MONOID OF SELF-EQUIVALENCES AND FREE LOOP SPACES

YVES FÉLIX AND JEAN-CLAUDE THOMAS

(Communicated by Paul Goerss)

ABSTRACT. Let M be a simply-connected closed oriented N-dimensional manifold. We prove that for any field of coefficients k there exists a natural homomorphism of commutative graded algebras $\Gamma: H_*(\Omega \operatorname{aut}_1 M) \to \mathbb{H}_*(M^{S^1})$ where $\mathbb{H}_*(M^{S^1}) = H_{*+N}(M^{S^1})$ is the loop algebra defined by Chas and Sullivan. As usual $\operatorname{aut}_1 X$ denotes the monoid of self-equivalences homotopic to the identity, and ΩX the space of based loops. When k is of characteristic zero, Γ yields isomorphisms $H_{(1)}^{n+N}(M^{S^1}) \stackrel{\cong}{\to} (\pi_n(\Omega \operatorname{aut}_1 M) \otimes k)^\vee$ where $\bigoplus_{l=1}^\infty H_{(l)}^n(M^{S^1})$ denotes the Hodge decomposition on $H^*(M^{S^1})$.

1. Introduction

Let M be a simply connected N-dimensional closed oriented manifold with base point m_0 . We denote by M^{S^1} the space of free loops on M, by ΩM the space of based loops of M at m_0 , by aut M the monoid of (unbased) self equivalences of M, by aut₁M the connected component of Id_M in autM, and by $H_*(-)$ the singular homology functor with coefficients in the fixed field k. The composition of loops induce a commutative graded algebra structure on $H_*(\Omega \text{aut}_1 M)$.

It is convenient to write

$$\mathbb{H}_*(M) = H_{*+N}(M) \text{ (resp. } \mathbb{H}_*(M^{S^1}) = H_{*+N}(M^{S^1})).$$

Indeed $\mathbb{H}_*(M)$ becomes a commutative graded algebra with the intersection product, and $\mathbb{H}_*(M^{S^1})$ a commutative graded algebra with the loop product defined by Chas and Sullivan [1]. The definition of the loop product works as follows: Let $\alpha: \triangle^n \to M^{S^1}$ and $\beta: \triangle^m \to M^{S^1}$ be simplices of M^{S^1} and assume that $q \circ \alpha: \triangle^n \to M$ and $q \circ \beta: \triangle^m \to M$ are transverse in some sense. Then the intersection product $(q \circ \alpha) \cdot (q \circ \beta)$ makes sense, and at each point $(s,t) \in \triangle^n \times \triangle^m$ such that $q\sigma(s) = q\tau(t)$, the composition of the loops $\alpha(s)$ and $\beta(t)$ can be performed. This gives a chain $\alpha \cdot \beta \in \mathcal{C}_{m+n-N}(M^{S^1})$ and leads to a commutative and associative multiplication ([1], Theorem 3.3):

$$\mathbb{H}_k(M^{S^1}) \otimes \mathbb{H}_l(M^{S^1}) \to \mathbb{H}_{k+l}(M^{S^1}), \quad a \otimes b \mapsto a \cdot b.$$

Our first result reads:

Received by the editors May 5, 2002 and, in revised form, August 30, 2002. 2000 Mathematics Subject Classification. Primary 55P35, 55P62, 55P10.

Theorem 1. The natural map

$$g: M \times \Omega \text{ aut}_1 M \to M^{S^1}, \quad g(x, \gamma)(t) = \gamma(t)(x),$$

induces a morphism of commutative graded algebras

$$H_*(g): \mathbb{H}_*(M) \otimes H_*(\Omega \operatorname{aut}_1 M) \to \mathbb{H}_*(M^{S^1}).$$

Denote by ω the fundamental class of M in homology. Then $\omega \in \mathbb{H}_0(M) = H_N(M) \cong k\omega$ is the unit of the algebra $\mathbb{H}_*(M)$. The homomorphism $H_*(g)$ restricts to a morphism of commutative graded algebras

$$\Gamma: H_*(\Omega \operatorname{aut}_1 M) \to \mathbb{H}_*(M^{S^1}), \quad \Gamma(a) = H(g)(\omega \otimes a).$$

