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ABSTRACT. We give a new construction of asymptotically flat and scalar flat
metrics on R3 with a stable minimal sphere. The existence of such a metric
gives an affirmative answer to a question raised by R. Bartnik (1989).

1. INTRODUCTION AND MAIN RESULTS

The existence of an asymptotically flat and scalar flat metric on R® with a
stable minimal sphere is closely related to R. Bartnik’s quasilocal mass definition
[2] restricted to scalar flat metrics in general relativity. It also offers an example
of a globally regular and asymptotically flat initial data for the Einstein vacuum
equations containing a trapped surface. R. Beig and N. O Murchadha first proved
the existence of such a metric in [4] by studying the behavior of a critical sequence
of metrics. A similar observation was also made independently by R. Schoen at a
later time.

In this paper we give a new approach to the existence problem, and we prove a
slightly stronger result.

Theorem. There exists an asymptotically flat and scalar flat metric on R? which
is conformally flat outside a compact set and contains a horizon.

Combining this Theorem and the work of J. Corvino [6], we easily get an inter-
esting corollary.

Corollary. There exists a scalar flat metric on R® which is Schwarzschild in a
neighborhood of infinity and contains a horizon.

Before giving the proof, we first introduce some relevant definitions. Interested
readers may refer to [I], [9] and [10] for more discussions on asymptotically flat
manifolds.

Definition 1 ([9]). A complete Riemannian manifold (M3, g) is said to be asymp-
totically flat if there is a compact set K C M such that M \ K is diffeomorphic
to R3\ {|z| < 1}, and a diffeomorphism ® : M \ K — R3\ {|z| < 1} such that, in
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the coordinate chart defined by @,

3
g= Z gij(x)dxida?j,

i,j=1
where
gij(@) = i + O(|z[ 7)),
/|0 gis ()| + |2*10719i5 ()] = O(|x|7P),
|R(g)(z)| = O(|z[ ),

for some p > % and some ¢ > 3, where R(g) is the scalar curvature of (M3, g).

Definition 2. A complete metric g on R? is said to be asymptotically flat if
(R3, g) is an asymptotically flat manifold.

Definition 3. A horizon of an asymptotically flat manifold (M3, g) is simply a
stable minimal sphere in (M3, g).

2. PROOF OF THE THEOREM

Our construction of the metric is essentially based on the following scalar defor-
mation lemma due to J. Lohkamp [g].

Lemma 1. Let (M, g) be a smooth Riemannian manifold with dimension > 3. Let
U C M be an open subset and f be any smooth function on M with

(1) f<R(g) onU and f = R(g) on M\ U,

where R(g) is the scalar curvature of g. ThenV € >0, 3 a smooth metric g. on M
with

(2) ge =g on M\Uev f—e< R(ge) < fonU., and ” ge — g HCO(M) <e
where U, is the e-neighborhood of U in M with respect to the metric g.

To apply this lemma, we start with a metric on R? with a horizon whose scalar
curvature is nonnegative on R3 and zero outside a precompact open set. Then
we apply Lemma [ to get a new metric with well controlled scalar curvature and
Sobolev constant. Finally, we use a small conformal perturbation to make the
metric scalar flat while keeping the horizon nearly fixed.

To make the argument precise, we need a few more lemmas.

Lemma 2. For all m > 0, there exists a smooth spherically symmetric and con-
formally flat metric § on R3 with nonnegative scalar curvature such that

m .
(3) g=(1+ 2_r)4gflat outside Bz (0),
where v = |z|, B (0) is the open ball centered at the origin with radius % and gfiat
represents the usual Euclidean metric.

We note that the Schwarzschild metric (1 4+ 22)*gsiq contains a strictly mini-

mizing sphere at r = .
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Proof. Tt suffices to construct a smooth spherically symmetric super-harmonic func-
tion on R3. To do that, we adapt an argument in [5] by H. Bray.
Let v be a piecewise smooth function defined by

3, J)EB%(O),
@ “@:{ (1+%), ¢ Bz2(0).

Choose a standard spherically symmetric mollifier ¢ with support in B;(0) and, for
o > 0, we define

(5) 00(z) = v % ¢°(z) :/

R3

o) (o) an

g

Since v is a weakly super-harmonic function, v, is a smooth super-harmonic func-
tion. Furthermore

. 3, HASS B%_U(O),
(6) Vo (T) = { 1+ 2_n;7 x ¢ B%_;,_U(O),

because of the mean value property of harmonic functions.
We conclude that g = vg4gflat satisfies the lemma, when o < 5. [l

For the purpose of conformal deformation, we introduce the following existence
lemma which is a special case of Lemmas 3.2 and 3.3 in [I0]]. The reader may refer
to [I0] for a detailed proof.

