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MONOID OF SELF-EQUIVALENCES AND FREE LOOP SPACES

YVES FÉLIX AND JEAN-CLAUDE THOMAS

(Communicated by Paul Goerss)

Abstract. Let M be a simply-connected closed oriented N-dimensional man-
ifold. We prove that for any field of coefficients lk there exists a natural ho-

momorphism of commutative graded algebras Γ : H∗(Ω aut1M) → H∗(MS1
)

where H∗(MS1
) = H∗+N (MS1

) is the loop algebra defined by Chas and Sul-
livan. As usual aut1X denotes the monoid of self-equivalences homotopic to
the identity, and ΩX the space of based loops. When lk is of characteris-

tic zero, Γ yields isomorphisms Hn+N
(1)

(MS1
)
∼=→ (πn(Ωaut1M) ⊗ lk)∨ where⊕∞

l=1H
n
(l)

(MS1
) denotes the Hodge decomposition on H∗(MS1

).

1. Introduction

Let M be a simply connected N -dimensional closed oriented manifold with base
point m0. We denote by MS1

the space of free loops on M , by ΩM the space of
based loops of M at m0, by autM the monoid of (unbased) self equivalences of M ,
by aut1M the connected component of IdM in autM , and by H∗(−) the singular
homology functor with coefficients in the fixed field lk. The composition of loops
induce a commutative graded algebra structure on H∗(Ωaut1M).

It is convenient to write

H∗(M) = H∗+N (M) (resp. H∗(MS1
) = H∗+N (MS1

)).

Indeed H∗(M) becomes a commutative graded algebra with the intersection prod-
uct, and H∗(MS1

) a commuative graded algebra with the loop product defined
by Chas and Sullivan [1]. The definition of the loop product works as follows:
Let α : 4n → MS1

and β : 4m → MS1
be simplices of MS1

and assume that
q ◦ α : 4n → M and q ◦ β : 4m → M are transverse in some sense. Then the
intersection product (q ◦α) · (q ◦β) makes sense, and at each point (s, t) ∈ 4n×4m
such that qσ(s) = qτ(t), the composition of the loops α(s) and β(t) can be per-
formed. This gives a chain α · β ∈ Cm+n−N(MS1

) and leads to a commutative and
associative multiplication ([1], Theorem 3.3):

Hk(MS1
)⊗Hl(MS1

)→ Hk+l(MS1
) , a⊗ b 7→ a · b .

Our first result reads:
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Theorem 1. The natural map

g : M × Ω aut1M →MS1
, g(x, γ)(t) = γ(t)(x) ,

induces a morphism of commutative graded algebras

H∗(g) : H∗(M)⊗H∗(Ωaut1M)→ H∗(MS1
) .

Denote by ω the fundamental class of M in homology. Then ω ∈ H0(M) =
HN (M) ∼= lkω is the unit of the algebraH∗(M). The homomorphismH∗(g) restricts
to a morphism of commutative graded algebras

Γ : H∗(Ωaut1M)→ H∗(MS1
) , Γ(a) = H(g)(ω ⊗ a) .

The composition of Γ with the Hurewicz map h : π∗(Ωaut1M)⊗ lk→ H∗(Ωaut1M)
is a morphism of graded vector spaces

Γ1 = Γ ◦ h : π∗(Ωaut1M)⊗ lk→ H∗+N (MS1
) ,

which in turn induces the dual morphism

Γ∨1 : H∗+N (MS1
)→ (π∗(Ωaut1M ⊗ lk))∨ .

Now recall that H∗(MS1
) is isomorphic as a graded vector space with the

Hochschild homology of the cochain algebra C∗(M) ([10]):

H∗(MS1
) ∼= HH∗(C∗(M); C∗(M)).

Also recall that if lk is a field of characteristic zero and A is a commutative
graded lk-algebra, then the Hochschild homology of A, HH∗(A;A), admits a Hodge
decomposition ([8]):

H∗(A;A) =
∞⊕
l≥0

H(l)
∗ (A;A) .