The composition of Γ with the Hurewicz map $h: \pi_*(\Omega \operatorname{aut}_1 M) \otimes k \to H_*(\Omega \operatorname{aut}_1 M)$ is a morphism of graded vector spaces

$$\Gamma_1 = \Gamma \circ h : \pi_*(\Omega \operatorname{aut}_1 M) \otimes \mathbb{k} \to H_{*+N}(M^{S^1}),$$

which in turn induces the dual morphism

$$\Gamma_1^{\vee}: H^{*+N}(M^{S^1}) \to (\pi_*(\Omega \operatorname{aut}_1 M \otimes lk))^{\vee}.$$

Now recall that $H^*(M^{S^1})$ is isomorphic as a graded vector space with the Hochschild homology of the cochain algebra $C^*(M)$ ([10]):

$$H^*(M^{S^1}) \cong HH_*(\mathcal{C}^*(M); \mathcal{C}^*(M)).$$

Also recall that if k is a field of characteristic zero and A is a commutative graded k-algebra, then the Hochschild homology of A, $HH_*(A;A)$, admits a Hodge decomposition ([8]):

$$\mathbb{H}_*(A;A) = \bigoplus_{l \ge 0}^{\infty} \mathbb{H}_*^{(l)}(A;A).$$

Since $C^*(M)$ is quasi-isomorphic to a commutative graded differential algebra A, we derive from the previous considerations a Hodge decomposition on the free loop space cohomology of M,

$$\mathbb{H}^*(M^{S^1}) = \bigoplus_{l>0} \mathbb{H}^*_{(l)}(M^{S^1}).$$

We prove:

Theorem 2. If k is a field of characteristic zero, then

- $\Gamma_1: \pi_*(\Omega \operatorname{aut}_1 M) \otimes lk \to \mathbb{H}_*(M^{S^1})$ is injective,
- $\Gamma_1^{\vee}: \mathbb{H}^n_{(1)}(M^{S^1}) \stackrel{\cong}{\to} (\pi_n(\Omega \operatorname{aut}_1 M) \otimes \mathbb{k})^{\vee}$ is an isomorphism for $n \geq 0$,
- Γ_1^{\vee} vanishes on the components $\mathbb{H}_{(p)}^*(M^{S^1})$ for $p \geq 2$.

Theorems 1 and 2 are proved respectively in sections 2 and 3. Section 4 contains examples and final remarks.

2. Proof of Theorem 1

We denote by $q: M^{S^1} \to M$ the free loop space fibration and by Sect (q) the space of sections of q. The composition of loops makes Sect (q) into a monoid with multiplication μ defined by

$$\mu(\sigma,\tau)(m)(t) = \begin{cases} \sigma(m)(2t), & t \leq \frac{1}{2}, \\ \tau(m)(2t-1), & t \geq \frac{1}{2}, \end{cases} \quad \sigma,\tau \in \operatorname{Sect}(q), \quad t \in [0,1], m \in M.$$

Clearly the map $\psi: \Omega(\operatorname{aut}_1 M, id_M) \to \operatorname{Sect}(q)$ defined by

$$\psi(f)(m)(t) = f(t)(m)$$

is a homeomorphism of monoids making commutative the diagram

$$M \times \operatorname{Sect}(q) \stackrel{ev}{\longrightarrow} M^{S^1}$$

$$1 \times \psi \downarrow \qquad \qquad \parallel$$

$$M \times \operatorname{aut}_1 M \stackrel{g}{\longrightarrow} M^{S^1}$$

where ev denotes the evaluation map.

To prove Theorem 1, it therefore suffices to establish that the evaluation map $H_*(ev): \mathbb{H}_*(M) \otimes H_*(\operatorname{Sect}(q)) \to \mathbb{H}_*(M^{S^1})$ is a morphism of graded algebras.

We first remark that Chas and Sullivan prove that the morphism $H_*(\sigma_0)$: $\mathbb{H}(M) \to \mathbb{H}(M^{S^1})$, induced by the trivial section σ_0 , is a morphism of graded algebras ([1], Proposition 3.4). Therefore the restriction of $H_*(ev)$ to $\mathbb{H}_*(M)$ is a morphism of graded algebras.

