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ASYMPTOTICALLY FLAT AND SCALAR FLAT METRICS
ON R3 ADMITTING A HORIZON

PENGZI MIAO

(Communicated by Bennett Chow)

Abstract. We give a new construction of asymptotically flat and scalar flat
metrics on R3 with a stable minimal sphere. The existence of such a metric
gives an affirmative answer to a question raised by R. Bartnik (1989).

1. Introduction and main results

The existence of an asymptotically flat and scalar flat metric on R3 with a
stable minimal sphere is closely related to R. Bartnik’s quasilocal mass definition
[2] restricted to scalar flat metrics in general relativity. It also offers an example
of a globally regular and asymptotically flat initial data for the Einstein vacuum
equations containing a trapped surface. R. Beig and N. Ó Murchadha first proved
the existence of such a metric in [4] by studying the behavior of a critical sequence
of metrics. A similar observation was also made independently by R. Schoen at a
later time.

In this paper we give a new approach to the existence problem, and we prove a
slightly stronger result.

Theorem. There exists an asymptotically flat and scalar flat metric on R3 which
is conformally flat outside a compact set and contains a horizon.

Combining this Theorem and the work of J. Corvino [6], we easily get an inter-
esting corollary.

Corollary. There exists a scalar flat metric on R3 which is Schwarzschild in a
neighborhood of infinity and contains a horizon.

Before giving the proof, we first introduce some relevant definitions. Interested
readers may refer to [1], [9] and [10] for more discussions on asymptotically flat
manifolds.

Definition 1 ([9]). A complete Riemannian manifold (M3, g) is said to be asymp-
totically flat if there is a compact set K ⊂ M such that M \K is diffeomorphic
to R3 \ {|x| ≤ 1}, and a diffeomorphism Φ : M \K −→ R3 \ {|x| ≤ 1} such that, in
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the coordinate chart defined by Φ,

g =
3∑

i,j=1

gij(x)dxidxj ,

where

gij(x) = δij +O(|x|−p),

|x||∂kgij(x)| + |x|2|∂2
klgij(x)| = O(|x|−p),

|R(g)(x)| = O(|x|−q),

for some p > 1
2 and some q > 3, where R(g) is the scalar curvature of (M3, g).

Definition 2. A complete metric g on R3 is said to be asymptotically flat if
(R3, g) is an asymptotically flat manifold.

Definition 3. A horizon of an asymptotically flat manifold (M3, g) is simply a
stable minimal sphere in (M3, g).

2. Proof of the Theorem

Our construction of the metric is essentially based on the following scalar defor-
mation lemma due to J. Lohkamp [8].

Lemma 1. Let (M, g) be a smooth Riemannian manifold with dimension ≥ 3. Let
U ⊂M be an open subset and f be any smooth function on M with

(1) f < R(g) on U and f = R(g) on M \ U,

where R(g) is the scalar curvature of g. Then ∀ ε > 0, ∃ a smooth metric gε on M
with

(2) gε = g on M \ Uε, f − ε ≤ R(gε) ≤ f on Uε, and ‖ gε − g ‖C0(M) < ε,

where Uε is the ε-neighborhood of U in M with respect to the metric g.

To apply this lemma, we start with a metric on R3 with a horizon whose scalar
curvature is nonnegative on R3 and zero outside a precompact open set. Then
we apply Lemma 1 to get a new metric with well controlled scalar curvature and
Sobolev constant. Finally, we use a small conformal perturbation to make the
metric scalar flat while keeping the horizon nearly fixed.

To make the argument precise, we need a few more lemmas.

Lemma 2. For all m > 0, there exists a smooth spherically symmetric and con-
formally flat metric ḡ on R3 with nonnegative scalar curvature such that

(3) ḡ = (1 +
m

2r
)4gflat outside Bm

3
(0),

where r = |x|, Bm
3

(0) is the open ball centered at the origin with radius m
3 and gflat

represents the usual Euclidean metric.

