MONOID OF SELF-EQUIVALENCES AND FREE LOOP SPACES

YVES FÉLIX AND JEAN-CLAUDE THOMAS
(Communicated by Paul Goerss)

Abstract

Let M be a simply-connected closed oriented N-dimensional manifold. We prove that for any field of coefficients $l k$ there exists a natural homomorphism of commutative graded algebras $\Gamma: H_{*}\left(\Omega\right.$ aut $\left._{1} M\right) \rightarrow \mathbb{H}_{*}\left(M^{S^{1}}\right)$ where $\mathbb{H}_{*}\left(M^{S^{1}}\right)=H_{*+N}\left(M^{S^{1}}\right)$ is the loop algebra defined by Chas and Sullivan. As usual aut ${ }_{1} X$ denotes the monoid of self-equivalences homotopic to the identity, and ΩX the space of based loops. When $l k$ is of characteristic zero, Γ yields isomorphisms $H_{(1)}^{n+N}\left(M^{S^{1}}\right) \xlongequal{\cong}\left(\pi_{n}\left(\Omega \text { aut }_{1} M\right) \otimes l k\right)^{\vee}$ where $\bigoplus_{l=1}^{\infty} H_{(l)}^{n}\left(M^{S^{1}}\right)$ denotes the Hodge decomposition on $H^{*}\left(M^{S^{1}}\right)$.

1. Introduction

Let M be a simply connected N-dimensional closed oriented manifold with base point m_{0}. We denote by $M^{S^{1}}$ the space of free loops on M, by ΩM the space of based loops of M at m_{0}, by aut M the monoid of (unbased) self equivalences of M, by aut ${ }_{1} M$ the connected component of $I d_{M}$ in aut M, and by $H_{*}(-)$ the singular homology functor with coefficients in the fixed field $l k$. The composition of loops induce a commutative graded algebra structure on $H_{*}\left(\Omega a^{\prime}{ }_{1} M\right)$.

It is convenient to write

$$
\mathbb{H}_{*}(M)=H_{*+N}(M)\left(\text { resp. } \mathbb{H}_{*}\left(M^{S^{1}}\right)=H_{*+N}\left(M^{S^{1}}\right)\right) .
$$

Indeed $\mathbb{H}_{*}(M)$ becomes a commutative graded algebra with the intersection product, and $\mathbb{H}_{*}\left(M^{S^{1}}\right)$ a commuative graded algebra with the loop product defined by Chas and Sullivan [1]. The definition of the loop product works as follows: Let $\alpha: \triangle^{n} \rightarrow M^{S^{1}}$ and $\beta: \triangle^{m} \rightarrow M^{S^{1}}$ be simplices of $M^{S^{1}}$ and assume that $q \circ \alpha: \triangle^{n} \rightarrow M$ and $q \circ \beta: \Delta^{m} \rightarrow M$ are transverse in some sense. Then the intersection product $(q \circ \alpha) \cdot(q \circ \beta)$ makes sense, and at each point $(s, t) \in \Delta^{n} \times \Delta^{m}$ such that $q \sigma(s)=q \tau(t)$, the composition of the loops $\alpha(s)$ and $\beta(t)$ can be performed. This gives a chain $\alpha \cdot \beta \in \mathcal{C}_{m+n-N}\left(M^{S^{1}}\right)$ and leads to a commutative and associative multiplication (1), Theorem 3.3):

$$
\mathbb{H}_{k}\left(M^{S^{1}}\right) \otimes \mathbb{H}_{l}\left(M^{S^{1}}\right) \rightarrow \mathbb{H}_{k+l}\left(M^{S^{1}}\right), \quad a \otimes b \mapsto a \cdot b
$$

Our first result reads:

[^0]Theorem 1. The natural map

$$
g: M \times \Omega \operatorname{aut}_{1} M \rightarrow M^{S^{1}}, \quad g(x, \gamma)(t)=\gamma(t)(x)
$$

induces a morphism of commutative graded algebras

$$
H_{*}(g): \mathbb{H}_{*}(M) \otimes H_{*}\left(\Omega_{a^{2}} M\right) \rightarrow \mathbb{H}_{*}\left(M^{S^{1}}\right)
$$

