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ABSTRACT. Let M be a simply-connected closed oriented N-dimensional man-

ifold. We prove that for any field of coefficients k there exists a natural ho-
1

momorphism of commutative graded algebras T' : H.(Qauty M) — H,(MS")

where H*(Msl) = H*+N(Msl) is the loop algebra defined by Chas and Sul-
livan. As usual aut; X denotes the monoid of self-equivalences homotopic to

the identity, and QX the space of based loops. When k is of characteris-
tic zero, I" yields isomorphisms H("IJ)FN(MSI) = (mn(Qaut; M) ® k)Y where
P2, H(’;)(Msl) denotes the Hodge decomposition on H*(Msl).

1. INTRODUCTION

Let M be a simply connected N-dimensional closed oriented manifold with base
point my. We denote by M5 the space of free loops on M, by QM the space of
based loops of M at mg, by aut M the monoid of (unbased) self equivalences of M,
by aut; M the connected component of Idys in autM, and by H,.(—) the singular
homology functor with coefficients in the fixed field k. The composition of loops
induce a commutative graded algebra structure on H,(Qaut; M).

It is convenient to write

HL (M) = Hopn (M) (resp. Ho(M") = H. (M%),

Indeed H, (M) becomes a commutative graded algebra with the intersection prod-
uct, and H, (M Sl) a commuative graded algebra with the loop product defined
by Chas and Sullivan [I]. The definition of the loop product works as follows:
Let a : A" — MS' and G A" — M5 be simplices of M5S" and assume that
goa : A" — M and go B : A™ — M are transverse in some sense. Then the
intersection product (goa)-(go 3) makes sense, and at each point (s,t) € A" x A™
such that qo(s) = ¢7(t), the composition of the loops «(s) and 3(t) can be per-
formed. This gives a chain - 8 € Cern,N(MSl) and leads to a commutative and
associative multiplication (1], Theorem 3.3):

Hy(MS) @ Hy(M®") - Hpa (M), a®@bra-b.

Qur first result reads:
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Theorem 1. The natural map
g M xQauty M — M5 | g(z,7)(t) = v(t)(2),
induces a morphism of commutative graded algebras
H.(g) : H.(M) ® H,(Qaut; M) — H,(M5") .

Denote by w the fundamental class of M in homology. Then w € Hy(M) =
Hy (M) = lkw is the unit of the algebra H, (M). The homomorphism H, (g) restricts
to a morphism of commutative graded algebras

T H, (Qaut, M) — H, (M), T(a) = H(g)(w®a).

The composition of I" with the Hurewicz map h : . (Qauta M) @ lk — H,.(Qaut; M)
is a morphism of graded vector spaces

Ty =Toh:m(Qaut;M)®k — Heyn(M5S),
which in turn induces the dual morphism
ry: H*+N(Msl) — (1 (Qauty M @ k)"

Now recall that H*(M Sl) is isomorphic as a graded vector space with the
Hochschild homology of the cochain algebra C*(M) ([10]):

H*(MS") = HH.(C*(M);C*(M)).

Also recall that if Ik is a field of characteristic zero and A is a commutative
graded k-algebra, then the Hochschild homology of A, HH,(A; A), admits a Hodge
decomposition ([§]):

A) =Pu(4;4).
>0

Since C*(M) is quasi-isomorphic to a commutative graded differential algebra A,
we derive from the previous considerations a Hodge decomposition on the free loop
space cohomology of M,

51 sl
(M) = D HG, (M
1>0
We prove:
Theorem 2. If lk is a field of characteristic zero, then

o 'y : m, (Qauty )® ke — H,(MS") is injective,

o I'Y: H?l)(MS ) = (mn(Qauty M) @ k)" is an isomorphism for n > 0,
e I'Y wvanishes on the components T, (M S*) for p > 2.