Recall now that the unit of $\mathbb{H}_*(M)$ is the fundamental class $\omega \in \mathbb{H}_0 M = H_N M$. Therefore for a cycle $\sum_i n_i \alpha_i$, with $\alpha_i : \Delta^r \to \operatorname{Sect}(q), H_*(ev)(\omega \otimes \alpha)$ is the homology class of the sum $\sum_i n_i \alpha_i'$ where α_i' denotes the composition

$$\alpha'_i: M \times \Delta^r \xrightarrow{id \times f} M \times \operatorname{Sect}(q) \xrightarrow{ev} M^{S^1}.$$

Thus let $\alpha: \triangle^r \to \operatorname{Sect}(q)$ and $\beta: \triangle^s \to \operatorname{Sect}(q)$ be simplices. Since the simplices $q \circ \alpha'$ and $q \circ \beta'$ are transverse in M, the Chas-Sullivan product

$$\alpha' \cdot \beta' : M \times \Delta^r \times \Delta^s \xrightarrow{id \times \alpha \times \beta} M \times \operatorname{Sect}(q) \times \operatorname{Sect}(q) \xrightarrow{(ev, ev)} M^{S^1} \times_M M^{S^1} \xrightarrow{c} M^{S^1}$$

is well defined, c denoting pointwise composition of loops.

As the multiplication μ makes commutative the diagram

$$\begin{array}{ccc} M \times \mathrm{Sect}\,(q) \times \mathrm{Sect}\,(q) & \stackrel{(ev,ev)}{\longrightarrow} & M^{S^1} \times_M M^{S^1} \\ & \downarrow^{id \times \mu} & & \downarrow^c \\ M \times \mathrm{Sect}\,(q) & \stackrel{ev}{\longrightarrow} & M^{S^1} \end{array},$$

the map $\alpha' \cdot \beta'$ is equal to $\mu(\alpha, \beta)'$. Therefore the restriction of $H_*(ev)$ to the component $k\omega \otimes H_*(Sect(q))$ is also a morphism of algebras.

Finally let $\alpha: \triangle^r \to M$ and $\beta: \Delta^s \to \operatorname{Sect}(q)$. Then the simplices α and $q\beta'$ are transverse and the Chas-Sullivan product $\alpha \cdot \beta$ is equal to $ev(\alpha \times \beta)$. Therefore $H_*(ev)(\alpha) \cdot H_*(ev)(\beta) = H_*(ev)(\alpha \otimes \beta)$.

3. Proof of Theorem 2

Since $\mathbb{Q} \subset \mathbb{k}$ we may as well suppose that $\mathbb{k} = \mathbb{Q}$. Hereafter we will make extensive use of the theory of minimal models in the sense of Sullivan ([12]), for which we refer systematically to [5], §12. We denote by $(\land V, d)$ the minimal model of M. By [13] a relative minimal model for the fibration $q: M^{S^1} \to M$ is given by the extension

$$(\land V, d) \hookrightarrow (\land V \otimes \land sV, D), |sv| = |v| - 1, D(v) = d(v), D(sv) = -s(dv),$$

where $s: \land V \to \land V \otimes \land sV$ is the unique derivation defined by s(v) = sv. The cochain complex $(\land V \otimes \land sV, D)$ decomposes into a direct sum of complexes

$$(\land V \otimes \land sV, D) = \bigoplus_{k \ge 0} (\land V \otimes \land^k sV, D).$$

This induces a new graduation on $H^*(M^{S^1})$, $H^*(M^{S^1}) = \bigoplus_k H^*_{(k)}(M^{S^1})$ with

$$H_{(k)}^*(M^{S^1}) = H^*(\land V \otimes \land^k sV, D)$$
.

In [14], Vigué proves that this decomposition coincides with the Hodge decomposition of the Hochschild homology $\mathbb{H}_*((\land V, d); (\land V, d))$:

$$H^*(\wedge V \otimes \wedge^k sV, D) \cong \mathbb{H}_*^{(k)}((\wedge V, d); (\wedge V, d)).$$

By the Milnor-Moore Theorem ([11]), $H_*(\operatorname{Sect}(q); \mathbb{Q})$ is isomorphic as a Hopf algebra to the universal enveloping algebra on the graded homotopy Lie algebra $\pi_*(\Omega \operatorname{aut}_1 M) \otimes \mathbb{Q}$. Thus Theorem 2 in the Introduction is a direct consequence of Theorem 3 below.

