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FREE PRODUCTS IN LINEAR GROUPS

D. S. PASSMAN

(Communicated by Lance W. Small)

Abstract. Let R be a commutative integral domain of characteristic 0, and
let G be a finite subgroup of PGLn(R), the projective general linear group of
degree n over R. In this note, we show that if n ≥ 2, then PGLn(R) also
contains the free product G ∗ T , where T is the infinite cyclic group generated
by the image of a suitable transvection.

1. Introduction

Let R be a commutative integral domain of characteristic 0, and let GLn(R)
denote the general linear group of degree n over R, namely the group of invertible
n×n R-matrices. If R• is the set of scalar matrices in GLn(R), thenR• is isomorphic
to the group of units of R, and GLn(R)/R• = PGLn(R) is the projective general
linear group. Our goal here is to show that if G is a finite subgroup of PGLn(R)
and if n ≥ 2, then PGLn(R) also contains the free product G ∗ T , where T is the
infinite cyclic group generated by the image of a suitable transvection, namely a
transformation of the form 1 + τ , where τ has rank 1 and square 0.

The above proposition actually arose as part of an argument to show that if H is
a finite group having a noncentral subgroup G of prime order p, then the unit group
of the integral group ring Z[H ] contains the free product G ∗ T for some infinite
cyclic group T . Obviously, the proof of such a result must use the irreducible repre-
sentations of the rational group algebra Q[H ] and then, under suitable conditions,
properties of linear groups over characteristic 0 integral domains. Since the linear
group results turned out to be of independent interest, they are being published
separately. Indeed, a second paper [GM], written at the same time as this work,
contains an alternate approach to the existence of free products in linear groups.

For the most part, we work in GLn(C), where C is the field of complex numbers,
and the key result here is

Theorem 1.1. Let V be a finite-dimensional complex vector space, and let G be a
subgroup of the general linear group GL(V ) with |G : (G∩C•)| <∞. Furthermore,
let τ : V → V be a nonzero linear transformation of square 0, and write K = ker τ
and I = im τ = τ(V ). If gI∩K = 0 for all g ∈ G\(G∩C•), then for all sufficiently
large complex numbers c ∈ C, we have

〈G, 1 + cτ〉/(G ∩C•) ∼=
(
G/(G ∩ C•)

)
∗ T,
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where T is the infinite cyclic group generated by the image of the unit 1 + cτ in this
factor group.

Observe that (1 + cτ)(1 − cτ) = 1 − c2τ2 = 1, so 1 + cτ ∈ GL(V ) and, of
course, 〈G, 1+cτ〉 indicates the subgroup of GL(V ) generated by G and the element
1 + cτ . As will be apparent, the proof of Theorem 1.1 contains enough information
to compute the lower bound on the size of c when τ has rank 1. Indeed, we have

Corollary 1.2. Let V be a finite-dimensional complex inner product vector space,
let G be a subgroup of the general linear group GL(V ) with |G : (G ∩ C•)| < ∞,
and assume that (C•G) ∩ SL(V ) acts in a unitary manner on V . Furthermore, let
τ : V → V be a linear transformation of square 0 and rank 1, write I = im τ = Cv,
K = ker τ , and suppose that gv /∈ K for all g ∈ G \ (G∩C•). If m is the minimum
value of |τ(gv)|/|gv| over all g ∈ G \ (G ∩ C•), and if c is a complex number with
|c| ≥ 27 ‖τ‖/m2, then we have

〈G, 1 + cτ〉/(G ∩C•) ∼=
(
G/(G ∩ C•)

)
∗ T,

where T is the infinite cyclic group generated by the image of the unit 1 + cτ in this
factor group.

Presumably the factor 27 above can be appreciably decreased with more care,
but we will not pursue this further. Note that, if A and B are groups, then the free
product A∗B contains the free product of the conjugate subgroups Ab = b−1Ab for
all b ∈ B. In particular, the preceding results have a number of obvious corollaries.
Less obvious is

Theorem 1.3. Let R be a characteristic 0 integral domain and let G be a finite
subgroup of PGLn(R). If n ≥ 2, then PGLn(R) contains the free product G ∗ T ,
where T is the infinite cyclic group generated by the image of a suitable transvection
1 + τ ∈ SLn(Z) ⊆ SLn(R).