Theorems 1 and 2 are proved respectively in sections 2 and 3. Section 4 contains
examples and final remarks.
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2. PROOF OF THEOREM 1

We denote by ¢ : MS" — M the free loop space fibration and by Sect (¢) the
space of sections of ¢q. The composition of loops makes Sect (¢) into a monoid with
multiplication p defined by

o(m)(2t), t
T(m)(2t —1), t>

IA
N[—= N|=

)

wlo,T)(m)(t) = o,7 € Sect(q), te€0,1],me M.

Clearly the map 1 : Q(auty; M,idy) — Sect (¢) defined by
() (m)(t) = f(t)(m)

is a homeomorphism of monoids making commutative the diagram

M x Sect (q) = M5

1><wl ||
Mxaut; M % MS,

where ev denotes the evaluation map.

To prove Theorem 1, it therefore suffices to establish that the evaluation map
H.(ev) : H.(M) ® H.(Sect (q)) — H*(MSI) is a morphism of graded algebras.

We first remark that Chas and Sullivan prove that the morphism H,(op) :
H(M) — H(M Sl), induced by the trivial section o, is a morphism of graded
algebras ([1], Proposition 3.4). Therefore the restriction of H,(ev) to H,(M) is a
morphism of graded algebras.

Recall now that the unit of H, (M) is the fundamental class w € HoM = Hy M.
Therefore for a cycle ) . n;o;, with a; : A” — Sect (q), Hi(ev)(w ® ) is the
homology class of the sum ), n;a where o/ denotes the composition

af : M x A" id—XJ:MXSect(q) <o St
Thus let o : A" — Sect(q) and 8 : A® — Sect (¢q) be simplices. Since the
simplices g o o and g o 3’ are transverse in M, the Chas-Sullivan product

(ev,ev)
—

o B Mx AT x A® idi”;ﬁMxSect(Q)XSect(Q) MS" xp M5 5 M5

is well defined, ¢ denoting pointwise composition of loops.
As the multiplication p makes commutative the diagram

M x Sect (g) x Sect (q) (ver) pps? X M5
lidxﬂ J,c
M x Sect (q) = M5

the map o - B is equal to p(«a,3)’. Therefore the restriction of H,(ev) to the
component kw ® H,(Sect (¢)) is also a morphism of algebras.

Finally let « : A" — M and 8 : A® — Sect (¢). Then the simplices o and ¢’
are transverse and the Chas-Sullivan product « - 3 is equal to ev(a x 3). Therefore
H.(ev)(a) - H(ev)(B) = Huev)(a ® B). O
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3. PROOF OF THEOREM 2

Since Q C k& we may as well suppose that k = Q. Hereafter we will make
extensive use of the theory of minimal models in the sense of Sullivan ([I2]), for
which we refer systematically to [5], §12. We denote by (AV,d) the minimal model

of M. By [13] a relative minimal model for the fibration g : MS" — M is given by
the extension
(AV,d) — (AV @ AsV, D), |sv| = |v| —1,D(v) = d(v), D(sv) = —s(dv),

where s : AV — AV ® AsV is the unique derivation defined by s(v) = sv. The
cochain complex (AV ® AsV, D) decomposes into a direct sum of complexes

(AV @ AsV, D) = @AV @ AFsV, D).
k>0

This induces a new graduation on H*(MSI), H*(MSI) =P, H(*k)(MSI) with
H5 (M5") = H*(AV ® A"sV, D) .

In [14], Vigué proves that this decomposition coincides with the Hodge decomposi-
tion of the Hochschild homology H.. ((AV, d); (AV, d)):

H*(AV @ AFsV, D) 2 HP (AV, d); (AV, d)) .

By the Milnor-Moore Theorem ([I1]), H.(Sect (¢); Q) is isomorphic as a Hopf
algebra to the universal enveloping algebra on the graded homotopy Lie algebra
(2 auty M) ® Q. Thus Theorem 2 in the Introduction is a direct consequence of
Theorem 3 below.