Theorem 3. Let

$$\Phi_1: \pi_*(Sect(q)) \otimes \mathbb{Q} \to \mathbb{H}_*(M^{S^1}; \mathbb{Q})$$

denote the restriction of $H_*(ev)$ to $\omega \otimes \pi_*(Sect(q)) \otimes \mathbb{Q}$. Then,

- Φ_1 is an injective morphism,
- the dual map Φ_1^{\vee} vanishes on each $H_{(p)}^*(M^{S^1}; \mathbb{Q})$, $p \geq 2$, and induces an isomorphism $\bigoplus_{q>N} H_{(1)}^q(M^{S^1}; \mathbb{Q}) \cong \pi_*(Sect(q))^{\vee}$.

Proof. We first construct a quasi-isomorphism $\rho: (\land V, d) \to (A, d)$ with (A, d), a commutative differential graded algebra satisfying $A^0 = \mathbb{Q}$, $A^1 = 0$, $A^{>N} = 0$, $A^N = \mathbb{Q}\omega$, and dim $A^i < \infty$ for all i.

For this we denote

$$Z^{k} = Ker(d: (\land V)^{k} \to (\land V)^{k+1}),$$

and we choose a supplement S^k of Z^k in $(\wedge V)^k$:

$$(\wedge V)^k = Z^k \oplus S^k.$$

The quotient $(\wedge V)^N/(S^N \oplus dS^{N-1}) \cong H^N(M)$ has dimension one. Since $V^1=0$, the subcomplex $I=S^{N-1}\oplus dS^{N-1}\oplus S^N\oplus (\wedge V)^{>N}$ is an acyclic ideal in $(\wedge V,d)$. Therefore the natural projection $\rho:(\wedge V,d)\to (\wedge V/I,d)$ is a quasi-isomorphism of differential graded algebras. We define $(A,d)=(\wedge V/I,d)$.

The homomorphism ρ extends to a quasi-isomorphism $\rho \otimes 1 : (\land V \otimes \land sV, D) \to (A \otimes \land sV, D)$ with $D(a \otimes sv) = d(a) \otimes sv - (-1)^{|a|}a \cdot (\rho \otimes 1)(Dsv)$. The complex $(A \otimes \land sV, D)$ also decomposes into the direct sum of the complexes $(A \otimes \land^k sV, D)$.

Denote by (a_i) , i = 1, ..., n, a homogeneous linear basis of A with $a_n = \omega$, and by (a_i^{\vee}) the dual basis, i.e. the linear basis of $A^{\vee} = \operatorname{Hom}(A, \mathbb{Q})$ such that

$$\langle a_i^{\vee}, a_i \rangle = \delta_{ij}$$
.

In [9], Haefliger proved that a model for the evaluation map $ev: M \times \operatorname{Sect}(q) \to$ M^{S^1} is given by the morphism

$$\theta: (A \otimes \land sV, D) \to (A, d) \otimes (\land (A^{\lor} \otimes sV), \delta), \quad \theta(a \otimes sv) = \sum_i aa_i \otimes (a_i^{\lor} \otimes sv).$$

Since $D(sV) \subset A \otimes sV$ and θ is a morphism of differential graded algebras, then $\delta(A^{\vee} \otimes sV) \subset A^{\vee} \otimes sV$. We now fix some notations:

- $\rho_1: (\wedge (A^{\vee} \otimes sV), \delta) \to (A^{\vee} \otimes sV, \delta)$ denotes the projection on the complex of indecomposable elements,
- $P:(A,d)\to(\mathbb{Q}\omega,0)$ is the homogeneous projection onto the component of degree N,
- $\pi_1: (A \otimes \land sV, D) \to (A \otimes sV, D)$ is the canonical projection on the subcomplex $(A \otimes sV, D)$.

