ASYMPTOTICALLY FLAT AND SCALAR FLAT METRICS ON \mathbb{R}^{3} ADMITTING A HORIZON

PENGZI MIAO
(Communicated by Bennett Chow)

Abstract

We give a new construction of asymptotically flat and scalar flat metrics on \mathbb{R}^{3} with a stable minimal sphere. The existence of such a metric gives an affirmative answer to a question raised by R. Bartnik (1989).

1. Introduction and main results

The existence of an asymptotically flat and scalar flat metric on \mathbb{R}^{3} with a stable minimal sphere is closely related to R . Bartnik's quasilocal mass definition [2] restricted to scalar flat metrics in general relativity. It also offers an example of a globally regular and asymptotically flat initial data for the Einstein vacuum equations containing a trapped surface. R. Beig and N. Ó Murchadha first proved the existence of such a metric in [4] by studying the behavior of a critical sequence of metrics. A similar observation was also made independently by R. Schoen at a later time.

In this paper we give a new approach to the existence problem, and we prove a slightly stronger result.

Theorem. There exists an asymptotically flat and scalar flat metric on \mathbb{R}^{3} which is conformally flat outside a compact set and contains a horizon.

Combining this Theorem and the work of J. Corvino [6], we easily get an interesting corollary.

Corollary. There exists a scalar flat metric on \mathbb{R}^{3} which is Schwarzschild in a neighborhood of infinity and contains a horizon.

Before giving the proof, we first introduce some relevant definitions. Interested readers may refer to [1], 9] and [10] for more discussions on asymptotically flat manifolds.

Definition 1 (9). A complete Riemannian manifold $\left(M^{3}, g\right)$ is said to be asymptotically flat if there is a compact set $K \subset M$ such that $M \backslash K$ is diffeomorphic to $\mathbb{R}^{3} \backslash\{|x| \leq 1\}$, and a diffeomorphism $\Phi: M \backslash K \longrightarrow \mathbb{R}^{3} \backslash\{|x| \leq 1\}$ such that, in

[^0]the coordinate chart defined by Φ,
$$
g=\sum_{i, j=1}^{3} g_{i j}(x) d x^{i} d x^{j}
$$
where
\[

$$
\begin{gathered}
g_{i j}(x)=\delta_{i j}+O\left(|x|^{-p}\right) \\
|x|\left|\partial_{k} g_{i j}(x)\right|+|x|^{2}\left|\partial_{k l}^{2} g_{i j}(x)\right|=O\left(|x|^{-p}\right) \\
|R(g)(x)|=O\left(|x|^{-q}\right)
\end{gathered}
$$
\]

for some $p>\frac{1}{2}$ and some $q>3$, where $R(g)$ is the scalar curvature of $\left(M^{3}, g\right)$.
Definition 2. A complete metric g on \mathbb{R}^{3} is said to be asymptotically flat if $\left(\mathbb{R}^{3}, g\right)$ is an asymptotically flat manifold.

Definition 3. A horizon of an asymptotically flat manifold $\left(M^{3}, g\right)$ is simply a stable minimal sphere in $\left(M^{3}, g\right)$.

2. Proof of the Theorem

Our construction of the metric is essentially based on the following scalar deformation lemma due to J. Lohkamp [8].

Lemma 1. Let (M, g) be a smooth Riemannian manifold with dimension ≥ 3. Let $U \subset M$ be an open subset and f be any smooth function on M with

$$
\begin{equation*}
f<R(g) \text { on } U \text { and } f=R(g) \text { on } M \backslash U \tag{1}
\end{equation*}
$$

where $R(g)$ is the scalar curvature of g. Then $\forall \epsilon>0, \exists a$ smooth metric g_{ϵ} on M with

$$
\begin{equation*}
g_{\epsilon}=g \text { on } M \backslash U_{\epsilon}, \quad f-\epsilon \leq R\left(g_{\epsilon}\right) \leq f \text { on } U_{\epsilon}, \text { and }\left\|g_{\epsilon}-g\right\|_{C^{0}(M)}<\epsilon \tag{2}
\end{equation*}
$$

where U_{ϵ} is the ϵ-neighborhood of U in M with respect to the metric g.
To apply this lemma, we start with a metric on \mathbb{R}^{3} with a horizon whose scalar curvature is nonnegative on \mathbb{R}^{3} and zero outside a precompact open set. Then we apply Lemma to get a new metric with well controlled scalar curvature and Sobolev constant. Finally, we use a small conformal perturbation to make the metric scalar flat while keeping the horizon nearly fixed.