Denote by ω the fundamental class of M in homology. Then $\omega \in \mathbb{H}_{0}(M)=$ $H_{N}(M) \cong \nVdash \omega$ is the unit of the algebra $\mathbb{H}_{*}(M)$. The homomorphism $H_{*}(g)$ restricts to a morphism of commutative graded algebras

$$
\Gamma: H_{*}\left(\Omega_{\operatorname{aut}_{1}} M\right) \rightarrow \mathbb{H}_{*}\left(M^{S^{1}}\right), \quad \Gamma(a)=H(g)(\omega \otimes a)
$$

The composition of Γ with the Hurewicz map $h: \pi_{*}\left(\Omega \operatorname{aut}_{1} M\right) \otimes l k \rightarrow H_{*}\left(\Omega a u t_{1} M\right)$ is a morphism of graded vector spaces

$$
\Gamma_{1}=\Gamma \circ h: \pi_{*}\left(\Omega_{a u t_{1}} M\right) \otimes l k \rightarrow H_{*+N}\left(M^{S^{1}}\right)
$$

which in turn induces the dual morphism

$$
\Gamma_{1}^{\vee}: H^{*+N}\left(M^{S^{1}}\right) \rightarrow\left(\pi_{*}\left(\Omega_{a u t_{1}} M \otimes l k\right)\right)^{\vee}
$$

Now recall that $H^{*}\left(M^{S^{1}}\right)$ is isomorphic as a graded vector space with the Hochschild homology of the cochain algebra $\mathcal{C}^{*}(M)([10])$:

$$
H^{*}\left(M^{S^{1}}\right) \cong H H_{*}\left(\mathcal{C}^{*}(M) ; \mathcal{C}^{*}(M)\right)
$$

Also recall that if $l k$ is a field of characteristic zero and A is a commutative graded $l k$-algebra, then the Hochschild homology of $A, H H_{*}(A ; A)$, admits a Hodge decomposition (8):

$$
\mathbb{H}_{*}(A ; A)=\bigoplus_{l \geq 0}^{\infty} \mathbb{H}_{*}^{(l)}(A ; A)
$$

Since $\mathcal{C}^{*}(M)$ is quasi-isomorphic to a commutative graded differential algebra A, we derive from the previous considerations a Hodge decomposition on the free loop space cohomology of M,

$$
\mathbb{H}^{*}\left(M^{S^{1}}\right)=\bigoplus_{l \geq 0} \mathbb{H}_{(l)}^{*}\left(M^{S^{1}}\right)
$$

We prove:
Theorem 2. If $l k$ is a field of characteristic zero, then

- $\Gamma_{1}: \pi_{*}\left(\Omega \operatorname{aut}_{1} M\right) \otimes \mathbb{k} \rightarrow \mathbb{H}_{*}\left(M^{S^{1}}\right)$ is injective,
- $\Gamma_{1}^{\vee}: \mathbb{H}_{(1)}^{n}\left(M^{S^{1}}\right) \stackrel{\cong}{\Rightarrow}\left(\pi_{n}\left(\Omega \text { aut }_{1} M\right) \otimes \mathbb{k}\right)^{\vee}$ is an isomorphism for $n \geq 0$,
- Γ_{1}^{\vee} vanishes on the components $\mathbb{H}_{(p)}^{*}\left(M^{S^{1}}\right)$ for $p \geq 2$.

Theorems 1 and 2 are proved respectively in sections 2 and 3 . Section 4 contains examples and final remarks.