The dual of Φ_1 ,

$$\Phi_1^{\vee}: H^{*+d}(M^{S^1}; \mathbb{Q}) \to (\pi_*(\operatorname{Sect}(q)) \otimes \mathbb{Q})^{\vee},$$

therefore coincides with $H^*(P \otimes \rho_1) \circ H^*(\theta)$:

$$(A \otimes \land sV, D) \xrightarrow{\theta} (A, d) \otimes (\land (A^{\lor} \otimes sV), \delta) \xrightarrow{P \otimes \rho_1} \mathbb{Q}\omega \otimes (A^{\lor} \otimes sV, \delta),$$

and vanishes on $(A \otimes \wedge^{\geq 2} sV, D)$.

Lemma. The duality map $\Delta: A \to A^{\vee}$ defined by

$$\langle \Delta(a), b \rangle = P(ab) \in \mathbb{O}\omega \cong \mathbb{O}$$

extends into a quasi-isomorphism of complexes

$$\Delta \otimes 1 : (A \otimes sV, D) \to (A^{\vee} \otimes sV, \delta)$$
.

Proof. Denote by α_{ij}^k and β_i^j rational numbers defined by the relations

$$\begin{cases} a_i \cdot a_j = \sum_k \alpha_{ij}^k a_k, \\ d(a_i) = \sum_j \beta_i^j a_j. \end{cases}$$

Recall that $\{a_i^{\vee}\}_i$ denotes the dual basis of $\{a_i\}_i$. Then straightforward computations show that

- $d(a_i^{\vee}) = -(-1)^{|a_i|} \sum_j \beta_j^i a_j^{\vee}$. $\sum_r \alpha_{ij}^r \alpha_{rk}^t = \sum_s \alpha_{jk}^s \alpha_{is}^t$, for $i, j, k, t = 1, \dots, n$ (associativity of the multiplication law).
- $\sum_{r} \alpha_{ij}^{r} \beta_{r}^{s} = \sum_{t} \beta_{i}^{t} \alpha_{tj}^{s} + (-1)^{|a_{i}|} \sum_{l} \beta_{j}^{l} \alpha_{il}^{s}$, for i, j, l = 1, ..., n (compatibility of the differential d with the multiplication).
- $\delta(a_j^{\vee} \otimes sv) = (-1)^{|a_j|} \left[\sum_{i,l} \alpha_{il}^j \left(a_l^{\vee} \otimes sv_i \right) \sum_r \beta_r^j \left(a_r^{\vee} \otimes sv \right) \right].$
- $\Delta(a_i) = \sum_i \alpha_{ii}^n a_i^{\vee}$.

The duality morphism has degree N. A standard computation then shows that

$$\delta \circ (\Delta \otimes 1) = (-1)^N (\Delta \otimes 1) \circ d.$$

Since $H^*(M)$ is a Poincaré duality algebra and since $H^*(\Delta): H^*(M) \to H_*(M)$ is the Poincaré duality, $\Delta \otimes 1$ is a quasi-isomorphism.

End of the proof of Theorem 3. It is easy to check the commutativity of the following diagram of complexes:

$$(A \otimes \wedge sV, D) \xrightarrow{\theta} (A, d) \otimes (\wedge (A^{\vee} \otimes sV), \delta) \xrightarrow{P \otimes \rho_1} \mathbb{Q}\omega \otimes (A^{\vee} \otimes sV, \delta)$$

$$\uparrow 1 \otimes (\Delta \otimes 1)$$

$$(A \otimes sV, D) \xrightarrow{\sigma} \mathbb{Q}\omega \otimes (A \otimes sV, D),$$

with $\sigma(a \otimes sv) = \omega \otimes a \otimes sv$. By the above lemma, $H_*(1 \otimes \Delta \otimes 1)$ is an isomorphism. Therefore $H^*((1 \otimes (\Delta \otimes 1)) \circ \sigma \circ \pi_1)$ is surjective and this implies the surjectivity of $\Phi_1^{\vee} = H_*(P \otimes \rho_1) \circ H^*(\theta)$.

4. Examples and further comments

Remark 1. The morphism $\Gamma: H_*(\Omega \operatorname{aut}_1 M) \to H_*(M^{S^1})$ is not injective in general, as we shall now explain.