Since C∗(M) is quasi-isomorphic to a commutative graded differential algebra A,
we derive from the previous considerations a Hodge decomposition on the free loop
space cohomology of M ,

H∗(MS1
) =

⊕
l≥0

H∗(l)(M
S1

) .

We prove:

Theorem 2. If lk is a field of characteristic zero, then

• Γ1 : π∗(Ω aut1M)⊗ lk→ H∗(MS1
) is injective,

• Γ∨1 : Hn(1)(M
S1

)
∼=→ (πn(Ω aut1M)⊗ lk)∨ is an isomorphism for n ≥ 0,

• Γ∨1 vanishes on the components H∗(p)(M
S1

) for p ≥ 2.

Theorems 1 and 2 are proved respectively in sections 2 and 3. Section 4 contains
examples and final remarks.
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2. Proof of Theorem 1

We denote by q : MS1 → M the free loop space fibration and by Sect (q) the
space of sections of q. The composition of loops makes Sect (q) into a monoid with
multiplication µ defined by

µ(σ, τ)(m)(t) =

 σ(m)(2t) , t ≤ 1
2 ,

τ(m)(2t − 1) , t ≥ 1
2 ,

σ, τ ∈ Sect (q) , t ∈ [0, 1] ,m ∈M .

Clearly the map ψ : Ω(aut1M, idM )→ Sect (q) defined by

ψ(f)(m)(t) = f(t)(m)

is a homeomorphism of monoids making commutative the diagram

M × Sect (q) ev→ MS1

1×ψ ↓ ‖
M × aut1M

g→ MS1
,

where ev denotes the evaluation map.
To prove Theorem 1, it therefore suffices to establish that the evaluation map

H∗(ev) : H∗(M)⊗H∗(Sect (q))→ H∗(MS1
) is a morphism of graded algebras.

We first remark that Chas and Sullivan prove that the morphism H∗(σ0) :
H(M) → H(MS1

), induced by the trivial section σ0, is a morphism of graded
algebras ([1], Proposition 3.4). Therefore the restriction of H∗(ev) to H∗(M) is a
morphism of graded algebras.

Recall now that the unit of H∗(M) is the fundamental class ω ∈ H0M = HNM .
Therefore for a cycle

∑
i niαi, with αi : ∆r → Sect (q), H∗(ev)(ω ⊗ α) is the

homology class of the sum
∑

i niα
′
i where α′i denotes the composition

α′i : M ×∆r id×f−→ M × Sect (q) ev−→MS1
.

Thus let α : 4r → Sect (q) and β : 4s → Sect (q) be simplices. Since the
simplices q ◦ α′ and q ◦ β′ are transverse in M , the Chas-Sullivan product

α′ · β′ : M ×∆r ×∆s id×α×β−→ M × Sect (q)× Sect (q)
(ev,ev)−→ MS1 ×M MS1 c−→MS1

is well defined, c denoting pointwise composition of loops.
As the multiplication µ makes commutative the diagram

M × Sect (q)× Sect (q)
(ev,ev)−→ MS1 ×M MS1

↓ id×µ ↓ c
M × Sect (q) ev−→ MS1

,

the map α′ · β′ is equal to µ(α, β)′. Therefore the restriction of H∗(ev) to the
component lkω ⊗H∗(Sect (q)) is also a morphism of algebras.