As an immediate consequence, we obtain

Corollary 1.4. Let R be a characteristic 0 integral domain and let G be a finite
subgroup of GLn(R) with G ∩ R• = 1. If n ≥ 2, then GLn(R) contains the free
product G∗T , where T is the infinite cyclic group generated by a suitable transvection
1 + τ ∈ SLn(Z) ⊆ SLn(R).

As is to be expected, the proof of Theorem 1.1 ultimately depends upon the
“ping-pong” lemma of F. Klein (see [H, Lemma II.24]). For convenience, we state
and quickly prove this result in precisely the form we require.

Lemma 1.5. Let Γ be a group generated by subgroups G and T , and let G contain
a normal subgroup ∆ of Γ. Suppose Γ acts on a set X and let P and Q be disjoint
nonempty subsets of X. If ∆Q ⊆ Q, (G \∆)P ⊆ Q, (T \ 1)Q ⊆ P , and |T | > 2,
then Γ/∆ ∼= (G/∆) ∗ T .

Proof. It suffices to show that no element γ ∈ ∆ can be written as a nonempty
alternating product of elements coming from G \ ∆ and T \ 1. Suppose by way
of contradiction that such a product γ = γ1γ2 · · · γn exists with n ≥ 1. If the
product starts and ends in G \ ∆, that is, if γ1, γn ∈ G \ ∆, then by conjugating
this expression by a nonidentity element of T , we obtain a similar expression, but
this time starting and ending in T \ 1. Next, if γ1 ∈ G \ ∆ and γn ∈ T \ 1, then
since |T | > 2, we can conjugate γ by an element of T \ {1, γ−1

n } to obtain a similar
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product but starting and ending in T \ 1. Since the same argument handles the
γ1 ∈ T \ 1, γn ∈ G \∆ situation, we can therefore replace any such expression by
one with γ1, γn ∈ T \ 1. But then, the alternating nature of the action of G\∆ and
T \ 1 on P and Q yields γQ ⊆ Q and γ1γ2 · · · γnQ ⊆ P , and this is a contradiction
since γ = γ1γ2 · · ·γn, and since P and Q are disjoint nonempty subsets of X . �

2. Proof of Theorem 1.1

The goal of this section is to prove Theorem 1.1 and its corollary. To start with,
we suppose that V is a finite-dimensional complex vector space and that G is a
subgroup of GL(V ) with |G : (G∩C•)| <∞. If H = C•G∩ SL(V ), then it is clear
that G ⊆ C•H and that |H : (H ∩ C•)| <∞. Furthermore, since H ∩ C• consists
of scalar operators of determinant 1, it follows that |H ∩C•| ≤ dimC V <∞. Thus
H is a finite group and, as is well known, there exists a Hermitian inner product
( , ) defined on V with H acting as unitary transformations. Indeed, if [ , ] is
any Hermitian inner product, then we merely define (a, b) =

∑
h∈H [ha, hb] for all

a, b ∈ V . Now fix any such inner product ( , ), let S = {v ∈ V | (v, v) = 1} be the
unit sphere in V , and define the real-valued distance function d : V • × V • → R by

d(a, b) =
∣∣∣∣ a|a| − b

|b|

∣∣∣∣ ≥ 0

for all nonzero vectors a, b ∈ V . Since d(a, b) ≤
∣∣a/|a|∣∣+

∣∣b/|b|∣∣ = 2, we see that V
has d-diameter at most 2. Indeed, the diameter is precisely 2 since d(a,−a) = 2.

Lemma 2.1. Let 0 6= a, b ∈ V .
(i) If λ ∈ C•, then d(λa, λb) = d(a, b).
(ii) If g ∈ G, then d(ga, gb) = d(a, b).
(iii) d(a, b) ≤ 2|a− b|/|a|.