Denote by $ev_0: \operatorname{aut}_1 M \to M$ the evaluation at the base point. The image of the morphism $\pi_n(ev_0): \pi_n(\operatorname{aut}_1 M) \to \pi_n M$ is known as the n-th Gottlieb group of M, $G_n(M)$ ([5]). Since $\Omega ev_0: \Omega \operatorname{aut}_1 M \to \Omega M$ is an H-map, $H_*(\Omega ev_0; \mathbb{Q}) = U(\pi_*(\Omega ev_0) \otimes \mathbb{Q})$ is the enveloping algebra on $\pi_*(\Omega ev_0) \otimes \mathbb{Q}$, whose image is the enveloping algebra on the abelian graded Lie algebra $\overline{G}_*(X)$ that corresponds by duality to $G_*(X) \otimes \mathbb{Q}$.

Denote by $I: \mathbb{H}_*(M^{S^1}) \to H_*(\Omega M)$ the intersection morphism defined in ([1], Proposition 3.4), and let ψ be defined as in the beginning of section 2. The commutativity of the following diagram

$$\begin{array}{ccc} H_*(\Omega \operatorname{aut}_1 M) & \stackrel{\pi_*(\psi)}{\to} & H_*(\operatorname{Sect}(q)) \\ \\ H_*(\Omega e v_0) \downarrow & & \downarrow H_*(e v)(\omega \otimes -) \\ \\ H_*(\Omega M) & \stackrel{I}{\leftarrow} & \mathbb{H}_*(M^{S^1}) \end{array}$$

shows that the image of $I \circ \Phi_1$ is the universal enveloping algebra on $\overline{G}_*(X)$.

On the other hand, the kernel of I is a nilpotent ideal with nilpotency index less than or equal to N ([6]).

Now consider the manifold $M = S^3 \times S^3 \times S^{11}$. A simple computation using minimal models shows that $\pi_5(\operatorname{aut}_1 M) \otimes \mathbb{Q} \neq 0$ and $G_5(M) \otimes \mathbb{Q} = 0$. Then denote by x a nonzero element in $\pi_4(\Omega \operatorname{aut}_1 M) \otimes \mathbb{Q}$. Since $H_*(\Omega \operatorname{aut}_1 M; \mathbb{Q})$ is a free commutative graded algebra, some power of x belongs in the kernel of Γ .

Remark 2. In [2] Cohen and Jones prove that $\mathbb{H}_*(M^{S^1})$ is isomorphic as an algebra to the Hochschild cohomology $HH^*(\mathcal{C}^*(M),\mathcal{C}^*(M))$. On the other hand, in [7], Gatsinzi establishes for any space M an algebraic isomorphism between $\pi_*(\operatorname{aut}_1 M) \otimes \mathbb{Q}$ and a sub-vector space of $HH^*(\mathcal{C}^*(M),\mathcal{C}^*(M))$. Our Theorem 2 relates these two results.

Problem. We would like to know if the homomorphism

$$\Gamma: \mathbb{H}_*(M) \otimes H_*(\Omega \operatorname{aut}_1 M) \to \mathbb{H}_*(M^{S^1})$$

is surjective. It is true for example when $M = \mathbb{C}P^{2N}$. When Γ is surjective there is a strong connection between the behaviour of the sequences of Betti numbers $\dim H_i(M^{S^1})$ and $\dim \pi_i(\operatorname{aut} M) \otimes \mathbb{Q}$.

Example 1. Let G be a Lie group. The minimal model of G is $(\land V, 0)$ with V finite dimensional and concentrated in odd degrees ([5], §12(a)). Therefore a model of the free loop space G^{S^1} is $(\land V \otimes \land sV, 0)$ and the Haefliger model for the space Sect (q) is $(\land ((\land V)^{\lor} \otimes sV), 0)$. Since the model θ of the evaluation map ev is injective, $H_*(ev): H_*(M) \otimes H_*(\operatorname{Sect}(q)) \to H_*(M^{S^1})$ is surjective. This implies the existence of an isomorphism of graded algebras,

$$\mathbb{H}_*(M^{S^1}) \cong \mathbb{H}_*(M) \otimes H_*(\Omega M).$$

Here the multiplication on the right is the product of the intersection product on $\mathbb{H}_*(M)$ with the usual Pontryagin product on $H_*(\Omega M)$.