To make the argument precise, we need a few more lemmas.
Lemma 2. For all $m>0$, there exists a smooth spherically symmetric and conformally flat metric \bar{g} on \mathbb{R}^{3} with nonnegative scalar curvature such that

$$
\begin{equation*}
\bar{g}=\left(1+\frac{m}{2 r}\right)^{4} g_{\text {flat }} \quad \text { outside } B_{\frac{m}{3}}(0) \tag{3}
\end{equation*}
$$

where $r=|x|, B_{\frac{m}{3}}(0)$ is the open ball centered at the origin with radius $\frac{m}{3}$ and $g_{\text {flat }}$ represents the usual Euclidean metric.

We note that the Schwarzschild metric $\left(1+\frac{m}{2 r}\right)^{4} g_{\text {flat }}$ contains a strictly minimizing sphere at $r=\frac{m}{2}$.

Proof. It suffices to construct a smooth spherically symmetric super-harmonic function on \mathbb{R}^{3}. To do that, we adapt an argument in [5] by H. Bray.

Let v be a piecewise smooth function defined by

$$
v(x)= \begin{cases}3, & x \in B_{\frac{m}{4}}(0), \tag{4}\\ \left(1+\frac{m}{2 r}\right), & x \notin B_{\frac{m}{4}}^{4}(0)\end{cases}
$$

Choose a standard spherically symmetric mollifier ϕ with support in $B_{1}(0)$ and, for $\sigma>0$, we define

$$
\begin{equation*}
v_{\sigma}(x)=v * \phi^{\sigma}(x)=\int_{\mathbb{R}^{3}} v(y)\left(\frac{1}{\sigma^{3}} \phi\left(\frac{x-y}{\sigma}\right)\right) d y \tag{5}
\end{equation*}
$$

Since v is a weakly super-harmonic function, v_{σ} is a smooth super-harmonic function. Furthermore

$$
v_{\sigma}(x)= \begin{cases}3, & x \in B_{\frac{m}{4}-\sigma}^{4}(0) \tag{6}\\ 1+\frac{m}{2 r}, & x \notin B \frac{m}{4}+\sigma(0)\end{cases}
$$

because of the mean value property of harmonic functions.
We conclude that $\bar{g}=v_{\sigma}{ }^{4} g_{\text {flat }}$ satisfies the lemma, when $\sigma<\frac{m}{12}$.
For the purpose of conformal deformation, we introduce the following existence lemma which is a special case of Lemmas 3.2 and 3.3 in [10]. The reader may refer to [10] for a detailed proof.

Lemma 3 ([10]). Let g be a smooth asymptotically flat metric on \mathbb{R}^{3} and $R(g)$ be the scalar curvature of g. There is a number $\epsilon_{0}>0$ depending only on the maximum and minimum norm of the eigenvalues of g with respect to $g_{\text {flat }}$, and the rate of decay of $g, \partial g$ and $\partial \partial g$ at infinity so that if

$$
\begin{equation*}
\frac{1}{8}\left(\int_{\mathbb{R}^{3}}|R(g)|^{\frac{3}{2}} d g\right)^{\frac{2}{3}}<\epsilon_{0} \tag{7}
\end{equation*}
$$

then

$$
\left\{\begin{align*}
\triangle_{g} u-\frac{1}{8} R(g) u & =0, \tag{8}\\
\lim _{x \rightarrow \infty} u & =1
\end{align*}\right.
$$

has a unique smooth positive solution defined on \mathbb{R}^{3} such that

$$
\begin{equation*}
u=1+\frac{A}{r}+\omega \tag{9}
\end{equation*}
$$

for some constant A and some function ω, where

$$
\begin{equation*}
\omega=O\left(r^{-2}\right), \partial \omega=O\left(r^{-3}\right), \partial \partial \omega=O\left(r^{-4}\right) \tag{10}
\end{equation*}
$$

Now we are in a position to prove our Theorem.
Proof. Fix an $m>0$, and let \bar{g} be the metric constructed in Lemma 2. For any $\epsilon>0$, we apply Lemma 1 to \bar{g} with $U=B_{\frac{m}{3}}(0)$ and f_{ϵ} an arbitrary smooth function such that

$$
\begin{equation*}
f_{\epsilon}=0 \text { outside } B_{\frac{m}{3}}(0), \text { and }-\epsilon<f_{\epsilon}<0 \text { everywhere else. } \tag{11}
\end{equation*}
$$

