — Ng (z) is a monotone
set-valued map (see Lemma 2.1) and the Lipschitz continuity of F.
We now let ¢(t) := ||zx(t) — zm (¢)]|. Then we obtain from above that

¢'(1)p(t) < bp(t)? + (ex + € )[(1 + b)o(t) +2M].
But ¢(t) < 2L, so ¢ ()p(t) < bp(t)* + (ex + €m)[(1 +D)2L +2M]. Let a :=
(1 + b)2L + 2M. Then ¢'(¢)p(t) — bop(t)? < alex + €n). We have the following

evaluation: %[cﬁ(t)Qe_th] = 2¢7 2§/ (1)p(t)? — 2b¢(t)?]. Using the last two rela-

d
tions together we obtain E[qﬁ(t)Qe*th] < 2e 2% q(ep, + €,,). Now by integration

between 0 and ¢ we further obtain ¢(t)%e 2" < b( k — €m)(1 — e2%). Multiplying

2bt

the last inequality with e=** we get

S

o(t)?* < %(Gk +em) (€ —1) < 5 e+ em) (€ — 1),
where [ is the length of I. That is, the sequence {zx(-)} converges uniformly on I.
(ii) Having proved the uniform convergence of the sequence xj(-) of approximate
solutions to a limit x(-), we will now select a subsequence whose derivatives con-
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verge weakly* in L>(I, X) to its derivative z/(-). Since ||z} (¢)|| < C for some fixed
C, we have z}(t) € B(0,C) C L*®(I, X) which is weakly* compact by Alaoglu’s
Theorem (see [A-C], Chapter 0, Section 3, Theorem 3) and the fact that L>°(I, X)
is the dual of L'(I, X). Thus, there exists a subsequence of {z} ()}, again denoted
by {z},(-)}, which converges weakly* to w(-) in L*°(I, X'). This means that for ev-

ery a-) € LY(I, X), /(a(r),xﬁﬁ(r))dr — /(a(r),w(7‘)>d7‘. In particular, letting
a(T) = X[s,4(T)a for a € X (where by x(s 4 Iwe denoted the characteristic function
of the interval [s, t]) we have /Qa,x%(r))dr — /t<a,w(7))d7. Since {x(-)} is ab-
solutely continuous we also hasve (o, e (t) — xp, (5)9> = f;@, x) (7))dr. Taking limits

¢
as k — oo, we conclude that («a,z(t) — z(s)) z/ (o, w(T))dr = <oz,/ 2/ (7)dr).
S s
Since this is true for every o € X, it follows that z(t) — z(s) = f: w(r)dr. By
Theorem 3.4 this implies that x(-) is absolutely continuous and z'(-) = w(-).

(iii) We will now use Proposition 3.2 to show that z(-) is a solution to the
differential inclusion (4).

Once again we use the fact that for each k > kg and almost every ¢ € I there
exists a pair (ug(t), v (t)) € graph(F — Ng) such that ||z (t) — ur(t)|| < €, and
||z, (t) — v (t)]| < €k, where € — 0 when k — oco. Let p € X be arbitrarily fixed.
Then for almost all ¢, (u(t), (p,v(t))) € graph((p, F — Ng)) and ||(p,z},(t)) —
(p,vi(t)|| < ||p|l€ex- Evidently, ug(t) converges to x(t) for every t € I and (p, vg(t))
converges to (p, z'(t)) for almost all ¢ € I.

Then, by Proposition 3.2, graph({p, F — NK>) is closed, so by letting k& — oo
it follows that for almost all ¢, (x(t), (p,2'(t))) € graph({p, F — Nk)). Since the
set F(z(t)) — Ng(z(t)) is convex and closed it follows that z’(t) is a solution to
problem (4), and therefore to problem (2).

(iv) Finally, we are able to show easily the uniqueness of solutions to problem
(2). From (i)—(iii) above we have that the problem has solutions on an interval
I:=[0,1]. Suppose z1(-) and xa(-) are two solutions starting at the point zg. Then
for any fixed t € I,

7 (Gl () = 2(1)|?)
= (@1(t) — 22 (t), Mg (21(1), F(1(2))) — T (2(t), F(22(1))))
< bl (t) — 2(8)].

Applying Gronwall’s inequality for the function ¢t — ||z1(¢) — z2(¢)||*> we obtain

l|[z1(t) — 22(t)])*> <0, i.e., 21(t) = 22(t) for any t € I.

4. CONCLUDING REMARKS

The study of the dynamic properties of solutions to infinite-dimensional equi-
librium problems through a projected dynamics has been started in [[s-C2] and
[Cjl, inspired by the technique introduced in [D-I], [D-N] and [Na2] in the finite-
dimensional case.

We would like to thank the referee for valuable comments and observations which
have led to a clearer presentation of our result.
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