Example 2. Let us assume that M is a \mathbb{Q} -hyperbolic space satisfying either $(H^+(M))^3 = 0$ or $(H^+(M))^4 = 0$, and M is a coformal space.

Recall that a space M is \mathbb{Q} -hyperbolic if $\dim \pi_*(M) \otimes \mathbb{Q} = \infty$ and is coformal if the differential graded algebras $\mathcal{C}_*(\Omega M)$ and $(H_*(\Omega M), 0)$ are quasi-isomorphic. Under the above hypothesis, in [15] Vigué proves that there exist an integer n_0 and some constants $C_1 \geq C_2 > 1$ such that

$$C_2^n \le \sum_{i=1}^n \dim H^i_{(1)}(X^{S^1}) \le C_1^n$$
, for all $n \ge n_0$.

We deduce from Theorem 3 that the same relations hold for the sequence of dimensions of $\pi_i(\text{aut }M)\otimes \mathbb{Q}$, i.e., in both cases the sequences of Betti numbers have exponential growth.

References

- 1. M. Chas and D. Sullivan, String topology, preprint math GT/9911159.
- R. Cohen and J. Jones, A homotopy theoretic realization of string topology, Math. Ann. 324 (2002) 773-798.
- R. Cohen, J. D.S. Jones and J. Yan, The loop homology of spheres and projective spaces, preprint, February 2002.
- Y. Félix and J.-C. Thomas, The monoid of self-homotopy equivalences of some homogeneous spaces, Expositiones Mathematicae 12 (1994) 305-321. MR 95i:55013
- Y. Félix, S. Halperin and J.-C. Thomas, Rational Homotopy Theory, Graduate Texts in Mathematics 205, Springer-Verlag (2000). MR 2002d:55014
- Y. Félix, J.-C. Thomas and M. Vigué-Poirrier, Structure of the loop homology of a compact manifold, preprint, March 2002.
- J.-B. Gatsinzi, The homotopy Lie algebra of classifying spaces, Journal of Pure and Applied Algebra 120 (1997) 281-289. MR 98g:55015
- M. Gerstenhaber and S. D. Schack, A Hodge type decomposition for commutative algebras, J. Pure Appl. Algebra 48 (1987) no. 3, 229–247. MR 88k:13011
- A. Haefliger, Rational homotopy of the space of sections of a nilpotent bundle, Trans. Amer. Math. Soc. 273 (1982), 609-620. MR 84a:55010
- J.D.S. Jones, Cyclic homology and equivariant homology, Invent. Math. 87 (1987), 403-423.
 MR 88f:18016
- J. Milnor and J.C. Moore, On the structure of Hopf algebras, Annals of Math. 81 (1965) 211-264. MR 30:4259

- 12. D. Sullivan, Infinitesimal computations in topology, Publ. Math. IHES $\bf 47$ (1978) 269-331. MR $\bf 58:$ 31119
- 13. D. Sullivan and M. Vigué, *The homology theory of the closed geodesic problem*, J. Differential Geom. **11** (1976) 633-634. MR **56**:13269
- 14. M. Vigué-Poirrier, Décompositions de l'homologie cyclique des algèbres différentielles graduées commutatives, K-Theory 4 (1991) 399-410. MR **92e**:19004
- M. Vigué-Poirrier, Homotopie rationnelle et croissance du nombre de géodésiques fermées, Ann. Scient. Ecole Norm. Sup. 17 (1984) 413-431. MR 86h:58027

DÉPARTEMENT DE MATHÉMATIQUE, UNIVERSITÉ CATHOLIQUE DE LOUVAIN, 2, CHEMIN DU CYCLOTRON, 1348 LOUVAIN-LA-NEUVE, BELGIUM

 $E ext{-}mail\ address: felix@math.ucl.ac.be}$

Faculté des Sciences, Université d'Angers, 2, Boulevard Lavoisier, 49045 Angers, France

 $E ext{-}mail\ address: thomas@univ-angers.fr}$