We then get a smooth metric g_{ϵ} with

$$
\begin{equation*}
g_{\epsilon}=\bar{g} \text { on } \mathbb{R}^{3} \backslash U_{\epsilon}, f_{\epsilon}-\epsilon \leq R\left(g_{\epsilon}\right) \leq f_{\epsilon} \leq 0 \text { and }\left\|g_{\epsilon}-\bar{g}\right\|_{C^{0}\left(B_{m}(0)\right)}<\epsilon \tag{12}
\end{equation*}
$$

Choosing ϵ to be small, we might assume that $U_{\epsilon} \subset B_{\frac{2 m}{5}}(0)$. Now (11) and (12) imply

$$
\begin{align*}
\left(\int_{\mathbb{R}^{3}}\left|R\left(g_{\epsilon}\right)\right|^{\frac{3}{2}} d g_{\epsilon}\right)^{\frac{2}{3}} & =\left(\int_{B_{\frac{2 m}{5}}}\left|R\left(g_{\epsilon}\right)\right|^{\frac{3}{2}} d g_{\epsilon}\right)^{\frac{2}{3}} \\
& \leq C\left(\int_{B_{\frac{2 m}{5}}}|2 \epsilon|^{\frac{3}{2}} d \bar{g}\right)^{\frac{2}{3}} \\
& \leq C(m, \bar{g}) \epsilon . \tag{13}
\end{align*}
$$

It follows from Lemma 3 that we are able to solve

$$
\left\{\begin{align*}
\triangle_{g_{\epsilon}} u_{\epsilon}-\frac{1}{8} R\left(g_{\epsilon}\right) u_{\epsilon} & =0, \tag{14}\\
\lim _{x \rightarrow \infty} u_{\epsilon} & =1
\end{align*}\right.
$$

for each ϵ provided $\epsilon<\epsilon_{0}$ for some ϵ_{0} depending only on \bar{g} because of (12).
Now applying the Proposition below, we have

$$
\begin{equation*}
1 \leq u_{\epsilon} \leq 1+C(\epsilon), \text { where } \lim _{\epsilon \rightarrow 0} C(\epsilon)=0 \tag{15}
\end{equation*}
$$

On the other hand, since $g_{\epsilon}=\bar{g}$ outside $B_{\frac{2 m}{5}}(0)$, we have

$$
\begin{equation*}
\triangle_{g_{\epsilon}} u_{\epsilon}-\frac{1}{8} R\left(g_{\epsilon}\right) u_{\epsilon}=\triangle_{\bar{g}} u_{\epsilon}=0 \text { for } x \notin B_{\frac{2 m}{5}}(0) \tag{16}
\end{equation*}
$$

The standard linear theory together with (15) and (16) then implies that, passing to a subsequence, u_{ϵ} converges to 1 in C^{2} norm on any compact set outside $B_{\frac{2 m}{5}}(0)$.

Define

$$
\begin{equation*}
\bar{g}_{\epsilon}=u_{\epsilon}{ }^{4} g_{\epsilon} \tag{17}
\end{equation*}
$$

It follows from (14), (12) and (15) that \bar{g}_{ϵ} is scalar flat, conformally flat at infinity and C^{2} close to \bar{g} on any compact set outside $B_{\frac{2 m}{5}}(0)$. Since \bar{g} coincides with the Schwarzschild metric $\left(1+\frac{m}{2 r}\right)^{4} g_{\text {flat }}$ outside $B_{\frac{2 m}{5}}(0)$, which admits a strictly minimizing sphere at $\left\{r=\frac{m}{2}\right\}$, we conclude that \bar{g}_{ϵ} is forced to have a stable minimal sphere near $\left\{r=\frac{m}{2}\right\}$ for ϵ sufficiently small.

Therefore, our proof will be complete provided we prove (15), which is given by the Proposition below.

Proposition. For the solution $\left\{u_{\epsilon}\right\}$ above, we have

$$
1 \leq u_{\epsilon} \leq 1+C(\epsilon), \text { where } \lim _{\epsilon \rightarrow 0} C(\epsilon)=0
$$

Proof. The first inequality follows directly from the maximum principle since u_{ϵ} is super-harmonic and goes to 1 near infinity.