2. Proof of Theorem 1

We denote by $q: M^{S^{1}} \rightarrow M$ the free loop space fibration and by $\operatorname{Sect}(q)$ the space of sections of q. The composition of loops makes Sect (q) into a monoid with multiplication μ defined by

$$
\mu(\sigma, \tau)(m)(t)=\left\{\begin{array}{ll}
\sigma(m)(2 t), & t \leq \frac{1}{2}, \\
\tau(m)(2 t-1), & t \geq \frac{1}{2}
\end{array} \quad \sigma, \tau \in \operatorname{Sect}(q), \quad t \in[0,1], m \in M\right.
$$

Clearly the map $\psi: \Omega\left(\operatorname{aut}_{1} M, i d_{M}\right) \rightarrow \operatorname{Sect}(q)$ defined by

$$
\psi(f)(m)(t)=f(t)(m)
$$

is a homeomorphism of monoids making commutative the diagram

$$
\begin{array}{ccc}
M \times \operatorname{Sect}(q) & \xrightarrow{e v} & M^{S^{1}} \\
1 \times \psi \downarrow & & \| \\
M \times \operatorname{aut}_{1} M & \xrightarrow{g} & M^{S^{1}},
\end{array}
$$

where $e v$ denotes the evaluation map.
To prove Theorem 1, it therefore suffices to establish that the evaluation map $H_{*}(e v): \mathbb{H}_{*}(M) \otimes H_{*}(\operatorname{Sect}(q)) \rightarrow \mathbb{H}_{*}\left(M^{S^{1}}\right)$ is a morphism of graded algebras.

We first remark that Chas and Sullivan prove that the morphism $H_{*}\left(\sigma_{0}\right)$: $\mathbb{H}(M) \rightarrow \mathbb{H}\left(M^{S^{1}}\right)$, induced by the trivial section σ_{0}, is a morphism of graded algebras ([1], Proposition 3.4). Therefore the restriction of $H_{*}(e v)$ to $\mathbb{H}_{*}(M)$ is a morphism of graded algebras.

Recall now that the unit of $\mathbb{H}_{*}(M)$ is the fundamental class $\omega \in \mathbb{H}_{0} M=H_{N} M$. Therefore for a cycle $\sum_{i} n_{i} \alpha_{i}$, with $\alpha_{i}: \Delta^{r} \rightarrow \operatorname{Sect}(q), H_{*}(e v)(\omega \otimes \alpha)$ is the homology class of the sum $\sum_{i} n_{i} \alpha_{i}^{\prime}$ where α_{i}^{\prime} denotes the composition

$$
\alpha_{i}^{\prime}: M \times \Delta^{r} \xrightarrow{i d \times f} M \times \operatorname{Sect}(q) \xrightarrow{e v} M^{S^{1}}
$$

Thus let $\alpha: \Delta^{r} \rightarrow \operatorname{Sect}(q)$ and $\beta: \triangle^{s} \rightarrow \operatorname{Sect}(q)$ be simplices. Since the simplices $q \circ \alpha^{\prime}$ and $q \circ \beta^{\prime}$ are transverse in M, the Chas-Sullivan product
$\alpha^{\prime} \cdot \beta^{\prime}: M \times \Delta^{r} \times \Delta^{s} \xrightarrow{i d \times \alpha \times \beta} M \times \operatorname{Sect}(q) \times \operatorname{Sect}(q) \xrightarrow{(e v, e v)} M^{S^{1}} \times{ }_{M} M^{S^{1}} \xrightarrow{c} M^{S^{1}}$
is well defined, c denoting pointwise composition of loops.
As the multiplication μ makes commutative the diagram

$$
\begin{array}{ccc}
M \times \operatorname{Sect}(q) \times \operatorname{Sect}(q) & \xrightarrow{(e v, e v)} & M^{S^{1}} \times_{M} M^{S^{1}} \\
\downarrow i d \times \mu & \downarrow c \\
M \times \operatorname{Sect}(q) & \xrightarrow{e v} & M^{S^{1}},
\end{array}
$$

the map $\alpha^{\prime} \cdot \beta^{\prime}$ is equal to $\mu(\alpha, \beta)^{\prime}$. Therefore the restriction of $H_{*}(e v)$ to the component $l k \omega \otimes H_{*}(\operatorname{Sect}(q))$ is also a morphism of algebras.

Finally let $\alpha: \Delta^{r} \rightarrow M$ and $\beta: \Delta^{s} \rightarrow \operatorname{Sect}(q)$. Then the simplices α and $q \beta^{\prime}$ are transverse and the Chas-Sullivan product $\alpha \cdot \beta$ is equal to $e v(\alpha \times \beta)$. Therefore $H_{*}(e v)(\alpha) \cdot H_{*}(e v)(\beta)=H_{*}(e v)(\alpha \otimes \beta)$.