We note that the Schwarzschild metric (1 + m
2r )4gflat contains a strictly mini-

mizing sphere at r = m
2 .
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Proof. It suffices to construct a smooth spherically symmetric super-harmonic func-
tion on R3. To do that, we adapt an argument in [5] by H. Bray.

Let v be a piecewise smooth function defined by

(4) v(x) =
{

3, x ∈ Bm
4

(0),
(1 + m

2r ), x /∈ Bm
4

(0).

Choose a standard spherically symmetric mollifier φ with support in B1(0) and, for
σ > 0, we define

(5) vσ(x) = v ∗ φσ(x) =
∫
R3
v(y)

(
1
σ3
φ(
x− y
σ

)
)
dy.

Since v is a weakly super-harmonic function, vσ is a smooth super-harmonic func-
tion. Furthermore

(6) vσ(x) =
{

3, x ∈ Bm
4 −σ(0),

1 + m
2r , x /∈ Bm

4 +σ(0),

because of the mean value property of harmonic functions.
We conclude that ḡ = vσ

4gflat satisfies the lemma, when σ < m
12 . �

For the purpose of conformal deformation, we introduce the following existence
lemma which is a special case of Lemmas 3.2 and 3.3 in [10]. The reader may refer
to [10] for a detailed proof.

Lemma 3 ([10]). Let g be a smooth asymptotically flat metric on R3 and R(g) be
the scalar curvature of g. There is a number ε0 > 0 depending only on the maximum
and minimum norm of the eigenvalues of g with respect to gflat, and the rate of
decay of g, ∂g and ∂∂g at infinity so that if

(7)
1
8

(∫
R3
|R(g)| 32 dg

) 2
3

< ε0,

then

(8)
{
4gu− 1

8R(g)u = 0,
limx→∞ u = 1

has a unique smooth positive solution defined on R3 such that

(9) u = 1 +
A

r
+ ω

for some constant A and some function ω, where

(10) ω = O(r−2), ∂ω = O(r−3), ∂∂ω = O(r−4).

Now we are in a position to prove our Theorem.

Proof. Fix an m > 0, and let ḡ be the metric constructed in Lemma 2. For any
ε > 0, we apply Lemma 1 to ḡ with U = Bm

3
(0) and fε an arbitrary smooth function

such that

(11) fε = 0 outside Bm
3

(0), and − ε < fε < 0 everywhere else.

We then get a smooth metric gε with

(12) gε = ḡ on R3 \ Uε, fε − ε ≤ R(gε) ≤ fε ≤ 0 and ‖ gε − ḡ ‖C0(Bm(0)) < ε.
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Choosing ε to be small, we might assume that Uε ⊂ B 2m
5

(0). Now (11) and (12)
imply (∫

R3
|R(gε)|

3
2 dgε

) 2
3

=

∫
B 2m

5

|R(gε)|
3
2 dgε

 2
3

≤ C

∫
B 2m

5

|2ε| 32 dḡ


2
3

≤ C(m, ḡ)ε.(13)

It follows from Lemma 3 that we are able to solve

(14)
{
4gεuε − 1

8R(gε)uε = 0,
limx→∞ uε = 1

for each ε provided ε < ε0 for some ε0 depending only on ḡ because of (12).
Now applying the Proposition below, we have

(15) 1 ≤ uε ≤ 1 + C(ε), where lim
ε→0

C(ε) = 0.

On the other hand, since gε = ḡ outside B 2m
5

(0), we have

(16) 4gεuε −
1
8
R(gε)uε = 4ḡuε = 0 for x /∈ B 2m

5
(0).

The standard linear theory together with (15) and (16) then implies that, passing
to a subsequence, uε converges to 1 in C2 norm on any compact set outside B 2m

5
(0).

Define

(17) ḡε = uε
4gε.