Finally let α : 4r → M and β : ∆s → Sect (q). Then the simplices α and qβ′

are transverse and the Chas-Sullivan product α ·β is equal to ev(α× β). Therefore
H∗(ev)(α) ·H∗(ev)(β) = H∗(ev)(α⊗ β). �
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3. Proof of Theorem 2

Since Q ⊂ lk we may as well suppose that lk = Q. Hereafter we will make
extensive use of the theory of minimal models in the sense of Sullivan ([12]), for
which we refer systematically to [5], §12. We denote by (∧V, d) the minimal model
of M . By [13] a relative minimal model for the fibration q : MS1 →M is given by
the extension

(∧V, d) ↪→ (∧V ⊗ ∧sV,D) , |sv| = |v| − 1 , D(v) = d(v) , D(sv) = −s(dv) ,

where s : ∧V → ∧V ⊗ ∧sV is the unique derivation defined by s(v) = sv. The
cochain complex (∧V ⊗ ∧sV,D) decomposes into a direct sum of complexes

(∧V ⊗ ∧sV,D) =
⊕
k≥0

(∧V ⊗ ∧ksV,D) .

This induces a new graduation on H∗(MS1
), H∗(MS1

) =
⊕

kH
∗
(k)(M

S1
) with

H∗(k)(M
S1

) = H∗(∧V ⊗ ∧ksV,D) .

In [14], Vigué proves that this decomposition coincides with the Hodge decomposi-
tion of the Hochschild homology H∗((∧V, d); (∧V, d)):

H∗(∧V ⊗ ∧ksV,D) ∼= H(k)
∗ ((∧V, d); (∧V, d)) .

By the Milnor-Moore Theorem ([11]), H∗(Sect (q);Q) is isomorphic as a Hopf
algebra to the universal enveloping algebra on the graded homotopy Lie algebra
π∗(Ω aut1M)⊗Q. Thus Theorem 2 in the Introduction is a direct consequence of
Theorem 3 below.

Theorem 3. Let
Φ1 : π∗(Sect (q))⊗Q→ H∗(MS1

;Q)
denote the restriction of H∗(ev) to ω ⊗ π∗(Sect (q)) ⊗Q. Then,

• Φ1 is an injective morphism,
• the dual map Φ1

∨ vanishes on each H∗(p)(M
S1

;Q), p ≥ 2, and induces an

isomorphism
⊕

q>N H
q
(1)(M

S1
;Q) ∼= π∗(Sect (q))∨.

Proof. We first construct a quasi-isomorphism ρ : (∧V, d) → (A, d) with (A, d),
a commutative differential graded algebra satisfying A0 = Q , A1 = 0, A>N = 0,
AN = Qω, and dim Ai <∞ for all i.

For this we denote

Zk = Ker(d : (∧V )k → (∧V )k+1) ,

and we choose a supplement Sk of Zk in (∧V )k:

(∧V )k = Zk ⊕ Sk .
The quotient (∧V )N/(SN ⊕ dSN−1) ∼= HN (M) has dimension one. Since V 1 = 0,
the subcomplex I = SN−1 ⊕ dSN−1 ⊕ SN ⊕ (∧V )>N is an acyclic ideal in (∧V, d).
Therefore the natural projection ρ : (∧V, d)→ (∧V/I, d) is a quasi-isomorphism of
differential graded algebras. We define (A, d) = (∧V/I, d).

The homomorphism ρ extends to a quasi-isomorphism ρ⊗ 1 : (∧V ⊗∧sV,D)→
(A ⊗ ∧sV,D) with D(a ⊗ sv) = d(a) ⊗ sv − (−1)|a|a · (ρ⊗ 1)(Dsv). The complex
(A⊗∧sV,D) also decomposes into the direct sum of the complexes (A⊗∧ksV,D).
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Denote by (ai) , i = 1, . . . , n, a homogeneous linear basis of A with an = ω, and
by (a∨i ) the dual basis, i.e. the linear basis of A∨ = Hom (A,Q) such that

〈a∨i , aj〉 = δij .

In [9], Haefliger proved that a model for the evaluation map ev : M ×Sect (q)→
MS1

is given by the morphism

θ : (A⊗ ∧sV,D)→ (A, d) ⊗ (∧(A∨ ⊗ sV ), δ) , θ(a⊗ sv) =
∑
i

aai ⊗ (a∨i ⊗ sv) .