Proof. Part (i) is clear and then (ii) follows since G ⊆ C•H and since H consists
of unitary transformations. For (iii), note that

v =
a

|a| −
b

|b| =
a− b
|a| −

b

|b| ·
|a| − |b|
|a| = v′ − v′′.

Since |v′| = |a− b|/|a| and |v′′| =
∣∣|a| − |b|∣∣/|a| ≤ |a− b|/|a|, it follows that

d(a, b) = |v| ≤ |v′|+ |v′′| ≤ 2|a− b|
|a| ,

as required. �

Now let A and B be subsets of V with A•, B• 6= ∅, where A• = A \ 0. Then we
define

d(A,B) = d(A•, B•) = inf {d(a, b) | a ∈ A•, b ∈ B•}.
We are particularly interested in subsets of V closed under multiplication by C•.
Since these correspond (except for a possible 0 element) to subsets of the projective
space of V , we call these projective subsets of V . Observe that if A is projective,
then {a/|a| | a ∈ A•} = A∩S and A• = C•(A∩S), where the latter is the set of all
products, not sums of products. Hence, for every subset B ⊆ V , we have d(A,B) =
d(A ∩ S,B). In particular, if B is also projective, then d(A,B) = d(A ∩ S,B ∩ S).
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Lemma 2.2. Let A,B ⊆ V with A•, B• 6= ∅.
(i) If λ ∈ C•, then d(λA, λB) = d(A,B). In particular, if B is projective, then

d(λA,B) = d(A,B), so d(C•A,B) = d(A,B).
(ii) If g ∈ G, then d(gA, gB) = d(A,B).
(iii) If A and B are subspaces of V , then d(A,B) = |a0−b0| for some a0 ∈ A∩S,

b0 ∈ B ∩ S. In particular, if A ∩B = 0, then d(A,B) > 0.

Proof. Parts (i) and (ii) are immediate from the corresponding parts of Lemma 2.1.
For (iii), we note that A and B are projective sets, so

d(A,B) = d(A ∩ S,B ∩ S) = inf {|a− b| | a ∈ A ∩ S, b ∈ B ∩ S}.
Thus the result follows since A ∩ S and B ∩ S are compact and since | | : V → R is
a continuous function. �

We now turn to the

Proof of Theorem 1.1. Recall that I = im τ , K = ker τ , and gI ∩ K = 0 for all
g ∈ G \ (G ∩ C•). We use the inner product and distance function as given above,
and we proceed in a series of steps.

Step 1. Notation and the definitions of ε, P and Q.

Proof. If g ∈ G \ (G ∩ C•), then gI ∩K = 0, so d(gI,K) > 0 by Lemma 2.2(iii).
Thus since C•I = I and |G : (G ∩ C•)| < ∞, we can choose a real number ε > 0
so that d(gI,K) ≥ 3ε for all elements g ∈ G not contained in G ∩ C•. Note that
ε ≤ 2/3 since V has diameter 2. Let

P = {v ∈ V • | d(v, I) < ε}.
Then P ⊇ I•, so P 6= ∅. Furthermore, since I is a projective set, it follows from
Lemma 2.2(i) that P is also a projective set.

If g ∈ G, then Lemma 2.2(ii) implies that

gP = {gv ∈ V • | d(v, I) < ε} = {w ∈ V • | d(w, gI) < ε},
and we define

Q =
⋃

g∈G\(G∩C•)
gP.

Then Q 6= ∅ and, by definition, we have
(
G \ (G ∩ C•)

)
P ⊆ Q. Note also that P

and Q are projective sets, so (G ∩C•)P ⊆ P and (G ∩C•)Q ⊆ Q. �

Step 2. d(K,Q) ≥ 2ε and hence P ∩Q = ∅.