Theorem 3. Let
@y o (Sect(q) ® Q — HL(M5'; Q)
denote the restriction of H,(ev) to w ® m.(Sect(q)) ® Q. Then,
o Oy is an injective morphism,
o the dual map ®1" vanishes on each H(*p)(MSI;Q), p > 2, and induces an

HE (MS'Q) = m.(Sect (1))

Proof. We first construct a quasi-isomorphism p : (AV,d) — (A,d) with (A4,d),
a commutative differential graded algebra satisfying A° = Q,A! = 0, A>Y =0,
AN = Quw, and dim A° < oo for all i.

For this we denote

isomorphism €D - x

ZF = Ker(d : (N\V)* — (AV)*+L) |
and we choose a supplement S* of Z* in (AV)*:
(ANV)E = ZF @ S*.
The quotient (AV)Y /(SN @ dSN~1) = HN(M) has dimension one. Since V1 =0,
the subcomplex I = SV=1 @ dSN-1 @ SN @ (AV)>V is an acyclic ideal in (AV, d).
Therefore the natural projection p : (AV,d) — (AV/I,d) is a quasi-isomorphism of
differential graded algebras. We define (A, d) = (AV/I,d).
The homomorphism p extends to a quasi-isomorphism p® 1: (AV ® AsV, D) —
(A® AsV, D) with D(a ® sv) = d(a) ® sv — (—1)l%la - (p ® 1)(Dsv). The complex
(A® AsV, D) also decomposes into the direct sum of the complexes (A ® AFsV, D).
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Denote by (a;),i =1,...,n, a homogeneous linear basis of A with a,, = w, and
by (a)) the dual basis, i.e. the linear basis of AY = Hom (4, Q) such that
(i, aj) = di; -
In [9], Haefliger proved that a model for the evaluation map ev : M x Sect (¢) —
M5 is given by the morphism

0: (A AsV,D) — (A,d) ® (NAY @sV),d), 0(a® sv)= Zaai® (a] @ sv).

Since D(sV) C A® sV and 6 is a morphism of differential graded algebras, then
§(AY @ sV) C AY ® sV. We now fix some notations:

e p1: (ANAY ®sV),d) — (AY ® sV, d) denotes the projection on the complex
of indecomposable elements,
P:(A,d) — (Qw,0) is the homogeneous projection onto the component of
degree N,

o m : (A® AsV,D) — (A® sV, D) is the canonical projection on the sub-
complex (A ® sV, D).

The dual of ®4,
oY : HH(MS";Q) — (m(Sect (¢) © Q)Y,
therefore coincides with H*(P ® p1) o H*(6):

(A® AsV, D) -2 (A,d) @ (A(AY @ sV),8) “25' Qu @ (AY @ sV, 6),
and vanishes on (4 ® AZ2sV, D).

Lemma. The duality map A : A — AV defined by
(A(a),by = P(ab) € Quw = Q
extends into a quasi-isomorphism of complexes
A®1l:(A®sV,D)— (AY @sV,d).

Proof. Denote by afj and 65 rational numbers defined by the relations

ai - aj = 32, afjar,
d(a;) = Y2, Bla;.

Recall that {a)'}; denotes the dual basis of {a;};. Then straightforward computa-
tions show that
o d(a))=—(-D)3, Biay.
>l al, =", sy, al,, fori,j k,t =1,...,n (associativity of the multi-
plication law).
o > al B =3, Bt o + (—1)lail > B;- af, for i,j,0 = 1,...,n (compati-
bility of the differential d with the multiplication).
o §(ay @sv) = (=1 |32, ) (o) @ svi) = 3, B (a) @ sv)|.
o Aa;) =32, af5af .

V)
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The duality morphism has degree N. A standard computation then shows that
So(A@l)=(-DN(A®1)od.