3. Proof of Theorem 2

Since $\mathbb{Q} \subset l k$ we may as well suppose that $l k=\mathbb{Q}$. Hereafter we will make extensive use of the theory of minimal models in the sense of Sullivan ([12]), for which we refer systematically to [5], $\S 12$. We denote by $(\wedge V, d)$ the minimal model of M. By [13] a relative minimal model for the fibration $q: M^{S^{1}} \rightarrow M$ is given by the extension

$$
(\wedge V, d) \hookrightarrow(\wedge V \otimes \wedge s V, D),|s v|=|v|-1, D(v)=d(v), D(s v)=-s(d v)
$$

where $s: \wedge V \rightarrow \wedge V \otimes \wedge s V$ is the unique derivation defined by $s(v)=s v$. The cochain complex $(\wedge V \otimes \wedge s V, D)$ decomposes into a direct sum of complexes

$$
(\wedge V \otimes \wedge s V, D)=\bigoplus_{k \geq 0}\left(\wedge V \otimes \wedge^{k} s V, D\right)
$$

This induces a new graduation on $H^{*}\left(M^{S^{1}}\right), H^{*}\left(M^{S^{1}}\right)=\bigoplus_{k} H_{(k)}^{*}\left(M^{S^{1}}\right)$ with

$$
H_{(k)}^{*}\left(M^{S^{1}}\right)=H^{*}\left(\wedge V \otimes \wedge^{k} s V, D\right)
$$

In [14], Vigué proves that this decomposition coincides with the Hodge decomposition of the Hochschild homology $\mathbb{H}_{*}((\wedge V, d) ;(\wedge V, d))$:

$$
H^{*}\left(\wedge V \otimes \wedge^{k} s V, D\right) \cong \mathbb{H}_{*}^{(k)}((\wedge V, d) ;(\wedge V, d))
$$

By the Milnor-Moore Theorem ([11]), $H_{*}(\operatorname{Sect}(q) ; \mathbb{Q})$ is isomorphic as a Hopf algebra to the universal enveloping algebra on the graded homotopy Lie algebra $\pi_{*}\left(\Omega\right.$ aut $\left._{1} M\right) \otimes \mathbb{Q}$. Thus Theorem 2 in the Introduction is a direct consequence of Theorem 3 below.

Theorem 3. Let

$$
\Phi_{1}: \pi_{*}(\operatorname{Sect}(q)) \otimes \mathbb{Q} \rightarrow \mathbb{H}_{*}\left(M^{S^{1}} ; \mathbb{Q}\right)
$$

denote the restriction of $H_{*}(e v)$ to $\omega \otimes \pi_{*}(\operatorname{Sect}(q)) \otimes \mathbb{Q}$. Then,

- Φ_{1} is an injective morphism,
- the dual map $\Phi_{1}{ }^{\vee}$ vanishes on each $H_{(p)}^{*}\left(M^{S^{1}} ; \mathbb{Q}\right), p \geq 2$, and induces an isomorphism $\bigoplus_{q>N} H_{(1)}^{q}\left(M^{S^{1}} ; \mathbb{Q}\right) \cong \pi_{*}(\operatorname{Sect}(q))^{\vee}$.

Proof. We first construct a quasi-isomorphism $\rho:(\wedge V, d) \rightarrow(A, d)$ with (A, d), a commutative differential graded algebra satisfying $A^{0}=\mathbb{Q}, A^{1}=0, A^{>N}=0$, $A^{N}=\mathbb{Q} \omega$, and $\operatorname{dim} A^{i}<\infty$ for all i.