Proof. We use the fact that K, Q and I are all projective sets. Let a ∈ K ∩ S
and b ∈ Q ∩ S. Then b ∈ gP ∩ S for some g ∈ G \ (G ∩ C•), so the definition of
gP implies that there exists c ∈ gI ∩ S with |b − c| = d(b, c) < ε. Now |a − c| =
d(a, c) ≥ d(K, gI) ≥ 3ε, so

|a− b|+ ε > |a− b|+ |b− c| ≥ |a− c| ≥ 3ε,

and therefore |a− b| > 2ε. Since d(K,Q) is the infimum of these values |a− b|, we
conclude that d(K,Q) ≥ 2ε.

Finally, τ2 = 0, so I ⊆ K and hence d(I,Q) ≥ d(K,Q) ≥ 2ε. In particular, if
v ∈ Q, then d(v, I) ≥ d(Q, I) ≥ 2ε > ε. Thus v /∈ P , and hence P ∩Q = ∅. �
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Step 3. There exists a real number r > 0 with the property that if λ ∈ C with
|λ| ≥ r, then (1 + λτ)Q ⊆ P .

Proof. Write V = K +̇Y , a direct sum of subspaces. Since K = ker τ and I = im τ ,
the restriction of τ to Y yields an invertible linear transformation σ : Y → I. Thus
σ−1 : I → Y and we let s−1 = ‖σ−1‖ be the norm of this map. In other words,
|σ−1z| ≤ s−1|z| for all z ∈ I. In particular, if y ∈ Y , then y = σ−1(τy), so
|y| ≤ s−1|τy| and |τy| ≥ s|y|. Set r = 3/(sε2) and note that rsε−1 = (3−ε)/ε > 2/ε
since 1 > ε > 0.

Now let v ∈ Q•, so d(v,K) ≥ d(Q,K) ≥ 2ε by Step 2, and write v = x + y ∈
K +̇Y = V with x ∈ K and y ∈ Y . If x = 0, then v = y, so |y| = |v| ≥ ε|v| since
1 > ε > 0. On the other hand, if x 6= 0, then, by Lemma 2.1(iii) with a = v and
b = x, we have 2|y|/|v| ≥ d(v, x) ≥ d(Q,K) ≥ 2ε, so again we obtain |y| ≥ ε|v|. In
other words, |y| ≥ ε|v| in all cases and hence y 6= 0. Now let λ ∈ C with |λ| ≥ r,
and note that 1+λτ is an invertible linear transformation on V with inverse 1−λτ .
Thus w = (1 + λτ)v 6= 0.

Since x ∈ K = ker τ , we have

w = (1 + λτ)v = v + λτv = v + λτ(x + y) = v + λτy

and λτy ∈ I. Furthermore, y 6= 0, so τy = σy 6= 0 and hence λτy 6= 0. Thus, by
Lemma 2.1(iii) again with a = w and b = λτy, we have

d(w, I) ≤ d(w, λτy) ≤ 2|v|/|w|.
Now |λτy| = |λ| |τy| ≥ |λ| s |y| ≥ |λ| sε |v|, so

|w| = |v + λτy| ≥ |λτy| − |v| ≥ (|λ| sε− 1)|v|.
Indeed, since |λ| ≥ r, we have |λ| sε − 1 ≥ rsε− 1 > 2/ε, and hence |w| > 2 |v|/ε.
Consequently, d(w, I) ≤ 2 |v|/|w| < ε and w ∈ P , as required. �

Step 4. Completion of the proof.

Proof. Let c ∈ C with |c| ≥ r, let t = 1 + cτ and write T = 〈t〉. Since tn = 1 +ncτ ,
we see that tn = 1 if and only if n = 0, and hence T is infinite cyclic. Furthermore,
if n 6= 0, then |nc| ≥ |c| ≥ r, so Step 3 implies that tnQ ⊆ P . In other words,
(T \ 1)Q ⊆ P . We also observed in Steps 1 and 2 that

(
G \ (G ∩ C•)

)
P ⊆ Q and

that P ∩ Q = ∅. In particular, since |T | > 2, we conclude from Lemma 1.5 that
〈G, T 〉/(G ∩ C•) ∼=

(
G/(G ∩ C•)

)
∗ T , and the theorem is proved. �

Next we show that the proof of Theorem 1.1 contains enough information to
compute specific bounds when τ has rank 1. For this, we first indicate how to
compute the distance between a nonzero vector and a subspace of the vector space.
Again, we assume that V is a finite-dimensional complex vector space having a
Hermitian inner product ( , ).