Lemma 3 ([T0]). Let g be a smooth asymptotically flat metric on R® and R(g) be
the scalar curvature of g. There is a number eg > 0 depending only on the maximum
and minimum norm of the eigenvalues of g with respect to giar, and the rate of
decay of g, Og and 00g at infinity so that if

) ([ 1rwita) <.

() { Agu—3R(g)u = 0,

limy oou = 1

has a unique smooth positive solution defined on R such that

(9) u=1+ é +w

for some constant A and some function w, where

(10) w=0("?%), ow=0(r"?), 90w = 0(r—*).
Now we are in a position to prove our Theorem.

Proof. Fix an m > 0, and let § be the metric constructed in Lemma [2. For any
¢ > 0, we apply Lemma[llto g with U = Bz (0) and f, an arbitrary smooth function
such that

(11) fe = 0 outside Bz (0), and — e < f. <0 everywhere else.
We then get a smooth metric g. with
(12) ge=gon R? \Ue, fe—€<R(ge) < fe<0and| ge—g ||CO(Bm(O)) <Eé€



220 PENGZI MIAO

Choosing € to be small, we might assume that U. C Bzm (0). Now (II)) and (I2)

5

imply
2
2 3
3 3 3
|R(ge)|2 dge = |R(ge)|? dge
R3 Bap
2
3
< C / 12¢[3dg
Bam
5
(13) < C(m,g)e.
It follows from Lemma [3] that we are able to solve
Ng, e — éR(ge)u€ = 0,

for each e provided € < € for some €y depending only on g because of (I2I).
Now applying the Proposition below, we have

(15) 1 <wu. <1+ C(€), where 1irr(1) C(e) =0.

On the other hand, since g. = g outside B2m (0), we have

1
(16) Dg e — gR(gE)u6 =ANgu. =0 for x ¢ Bam (0).

The standard linear theory together with (I5) and (I6]) then implies that, passing
to a subsequence, u. converges to 1 in C? norm on any compact set outside B 2 (0).
Define

(17) e = ue4ge-

It follows from ([14)), (I2)) and (IH) that ge is scalar flat, conformally flat at infinity
and C? close to g on any compact set outside B 2m (0). Since g coincides with
the Schwarzschild metric (1 4+ 22)*gfiar outside Bzm (0), which admits a strictly

minimizing sphere at {r = %}, we conclude that g. is forced to have a stable
minimal sphere near {r = 3} for e sufficiently small. ]

Therefore, our proof will be complete provided we prove ([[5), which is given by
the Proposition below.

Proposition. For the solution {u.} above, we have

1 <wuc <1+ C(e), where hn(l) C(e) = 0.

Proof. The first inequality follows directly from the maximum principle since u. is
super-harmonic and goes to 1 near infinity.
To see the second inequality, we write v = ue — 1. From ([I4) we have

1 1 A,
(18) Ng ve — gR(ge)v6 = gR(Qe) and v. = — + w,
r
for some constants A, and some function w. with the decay property described in

Lemma [3 Multiplying (I8) by v. and integrating over R?,

1 1
(19) / (UEAQEUE - _R(gﬁ)v62)dg€ = / _R(ge)vedge~
R3 8 R3 8
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Since R(g.) has compact support, both integrals above are finite. Integrating by
parts and using the Holder Inequality we have that

/ Vue2dge
R3

IA

/Rs éIR(gE)Ivenge / ém( o)l - [veldge
([ 1rortan)’ ([ )
(20) +</RB IR(ge)Igdge)g</R3 e dg€>é.

On the other hand, by the Sobolev Inequality, we have

3
(21) (/ vfdge) SC’S(G)/ |Vv€|2dg€
R3 R3

where Cs(e) denotes the Sobolev constant of the metric g.. Hence, it follows from
20), 1) and the elementary inequality ab < % + ﬁ that

IA

1

([ woa) < oo [ imantan) ([ woa)
(/ [R(ge)l® dge>%< RS dge)
< cs<e>< [ttt ) ([ wtas)

22 R rtottan) ([ )

We note that (I2) implies that Cs(e) is uniformly close to Cs(g), which is the
Sobolev constant of g. Hence, we have

1

(/. vfdgs)% < c@( [, 1rtotds) ([ vraa)
(23) re@( [ |R<ge>|?czge)g +5(/ vfdge)é,

which together with (I3]) and (I2) implies that

(24) (/Rsvfdge)l <C(g (/ |R(g¢) 5dg6>3—0(1), as € — 0.

This L% estimate and (I8) then imply the desired supremum estimate for v, by
the standard linear theory (say Theorem 8.17 in [7]),

3 3
(25) sup|ve|sc( / vfdge) +c( / |R<g€>|3dge) (1) ase—0,
R3 R3 R3

which finishes the proof. O
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