Since H*(M) is a Poincaré duality algebra and since H*(A) : H*(M) — H,.(M) is
the Poincaré duality, A ® 1 is a quasi-isomorphism. O

End of the proof of Theorem 3. It is easy to check the commutativity of the follow-
ing diagram of complexes:

(Ao AsV,D) -5 (A,d)® (MAY @sV),0) 28 Que (A ®sV,d)
m | T 1@(a®1)
(A® sV, D) - Quw® (A®sV,D),

with o(a® sv) = w®a® sv. By the above lemma, H,(1®A®1) is an isomorphism.
Therefore H*((1 ® (A ® 1)) o 0 o 71) is surjective and this implies the surjectivity
of ®Y = H.(P® p1) o H*(6). O

4. EXAMPLES AND FURTHER COMMENTS

Remark 1. The morphism I": H,(Qauty M) — H*(MSI) is not injective in general,
as we shall now explain.

Denote by evg : auty M — M the evaluation at the base point. The image of
the morphism 7, (evy) : m,(auty M) — m, M is known as the n-th Gottlieb group
of M, G,(M) ([B]). Since Qevy : Qauty M — QM is an H-map, H,(Qevy; Q) =
U(m.(Qevg) ® Q) is the enveloping algebra on 7. (Qevy) ® Q, whose image is the
enveloping algebra on the abelian graded Lie algebra G.(X) that corresponds by
duality to G.(X) @ Q.

Denote by I : H, (Msl) — H,(QM) the intersection morphism defined in ([I],
Proposition 3.4), and let ¢ be defined as in the beginning of section 2. The com-
mutativity of the following diagram

H.(Qaut; M) ™% H,(Sect (q))

H.(Qevo) | | Ho(ev)(we—)
H.(QM) £ mH.(5
shows that the image of I o ®; is the universal enveloping algebra on G.(X).

On the other hand, the kernel of I is a nilpotent ideal with nilpotency index less
than or equal to N ([6]).

Now consider the manifold M = §3 x 83 x S'1. A simple computation using
minimal models shows that 75 (aut; M) ® Q # 0 and G5(M) ® Q = 0. Then denote
by = a nonzero element in m4(Qaut; M) ® Q. Since H,.(Qaut; M;Q) is a free
commutative graded algebra, some power of x belongs in the kernel of T'.

Remark 2. In [2] Cohen and Jones prove that H, (M Sl) is isomorphic as an al-
gebra to the Hochschild cohomology HH*(C*(M),C*(M)). On the other hand,
in [7], Gatsinzi establishes for any space M an algebraic isomorphism between
7« (aut; M) ® Q and a sub-vector space of HH*(C*(M),C*(M)). Our Theorem 2
relates these two results.
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Problem. We would like to know if the homomorphism
T:H,(M)® H,(Qaut; M) — H,(M5")

is surjective. It is true for example when M = CP?"N. When T is surjective there

is a strong connection between the behaviour of the sequences of Betti numbers
1

dim H;(M?") and dim 7; (aut M) ® Q.

Example 1. Let G be a Lie group. The minimal model of G is (AV,0) with V
finite dimensional and concentrated in odd degrees ([5], §12(a)). Therefore a model

of the free loop space GS' is (AV ® AsV,0) and the Haefliger model for the space
Sect (q) is (A((AV)Y @ sV),0). Since the model 6 of the evaluation map ev is
injective, H,(ev) : H.(M) ® H.(Sect (q)) — H.(M5") is surjective. This implies
the existence of an isomorphism of graded algebras,

H, (MS") 2 H, (M) @ H,(QM).

Here the multiplication on the right is the product of the intersection product on
H.. (M) with the usual Pontryagin product on H,(Q2M).

Example 2. Let us assume that M is a Q-hyperbolic space satisfying either
(HY(M))3=0or (H*(M))* =0, and M is a coformal space.

Recall that a space M is Q-hyperbolic if dim7.(M) ® Q = oo and is coformal
if the differential graded algebras C.(Q2M) and (H,.(2M),0) are quasi-isomorphic.
Under the above hypothesis, in [T5] Vigué proves that there exist an integer ng and
some constants Cy; > C5 > 1 such that

n
cy < ZdimH(il)(Xsl) < C7, foralln>mng.
i=1
We deduce from Theorem 3 that the same relations hold for the sequence of
dimensions of m;(aut M) ® Q, i.e., in both cases the sequences of Betti numbers
have exponential growth.
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