Since D(sV ) ⊂ A ⊗ sV and θ is a morphism of differential graded algebras, then
δ(A∨ ⊗ sV ) ⊂ A∨ ⊗ sV . We now fix some notations:

• ρ1 : (∧(A∨ ⊗ sV ), δ)→ (A∨ ⊗ sV, δ) denotes the projection on the complex
of indecomposable elements,
• P : (A, d)→ (Qω, 0) is the homogeneous projection onto the component of

degree N ,
• π1 : (A ⊗ ∧sV,D) → (A ⊗ sV,D) is the canonical projection on the sub-

complex (A⊗ sV,D).

The dual of Φ1,

Φ∨1 : H∗+d(MS1
;Q)→ (π∗(Sect (q))⊗Q)∨,

therefore coincides with H∗(P ⊗ ρ1) ◦H∗(θ):

(A⊗ ∧sV,D) θ−→ (A, d)⊗ (∧(A∨ ⊗ sV ), δ)
P⊗ρ1−→ Qω ⊗ (A∨ ⊗ sV, δ) ,

and vanishes on (A⊗ ∧≥2sV,D).

Lemma. The duality map ∆ : A→ A∨ defined by

〈∆(a), b〉 = P (ab) ∈ Qω ∼= Q

extends into a quasi-isomorphism of complexes

∆⊗ 1 : (A⊗ sV,D)→ (A∨ ⊗ sV, δ) .

Proof. Denote by αkij and βji rational numbers defined by the relations ai · aj =
∑
k α

k
ijak,

d(ai) =
∑
j β

j
i aj .

Recall that {a∨i }i denotes the dual basis of {ai}i. Then straightforward computa-
tions show that

• d(a∨i ) = −(−1)|ai|
∑
j β

i
j a
∨
j .

•
∑

r α
r
ij α

t
rk =

∑
s α

s
jk α

t
is , for i, j, k, t = 1, . . . , n (associativity of the multi-

plication law).
•
∑

r α
r
ij β

s
r =

∑
t β

t
i α

s
tj + (−1)|ai|

∑
l β

l
j α

s
il , for i, j, l = 1, . . . , n (compati-

bility of the differential d with the multiplication).
• δ(a∨j ⊗ sv) = (−1)|aj|

[∑
i,l α

j
il (a

∨
l ⊗ svi)−

∑
r β

j
r (a∨r ⊗ sv)

]
.

• ∆(ai) =
∑

j α
n
ij a
∨
j .
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The duality morphism has degree N . A standard computation then shows that

δ ◦ (∆⊗ 1) = (−1)N (∆⊗ 1) ◦ d .

Since H∗(M) is a Poincaré duality algebra and since H∗(∆) : H∗(M)→ H∗(M) is
the Poincaré duality, ∆⊗ 1 is a quasi-isomorphism. �

End of the proof of Theorem 3. It is easy to check the commutativity of the follow-
ing diagram of complexes:

(A⊗ ∧sV,D) θ−→ (A, d)⊗ (∧(A∨ ⊗ sV ), δ)
P⊗ρ1−→ Qω ⊗ (A∨ ⊗ sV, δ)

π1 ↓ ↑ 1⊗(∆⊗1)

(A⊗ sV,D) σ−→ Qω ⊗ (A⊗ sV,D) ,

with σ(a⊗sv) = ω⊗a⊗sv. By the above lemma, H∗(1⊗∆⊗1) is an isomorphism.
Therefore H∗((1 ⊗ (∆ ⊗ 1)) ◦ σ ◦ π1) is surjective and this implies the surjectivity
of Φ∨1 = H∗(P ⊗ ρ1) ◦H∗(θ). �

4. Examples and further comments

Remark 1. The morphism Γ : H∗(Ω aut1M)→ H∗(MS1
) is not injective in general,

as we shall now explain.
Denote by ev0 : aut1 M → M the evaluation at the base point. The image of

the morphism πn(ev0) : πn(aut1M) → πnM is known as the n-th Gottlieb group
of M , Gn(M) ([5]). Since Ωev0 : Ω aut1M → ΩM is an H-map, H∗(Ωev0;Q) =
U(π∗(Ωev0) ⊗ Q) is the enveloping algebra on π∗(Ωev0) ⊗ Q, whose image is the
enveloping algebra on the abelian graded Lie algebra G∗(X) that corresponds by
duality to G∗(X)⊗Q.