It follows from (14), (12) and (15) that ḡε is scalar flat, conformally flat at infinity
and C2 close to ḡ on any compact set outside B 2m

5
(0). Since ḡ coincides with

the Schwarzschild metric (1 + m
2r )4gflat outside B 2m

5
(0), which admits a strictly

minimizing sphere at {r = m
2 }, we conclude that ḡε is forced to have a stable

minimal sphere near {r = m
2 } for ε sufficiently small. �

Therefore, our proof will be complete provided we prove (15), which is given by
the Proposition below.

Proposition. For the solution {uε} above, we have

1 ≤ uε ≤ 1 + C(ε), where lim
ε→0

C(ε) = 0.

Proof. The first inequality follows directly from the maximum principle since uε is
super-harmonic and goes to 1 near infinity.

To see the second inequality, we write vε = uε − 1. From (14) we have

(18) 4gεvε −
1
8
R(gε)vε =

1
8
R(gε) and vε =

Aε
r

+ ωε

for some constants Aε and some function ωε with the decay property described in
Lemma 3. Multiplying (18) by vε and integrating over R3,

(19)
∫
R3

(vε4gεvε −
1
8
R(gε)vε2)dgε =

∫
R3

1
8
R(gε)vεdgε.
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Since R(gε) has compact support, both integrals above are finite. Integrating by
parts and using the Hölder Inequality we have that

∫
R3
|∇vε|2dgε ≤

∫
R3

1
8
|R(gε)|vε2dgε +

∫
R3

1
8
|R(gε)| · |vε|dgε

≤
(∫

R3
|R(gε)|

3
2 dgε

) 2
3
(∫

R3
vε

6dgε

) 1
3

+
(∫

R3
|R(gε)|

6
5 dgε

) 5
6
(∫

R3
vε

6dgε

) 1
6

.(20)

On the other hand, by the Sobolev Inequality, we have

(21)
(∫

R3
vε

6dgε

) 1
3

≤ Cs(ε)
∫
R3
|∇vε|2dgε

where Cs(ε) denotes the Sobolev constant of the metric gε. Hence, it follows from
(20), (21) and the elementary inequality ab ≤ a2

2 + b2

2 that(∫
R3
vε

6dgε

) 1
3

≤ Cs(ε)
(∫

R3
|R(gε)|

3
2 dgε

) 2
3
(∫

R3
vε

6dgε

) 1
3

+Cs(ε)
(∫

R3
|R(gε)|

6
5 dgε

) 5
6
(∫

R3
vε

6dgε

) 1
6

≤ Cs(ε)
(∫

R3
|R(gε)|

3
2 dgε

) 2
3
(∫

R3
vε

6dgε

) 1
3

+
Cs(ε)

2

2

(∫
R3
|R(gε)|

6
5 dgε

) 5
3

+
1
2

(∫
R3
vε

6dgε

) 1
3

.(22)

We note that (12) implies that Cs(ε) is uniformly close to Cs(ḡ), which is the
Sobolev constant of ḡ. Hence, we have(∫

R3
vε

6dgε

) 1
3

≤ C(ḡ)
(∫

R3
|R(gε)|

3
2 dgε

) 2
3
(∫

R3
vε

6dgε

) 1
3

+C(ḡ)
(∫

R3
|R(gε)|

6
5 dgε

) 5
3

+
1
2

(∫
R3
vε

6dgε

) 1
3

,(23)

which together with (13) and (12) implies that

(24)
(∫

R3
vε

6dgε

) 1
3

≤ C(ḡ)
(∫

R3
|R(gε)|

6
5 dgε

) 5
3

= o(1), as ε→ 0.

This L6 estimate and (18) then imply the desired supremum estimate for vε by
the standard linear theory (say Theorem 8.17 in [7]),

(25) sup
R3
|vε| ≤ C

(∫
R3
vε

6dgε

) 1
6

+ C

(∫
R3
|R(gε)|3dgε

) 1
3

= o(1) as ε→ 0,

which finishes the proof. �
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