To see the second inequality, we write $v_{\epsilon}=u_{\epsilon}-1$. From (14) we have

$$
\begin{equation*}
\triangle_{g_{\epsilon}} v_{\epsilon}-\frac{1}{8} R\left(g_{\epsilon}\right) v_{\epsilon}=\frac{1}{8} R\left(g_{\epsilon}\right) \text { and } v_{\epsilon}=\frac{A_{\epsilon}}{r}+\omega_{\epsilon} \tag{18}
\end{equation*}
$$

for some constants A_{ϵ} and some function ω_{ϵ} with the decay property described in Lemma 3. Multiplying (18) by v_{ϵ} and integrating over \mathbb{R}^{3},

$$
\begin{equation*}
\int_{\mathbb{R}^{3}}\left(v_{\epsilon} \triangle_{g_{\epsilon}} v_{\epsilon}-\frac{1}{8} R\left(g_{\epsilon}\right) v_{\epsilon}^{2}\right) d g_{\epsilon}=\int_{\mathbb{R}^{3}} \frac{1}{8} R\left(g_{\epsilon}\right) v_{\epsilon} d g_{\epsilon} \tag{19}
\end{equation*}
$$

Since $R\left(g_{\epsilon}\right)$ has compact support, both integrals above are finite. Integrating by parts and using the Hölder Inequality we have that

$$
\begin{align*}
\int_{\mathbb{R}^{3}}\left|\nabla v_{\epsilon}\right|^{2} d g_{\epsilon} \leq & \int_{\mathbb{R}^{3}} \frac{1}{8}\left|R\left(g_{\epsilon}\right)\right| v_{\epsilon}{ }^{2} d g_{\epsilon}+\int_{\mathbb{R}^{3}} \frac{1}{8}\left|R\left(g_{\epsilon}\right)\right| \cdot\left|v_{\epsilon}\right| d g_{\epsilon} \\
\leq & \left(\int_{\mathbb{R}^{3}}\left|R\left(g_{\epsilon}\right)\right|^{\frac{3}{2}} d g_{\epsilon}\right)^{\frac{2}{3}}\left(\int_{\mathbb{R}^{3}} v_{\epsilon}{ }^{6} d g_{\epsilon}\right)^{\frac{1}{3}} \\
& +\left(\int_{\mathbb{R}^{3}}\left|R\left(g_{\epsilon}\right)\right|^{\frac{6}{5}} d g_{\epsilon}\right)^{\frac{5}{6}}\left(\int_{\mathbb{R}^{3}} v_{\epsilon}{ }^{6} d g_{\epsilon}\right)^{\frac{1}{6}} \tag{20}
\end{align*}
$$

On the other hand, by the Sobolev Inequality, we have

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{3}} v_{\epsilon}{ }^{6} d g_{\epsilon}\right)^{\frac{1}{3}} \leq C_{s}(\epsilon) \int_{\mathbb{R}^{3}}\left|\nabla v_{\epsilon}\right|^{2} d g_{\epsilon} \tag{21}
\end{equation*}
$$

where $C_{s}(\epsilon)$ denotes the Sobolev constant of the metric g_{ϵ}. Hence, it follows from (20), (21) and the elementary inequality $a b \leq \frac{a^{2}}{2}+\frac{b^{2}}{2}$ that

$$
\begin{align*}
\left(\int_{\mathbb{R}^{3}} v_{\epsilon}{ }^{6} d g_{\epsilon}\right)^{\frac{1}{3}} \leq & C_{s}(\epsilon)\left(\int_{\mathbb{R}^{3}}\left|R\left(g_{\epsilon}\right)\right|^{\frac{3}{2}} d g_{\epsilon}\right)^{\frac{2}{3}}\left(\int_{\mathbb{R}^{3}} v_{\epsilon}{ }^{6} d g_{\epsilon}\right)^{\frac{1}{3}} \\
& +C_{s}(\epsilon)\left(\int_{\mathbb{R}^{3}}\left|R\left(g_{\epsilon}\right)\right|^{\frac{6}{5}} d g_{\epsilon}\right)^{\frac{5}{6}}\left(\int_{\mathbb{R}^{3}} v_{\epsilon}^{6} d g_{\epsilon}\right)^{\frac{1}{6}} \\
\leq & C_{s}(\epsilon)\left(\int_{\mathbb{R}^{3}}\left|R\left(g_{\epsilon}\right)\right|^{\frac{3}{2}} d g_{\epsilon}\right)^{\frac{2}{3}}\left(\int_{\mathbb{R}^{3}} v_{\epsilon}^{6} d g_{\epsilon}\right)^{\frac{1}{3}} \\
& +\frac{C_{s}(\epsilon)^{2}}{2}\left(\int_{\mathbb{R}^{3}}\left|R\left(g_{\epsilon}\right)\right|^{\frac{6}{5}} d g_{\epsilon}\right)^{\frac{5}{3}}+\frac{1}{2}\left(\int_{\mathbb{R}^{3}} v_{\epsilon}^{6} d g_{\epsilon}\right)^{\frac{1}{3}} . \tag{22}
\end{align*}
$$