For this we denote

$$
Z^{k}=\operatorname{Ker}\left(d:(\wedge V)^{k} \rightarrow(\wedge V)^{k+1}\right)
$$

and we choose a supplement S^{k} of Z^{k} in $(\wedge V)^{k}$:

$$
(\wedge V)^{k}=Z^{k} \oplus S^{k}
$$

The quotient $(\wedge V)^{N} /\left(S^{N} \oplus d S^{N-1}\right) \cong H^{N}(M)$ has dimension one. Since $V^{1}=0$, the subcomplex $I=S^{N-1} \oplus d S^{N-1} \oplus S^{N} \oplus(\wedge V)^{>N}$ is an acyclic ideal in $(\wedge V, d)$. Therefore the natural projection $\rho:(\wedge V, d) \rightarrow(\wedge V / I, d)$ is a quasi-isomorphism of differential graded algebras. We define $(A, d)=(\wedge V / I, d)$.

The homomorphism ρ extends to a quasi-isomorphism $\rho \otimes 1:(\wedge V \otimes \wedge s V, D) \rightarrow$ $(A \otimes \wedge s V, D)$ with $D(a \otimes s v)=d(a) \otimes s v-(-1)^{|a|} a \cdot(\rho \otimes 1)(D s v)$. The complex $(A \otimes \wedge s V, D)$ also decomposes into the direct sum of the complexes $\left(A \otimes \wedge^{k} s V, D\right)$.

Denote by $\left(a_{i}\right), i=1, \ldots, n$, a homogeneous linear basis of A with $a_{n}=\omega$, and by $\left(a_{i}^{\vee}\right)$ the dual basis, i.e. the linear basis of $A^{\vee}=\operatorname{Hom}(A, \mathbb{Q})$ such that

$$
\left\langle a_{i}^{\vee}, a_{j}\right\rangle=\delta_{i j}
$$

In [9, Haefliger proved that a model for the evaluation map ev : $M \times \operatorname{Sect}(q) \rightarrow$ $M^{S^{1}}$ is given by the morphism

$$
\theta:(A \otimes \wedge s V, D) \rightarrow(A, d) \otimes\left(\wedge\left(A^{\vee} \otimes s V\right), \delta\right), \quad \theta(a \otimes s v)=\sum_{i} a a_{i} \otimes\left(a_{i}^{\vee} \otimes s v\right)
$$

Since $D(s V) \subset A \otimes s V$ and θ is a morphism of differential graded algebras, then $\delta\left(A^{\vee} \otimes s V\right) \subset A^{\vee} \otimes s V$. We now fix some notations:

- $\rho_{1}:\left(\wedge\left(A^{\vee} \otimes s V\right), \delta\right) \rightarrow\left(A^{\vee} \otimes s V, \delta\right)$ denotes the projection on the complex of indecomposable elements,
- $P:(A, d) \rightarrow(\mathbb{Q} \omega, 0)$ is the homogeneous projection onto the component of degree N,
- $\pi_{1}:(A \otimes \wedge s V, D) \rightarrow(A \otimes s V, D)$ is the canonical projection on the subcomplex $(A \otimes s V, D)$.
The dual of Φ_{1},

$$
\Phi_{1}^{\vee}: H^{*+d}\left(M^{S^{1}} ; \mathbb{Q}\right) \rightarrow\left(\pi_{*}(\operatorname{Sect}(q)) \otimes \mathbb{Q}\right)^{\vee}
$$

therefore coincides with $H^{*}\left(P \otimes \rho_{1}\right) \circ H^{*}(\theta)$:

$$
(A \otimes \wedge s V, D) \xrightarrow{\theta}(A, d) \otimes\left(\wedge\left(A^{\vee} \otimes s V\right), \delta\right) \xrightarrow{P \otimes \rho_{1}} \mathbb{Q} \omega \otimes\left(A^{\vee} \otimes s V, \delta\right),
$$

and vanishes on $(A \otimes \wedge \geq 2 s V, D)$.
Lemma. The duality map $\Delta: A \rightarrow A^{\vee}$ defined by

$$
\langle\Delta(a), b\rangle=P(a b) \in \mathbb{Q} \omega \cong \mathbb{Q}
$$

extends into a quasi-isomorphism of complexes

$$
\Delta \otimes 1:(A \otimes s V, D) \rightarrow\left(A^{\vee} \otimes s V, \delta\right)
$$