Denote by I : H∗(MS1
) → H∗(ΩM) the intersection morphism defined in ([1],

Proposition 3.4), and let ψ be defined as in the beginning of section 2. The com-
mutativity of the following diagram

H∗(Ω aut1M)
π∗(ψ)→ H∗(Sect (q))

H∗(Ωev0) ↓ ↓ H∗(ev)(ω⊗−)

H∗(ΩM) I← H∗(MS1
)

shows that the image of I ◦ Φ1 is the universal enveloping algebra on G∗(X).
On the other hand, the kernel of I is a nilpotent ideal with nilpotency index less

than or equal to N ([6]).
Now consider the manifold M = S3 × S3 × S11. A simple computation using

minimal models shows that π5(aut1M)⊗Q 6= 0 and G5(M)⊗Q = 0. Then denote
by x a nonzero element in π4(Ω aut1M) ⊗ Q. Since H∗(Ω aut1M ;Q) is a free
commutative graded algebra, some power of x belongs in the kernel of Γ.

Remark 2. In [2] Cohen and Jones prove that H∗(MS1
) is isomorphic as an al-

gebra to the Hochschild cohomology HH∗(C∗(M), C∗(M)). On the other hand,
in [7], Gatsinzi establishes for any space M an algebraic isomorphism between
π∗(aut1M) ⊗ Q and a sub-vector space of HH∗(C∗(M), C∗(M)). Our Theorem 2
relates these two results.
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Problem. We would like to know if the homomorphism

Γ : H∗(M)⊗H∗(Ωaut1M)→ H∗(MS1
)

is surjective. It is true for example when M = CP 2N . When Γ is surjective there
is a strong connection between the behaviour of the sequences of Betti numbers
dimHi(MS1

) and dimπi(autM)⊗Q.

Example 1. Let G be a Lie group. The minimal model of G is (∧V, 0) with V
finite dimensional and concentrated in odd degrees ([5], §12(a)). Therefore a model
of the free loop space GS

1
is (∧V ⊗ ∧sV, 0) and the Haefliger model for the space

Sect (q) is (∧((∧V )∨ ⊗ sV ), 0). Since the model θ of the evaluation map ev is
injective, H∗(ev) : H∗(M) ⊗ H∗(Sect (q)) → H∗(MS1

) is surjective. This implies
the existence of an isomorphism of graded algebras,

H∗(MS1
) ∼= H∗(M)⊗H∗(ΩM) .

Here the multiplication on the right is the product of the intersection product on
H∗(M) with the usual Pontryagin product on H∗(ΩM).

Example 2. Let us assume that M is a Q-hyperbolic space satisfying either
(H+(M))3 = 0 or (H+(M))4 = 0, and M is a coformal space.

Recall that a space M is Q-hyperbolic if dimπ∗(M) ⊗ Q = ∞ and is coformal
if the differential graded algebras C∗(ΩM) and (H∗(ΩM), 0) are quasi-isomorphic.
Under the above hypothesis, in [15] Vigué proves that there exist an integer n0 and
some constants C1 ≥ C2 > 1 such that

Cn2 ≤
n∑
i=1

dimHi
(1)(X

S1
) ≤ Cn1 , for all n ≥ n0 .

We deduce from Theorem 3 that the same relations hold for the sequence of
dimensions of πi(autM) ⊗ Q, i.e., in both cases the sequences of Betti numbers
have exponential growth.
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15. M. Vigué-Poirrier, Homotopie rationnelle et croissance du nombre de géodésiques fermées,
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