Lemma 2.3. Let 0 6= v ∈ V and let A be a nonzero subspace of V .
(i) If (v,A) = 0, then d(v,A)2 = 2.
(ii) If (v,A) 6= 0, write B = A∩v⊥, so that B is a subspace of A of codimension

1, and let A = Ca +̇B, where Ca = A ∩B⊥. Then

d(v,A)2 = 2
(

1− |(v, a)|
|v| |a|

)
.



42 D. S. PASSMAN

Proof. We can assume that |v| = 1.
(i) If (v,A) = 0 and x ∈ A ∩ S, then d(v, x)2 = |v − x|2 = |v|2 + |x|2 = 2 since v

and x are perpendicular.
(ii) We can clearly assume that |a| = 1. If x ∈ A with |x| = 1, then x = λa + b

with λ ∈ C, b ∈ B and with 1 = |x|2 = |λ|2 + |b|2. Next, we have

d(v, x)2 = |v − x|2 = |v|2 + |x|2 − (v, x) − (x, v)

= 2− (v, λa) − (λa, v) = 2− 2<e
(
λ(v, a)

)
.

This is clearly minimized when |λ| = 1 and when λ(v, a) is real and positive. Thus
λ = (v, a)/|(v, a)| and d(v,A)2 = 2− 2|(v, a)|. �

With this, we can prove

Lemma 2.4. Let v, α ∈ V \ 0 and let τ : V → V be the linear transformation given
by τ(x) = (x, α)v for all x ∈ V .

(i) If K = ker τ and 0 6= w ∈ V , then d(w,K) ≥ |(w,α)|/(|w| |α|).
(ii) ‖τ‖ = |α| |v|.

Proof. Since τ(x) = (x, α/|α|) |α|v, it suffices to assume that |α| = 1. Furthermore,
for part (i), we may assume that |w| = 1.

(i) If (w,K) = 0, then d(w,K) =
√

2 > |w||α| ≥ |(w,α)| by the first part of the
previous lemma. Thus we can suppose that (w,K) 6= 0, and we use the notation
of the second part above. Since K = α⊥, we see that B = α⊥ ∩w⊥, and note that
a = w− (w,α)α ∈ K. Moreover, (a,K) = (w,K) 6= 0, so a 6= 0, and it is clear that
a ⊥ B. Thus Lemma 2.3(ii) implies that d(w,K)2 = 2− 2|(w, a)|/|a|. Now

(w, a) = (w,w) − |(w,α)|2 = 1− |(w,α)|2,
and

|a|2 = |w|2 + |(w,α)|2 − 2|(w,α)|2 = 1− |(w,α)|2.
It therefore follows that

d(w,K)2 = 2− 2
√

1− |(w,α)|2 ≥ |(w,α)|2,
so d(w,K) ≥ |(w,α)|, as required.

(ii) Observe that V = Cα +̇K is an orthogonal direct sum of subspaces. In
particular, if x ∈ V \K, then x = λα+k for some 0 6= λ ∈ C and k ∈ K, and hence
|x|2 = |λ|2|α|2 + |k|2 = |λ|2 + |k|2. Furthermore, τ(x) = τ(λα) = λ(α, α)v = λv.
Thus

|τ(x)|
|x| =

|λ| |v|√
|λ|2 + |k|2

=
|v|√

1 + |k|2/|λ|2
≤ |v|,

and it is clear that ‖τ‖ = |v|. �

We close this section with the

Proof of Corollary 1.2. We follow the proof of Theorem 1.1 and use its notation.
Furthermore, since τ : V → V has rank 1 with 0 6= v ∈ I = im τ , we can assume
that τ(x) = (x, α)v for some fixed vector 0 6= α ∈ V . Of course, K = ker τ = α⊥.