Proof. Denote by $\alpha_{i j}^{k}$ and β_{i}^{j} rational numbers defined by the relations

$$
\left\{\begin{array}{l}
a_{i} \cdot a_{j}=\sum_{k} \alpha_{i j}^{k} a_{k} \\
d\left(a_{i}\right)=\sum_{j} \beta_{i}^{j} a_{j}
\end{array}\right.
$$

Recall that $\left\{a_{i}^{\vee}\right\}_{i}$ denotes the dual basis of $\left\{a_{i}\right\}_{i}$. Then straightforward computations show that

- $d\left(a_{i}^{\vee}\right)=-(-1)^{\left|a_{i}\right|} \sum_{j} \beta_{j}^{i} a_{j}^{\vee}$.
- $\sum_{r} \alpha_{i j}^{r} \alpha_{r k}^{t}=\sum_{s} \alpha_{j k}^{s} \alpha_{i s}^{t}$, for $i, j, k, t=1, \ldots, n$ (associativity of the multiplication law).
- $\sum_{r} \alpha_{i j}^{r} \beta_{r}^{s}=\sum_{t} \beta_{i}^{t} \alpha_{t j}^{s}+(-1)^{\left|a_{i}\right|} \sum_{l} \beta_{j}^{l} \alpha_{i l}^{s}$, for $i, j, l=1, \ldots, n$ (compatibility of the differential d with the multiplication).
- $\delta\left(a_{j}^{\vee} \otimes s v\right)=(-1)^{\left|a_{j}\right|}\left[\sum_{i, l} \alpha_{i l}^{j}\left(a_{l}^{\vee} \otimes s v_{i}\right)-\sum_{r} \beta_{r}^{j}\left(a_{r}^{\vee} \otimes s v\right)\right]$.
- $\Delta\left(a_{i}\right)=\sum_{j} \alpha_{i j}^{n} a_{j}^{\vee}$.

The duality morphism has degree N. A standard computation then shows that

$$
\delta \circ(\Delta \otimes 1)=(-1)^{N}(\Delta \otimes 1) \circ d
$$

Since $H^{*}(M)$ is a Poincaré duality algebra and since $H^{*}(\Delta): H^{*}(M) \rightarrow H_{*}(M)$ is the Poincaré duality, $\Delta \otimes 1$ is a quasi-isomorphism.

End of the proof of Theorem 3. It is easy to check the commutativity of the following diagram of complexes:

with $\sigma(a \otimes s v)=\omega \otimes a \otimes s v$. By the above lemma, $H_{*}(1 \otimes \Delta \otimes 1)$ is an isomorphism. Therefore $H^{*}\left((1 \otimes(\Delta \otimes 1)) \circ \sigma \circ \pi_{1}\right)$ is surjective and this implies the surjectivity of $\Phi_{1}^{\vee}=H_{*}\left(P \otimes \rho_{1}\right) \circ H^{*}(\theta)$.

4. Examples and further comments

Remark 1. The morphism $\Gamma: H_{*}\left(\Omega \operatorname{aut}_{1} M\right) \rightarrow H_{*}\left(M^{S^{1}}\right)$ is not injective in general, as we shall now explain.

Denote by $e v_{0}:$ aut $_{1} M \rightarrow M$ the evaluation at the base point. The image of the morphism $\pi_{n}\left(e v_{0}\right): \pi_{n}\left(\operatorname{aut}_{1} M\right) \rightarrow \pi_{n} M$ is known as the n-th Gottlieb group of $M, G_{n}(M)\left([5)\right.$. Since $\Omega e v_{0}: \Omega$ aut $_{1} M \rightarrow \Omega M$ is an H-map, $H_{*}\left(\Omega e v_{0} ; \mathbb{Q}\right)=$ $U\left(\pi_{*}\left(\Omega e v_{0}\right) \otimes \mathbb{Q}\right)$ is the enveloping algebra on $\pi_{*}\left(\Omega e v_{0}\right) \otimes \mathbb{Q}$, whose image is the enveloping algebra on the abelian graded Lie algebra $\bar{G}_{*}(X)$ that corresponds by duality to $G_{*}(X) \otimes \mathbb{Q}$.