We note that (12) implies that $C_{s}(\epsilon)$ is uniformly close to $C_{s}(\bar{g})$, which is the Sobolev constant of \bar{g}. Hence, we have

$$
\begin{align*}
\left(\int_{\mathbb{R}^{3}} v_{\epsilon}{ }^{6} d g_{\epsilon}\right)^{\frac{1}{3}} \leq & C(\bar{g})\left(\int_{\mathbb{R}^{3}}\left|R\left(g_{\epsilon}\right)\right|^{\frac{3}{2}} d g_{\epsilon}\right)^{\frac{2}{3}}\left(\int_{\mathbb{R}^{3}} v_{\epsilon}{ }^{6} d g_{\epsilon}\right)^{\frac{1}{3}} \\
& +C(\bar{g})\left(\int_{\mathbb{R}^{3}}\left|R\left(g_{\epsilon}\right)\right|^{\frac{6}{5}} d g_{\epsilon}\right)^{\frac{5}{3}}+\frac{1}{2}\left(\int_{\mathbb{R}^{3}} v_{\epsilon}{ }^{6} d g_{\epsilon}\right)^{\frac{1}{3}} \tag{23}
\end{align*}
$$

which together with (13) and (12) implies that

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{3}} v_{\epsilon}^{6} d g_{\epsilon}\right)^{\frac{1}{3}} \leq C(\bar{g})\left(\int_{\mathbb{R}^{3}}\left|R\left(g_{\epsilon}\right)\right|^{\frac{6}{5}} d g_{\epsilon}\right)^{\frac{5}{3}}=o(1), \quad \text { as } \epsilon \rightarrow 0 \tag{24}
\end{equation*}
$$

This L^{6} estimate and (18) then imply the desired supremum estimate for v_{ϵ} by the standard linear theory (say Theorem 8.17 in [7]),

$$
\begin{equation*}
\sup _{\mathbb{R}^{3}}\left|v_{\epsilon}\right| \leq C\left(\int_{\mathbb{R}^{3}} v_{\epsilon}{ }^{6} d g_{\epsilon}\right)^{\frac{1}{6}}+C\left(\int_{\mathbb{R}^{3}}\left|R\left(g_{\epsilon}\right)\right|^{3} d g_{\epsilon}\right)^{\frac{1}{3}}=o(1) \text { as } \epsilon \rightarrow 0 \tag{25}
\end{equation*}
$$

which finishes the proof.

Acknowledgments

I thank my advisor, Professor Richard Schoen, for suggesting this problem. I also thank Professor Hubert Bray for many stimulating discussions. Finally I thank Professor Robert Bartnik for showing me the work of (4).

References

1. Robert Bartnik, The mass of an asymptotically flat manifold, Comm. Pure Appl. Math. 39 (1986), no. 5, 661-693. MR 88b:58144
2. _, New definition of quasilocal mass, Phys. Rev. Lett. 62 (1989), no. 20, 2346-2348. MR 90e:83041
3. __ Some open problems in mathematical relativity, Conference on Mathematical Relativity (Canberra, 1988), Austral. Nat. Univ., Canberra, 1989, pp. 244-268. MR 90g:83001
4. R. Beig and N. Ó Murchadha, Trapped surfaces due to concentration of gravitational radiation, Phys. Rev. Lett. 66 (1991), no. 19, 2421-2424. MR 92a:83005
5. Hubert Bray, The penrose inequality in general relativity and volume comparison theorems involving scalar curvature, Thesis, Stanford University (1997).
6. Justin Corvino, Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Comm. Math. Phys. 214 (2000), no. 1, 137-189. MR 2002b:53050
7. David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Berlin: Springer-Verlag, 1983. MR 86c:35035
8. Joachim Lohkamp, Scalar curvature and hammocks, Math. Ann. 313 (1999), no. 3, 385-407. MR 2000a:53059
9. Richard Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, Topics in the Calculus of Variations, Lecture Notes in Math. 1365, Berlin: Springer-Verlag, 1987, pp. 120-154. MR 90g:58023
10. Richard Schoen and Shing Tung Yau, On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys. 65 (1979), no. 1, 45-76. MR 80j:83024

Department of Mathematics, Stanford University, Palo Alto, California 94305
E-mail address: mpengzi@math.stanford.edu

[^0]: Received by the editors May 2, 2002 and, in revised form, August 23, 2002.
 2000 Mathematics Subject Classification. Primary 53C80; Secondary 83C99.
 Key words and phrases. Scalar flat metrics, horizon.