Denote by $I: \mathbb{H}_{*}\left(M^{S^{1}}\right) \rightarrow H_{*}(\Omega M)$ the intersection morphism defined in ([1], Proposition 3.4), and let ψ be defined as in the beginning of section 2. The commutativity of the following diagram

$$
\begin{array}{ccc}
H_{*}\left(\Omega \operatorname{aut}_{1} M\right) & \xrightarrow{\pi_{*}(\psi)} & H_{*}(\operatorname{Sect}(q)) \\
H_{*}\left(\Omega e v_{0}\right) \downarrow & & \downarrow H_{*}(e v)(\omega \otimes-) \\
H_{*}(\Omega M) & \stackrel{I}{\leftarrow} & \mathbb{H}_{*}\left(M^{S^{1}}\right)
\end{array}
$$

shows that the image of $I \circ \Phi_{1}$ is the universal enveloping algebra on $\bar{G}_{*}(X)$.
On the other hand, the kernel of I is a nilpotent ideal with nilpotency index less than or equal to N ([6]).

Now consider the manifold $M=S^{3} \times S^{3} \times S^{11}$. A simple computation using minimal models shows that $\pi_{5}\left(\right.$ aut $\left._{1} M\right) \otimes \mathbb{Q} \neq 0$ and $G_{5}(M) \otimes \mathbb{Q}=0$. Then denote by x a nonzero element in $\pi_{4}\left(\Omega\right.$ aut $\left._{1} M\right) \otimes \mathbb{Q}$. Since $H_{*}\left(\Omega\right.$ aut $\left._{1} M ; \mathbb{Q}\right)$ is a free commutative graded algebra, some power of x belongs in the kernel of Γ.
Remark 2. In [2] Cohen and Jones prove that $\mathbb{H}_{*}\left(M^{S^{1}}\right)$ is isomorphic as an algebra to the Hochschild cohomology $H H^{*}\left(\mathcal{C}^{*}(M), \mathcal{C}^{*}(M)\right)$. On the other hand, in [7], Gatsinzi establishes for any space M an algebraic isomorphism between $\pi_{*}\left(\right.$ aut $\left._{1} M\right) \otimes \mathbb{Q}$ and a sub-vector space of $H H^{*}\left(\mathcal{C}^{*}(M), \mathcal{C}^{*}(M)\right)$. Our Theorem 2 relates these two results.

Problem. We would like to know if the homomorphism

$$
\Gamma: \mathbb{H}_{*}(M) \otimes H_{*}\left(\Omega_{a u t_{1}} M\right) \rightarrow \mathbb{H}_{*}\left(M^{S^{1}}\right)
$$

is surjective. It is true for example when $M=\mathbb{C} P^{2 N}$. When Γ is surjective there is a strong connection between the behaviour of the sequences of Betti numbers $\operatorname{dim} H_{i}\left(M^{S^{1}}\right)$ and $\operatorname{dim} \pi_{i}($ aut $M) \otimes \mathbb{Q}$.

Example 1. Let G be a Lie group. The minimal model of G is $(\wedge V, 0)$ with V finite dimensional and concentrated in odd degrees ([5], $\S 12(\mathrm{a})$). Therefore a model of the free loop space $G^{S^{1}}$ is $(\wedge V \otimes \wedge s V, 0)$ and the Haefliger model for the space Sect (q) is $\left(\wedge\left((\wedge V)^{\vee} \otimes s V\right), 0\right)$. Since the model θ of the evaluation map $e v$ is injective, $H_{*}(e v): H_{*}(M) \otimes H_{*}(\operatorname{Sect}(q)) \rightarrow H_{*}\left(M^{S^{1}}\right)$ is surjective. This implies the existence of an isomorphism of graded algebras,

$$
\mathbb{H}_{*}\left(M^{S^{1}}\right) \cong \mathbb{H}_{*}(M) \otimes H_{*}(\Omega M)
$$

Here the multiplication on the right is the product of the intersection product on $\mathbb{H}_{*}(M)$ with the usual Pontryagin product on $H_{*}(\Omega M)$.

Example 2. Let us assume that M is a \mathbb{Q}-hyperbolic space satisfying either $\left(H^{+}(M)\right)^{3}=0$ or $\left(H^{+}(M)\right)^{4}=0$, and M is a coformal space.

Recall that a space M is \mathbb{Q}-hyperbolic if $\operatorname{dim} \pi_{*}(M) \otimes \mathbb{Q}=\infty$ and is coformal if the differential graded algebras $\mathcal{C}_{*}(\Omega M)$ and $\left(H_{*}(\Omega M), 0\right)$ are quasi-isomorphic. Under the above hypothesis, in [15] Vigué proves that there exist an integer n_{0} and some constants $C_{1} \geq C_{2}>1$ such that

$$
C_{2}^{n} \leq \sum_{i=1}^{n} \operatorname{dim} H_{(1)}^{i}\left(X^{S^{1}}\right) \leq C_{1}^{n}, \text { for all } n \geq n_{0}
$$

We deduce from Theorem 3 that the same relations hold for the sequence of dimensions of $\pi_{i}($ aut $M) \otimes \mathbb{Q}$, i.e., in both cases the sequences of Betti numbers have exponential growth.

References

1. M. Chas and D. Sullivan, String topology, preprint math GT/9911159.
2. R. Cohen and J. Jones, A homotopy theoretic realization of string topology, Math. Ann. $\mathbf{3 2 4}$ (2002) 773-798.
3. R. Cohen, J. D.S. Jones and J. Yan, The loop homology of spheres and projective spaces, preprint, February 2002.
4. Y. Félix and J.-C. Thomas, The monoid of self-homotopy equivalences of some homogeneous spaces, Expositiones Mathematicae 12 (1994) 305-321. MR 95i:55013
5. Y. Félix, S. Halperin and J.-C. Thomas, Rational Homotopy Theory, Graduate Texts in Mathematics 205, Springer-Verlag (2000). MR 2002d:55014
6. Y. Félix, J.-C. Thomas and M. Vigué-Poirrier, Structure of the loop homology of a compact manifold, preprint, March 2002.
7. J.-B. Gatsinzi, The homotopy Lie algebra of classifying spaces, Journal of Pure and Applied Algebra 120 (1997) 281-289. MR 98g:55015
8. M. Gerstenhaber and S. D. Schack, A Hodge type decomposition for commutative algebras, J. Pure Appl. Algebra 48 (1987) no. 3, 229-247. MR 88k:13011
9. A. Haefliger, Rational homotopy of the space of sections of a nilpotent bundle, Trans. Amer. Math. Soc. 273 (1982), 609-620. MR 84a:55010
10. J.D.S. Jones, Cyclic homology and equivariant homology, Invent. Math. 87 (1987), 403-423. MR 88f:18016
11. J. Milnor and J.C. Moore, On the structure of Hopf algebras, Annals of Math. 81 (1965) 211-264. MR 30:4259
12. D. Sullivan, Infinitesimal computations in topology, Publ. Math. IHES 47 (1978) 269-331. MR 58:31119
13. D. Sullivan and M. Vigué, The homology theory of the closed geodesic problem, J. Differential Geom. 11 (1976) 633-634. MR 56:13269
14. M. Vigué-Poirrier, Décompositions de l'homologie cyclique des algèbres différentielles graduées commutatives, K-Theory 4 (1991) 399-410. MR 92e:19004
15. M. Vigué-Poirrier, Homotopie rationnelle et croissance du nombre de géodésiques fermées, Ann. Scient. Ecole Norm. Sup. 17 (1984) 413-431. MR 86h:58027

Département de Mathématique, Université Catholique de Louvain, 2, Chemin du Cyclotron, 1348 Louvain-La-Neuve, Belgium

E-mail address: felix@math.ucl.ac.be
Faculté des Sciences, Université d'Angers, 2, Boulevard Lavoisier, 49045 Angers, France

E-mail address: thomas@univ-angers.fr

[^0]: Received by the editors May 5, 2002 and, in revised form, August 30, 2002
 2000 Mathematics Subject Classification. Primary 55P35, 55P62, 55P10.