Note that, by Lemma 2.2(i), we have d(gI,K) = d(Cgv,K) = d(gv,K) for any
g ∈ G. Furthermore, by Lemma 2.4(i), we have

d(gv,K) ≥ |(gv, α)|/(|gv| |α|) = |τ(gv)|/(|gv| |v| |α|).
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Thus, by definition, we can take ε to be

ε =
1
3

min
{
|τ(gv)|
|gv| |v| |α|

∣∣∣∣ g ∈ G \ (G ∩ C•)
}

=
m

3 |v| |α| ,

where m is the minimum value of |τ(gv)|/|gv| over all g ∈ G \ (G ∩ C•).
Next, observe that V = K +̇Cα and that τ restricted to Cα determines an

isomorphism σ : Cα → I given by λα 7→ λ|α|2v. Thus σ−1 : µv 7→ µα/|α|2 for all
µ ∈ C and hence s−1 = ‖σ−1‖ = 1/(|v| |α|). Finally, we set

r =
3
sε2

=
27 |v| |α|
m2

=
27 ‖τ‖
m2

,

by Lemma 2.4(ii). But r is the lower bound for the size of the complex numbers c
given by the proof of Theorem 1.1, so the result follows. �

3. Proof of Theorem 1.3

In this section, we quickly prove Theorem 1.3 and its corollary. Then we discuss
two examples of interest. We start with

Proposition 3.1. Let R be a subring of the complex numbers C and let G be
a subgroup of GLn(R) with |G : (G ∩ R•)| < ∞. If n ≥ 2, then there exists a
transvection 1 + τ ∈ SLn(Z) ⊆ SLn(R) such that

〈G, 1 + tτ〉/(G ∩R•) ∼=
(
G/(G ∩R•)

)
∗ 〈1 + tτ〉

for all sufficiently large t ∈ R (measured in C ).

Proof. Of course, GLn(R) ⊆ GLn(C), and we let GLn(C) act on the C-vector space
V ∼= Cn. Furthermore, let V ′ ∼= Qn embed naturally in V , where Q is the field
of rational numbers. For each g ∈ G \ (G ∩ R•), the eigenspaces for g in V , with
eigenvalues in C, are finitely many proper subspaces of V . Moreover, it is clear
that all group elements in the coset g(G∩R•) have the same eigenspaces, but with
possibly different eigenvalues. Thus since |G : (G ∩ R•)| < ∞, the eigenspaces
for all elements g ∈ G \ (G ∩ R•) constitute just finitely many proper subspaces
of V , say these are V1, V2, . . . , Vk. In particular, since CV ′ = V , the intersections
V ′i = Vi ∩ V ′ are finitely many proper Q-subspaces of V ′. Thus, since Q is an
infinite field, we have

⋃k
i=1 V

′
i 6= V ′, and hence we can choose v ∈ V ′ not in any of

these proper subspaces. It follows that gv /∈ Cv for all g ∈ G \ (G ∩ R•). Indeed,
since g(G∩R•)Cv = Cgv, we obtain just finitely many 1-dimensional subspaces of
V in this manner, and they are all distinct from Cv.

Note that the images of these lines in V/Cv determine finitely many subspaces
L1/Cv, L2/Cv, . . . , L`/Cv, with dimC Li = 2. Now consider the vector space dual
W of V , and let W ′ = {λ ∈ W | λ(V ′) ⊆ Q} be the rational subspace naturally
embedded in W . If W̃ = {λ ∈ W | λ(Cv) = 0}, then each W̃i = {λ ∈ W | λ(Li) =
0} is a proper subspace of W̃ , so it follows easily as above that there exists a linear
functional f ∈ W ′ with f(Cv) = 0, but with f(Cgv) 6= 0 for all g ∈ G \ (G ∩R•).
Now define τ : V → V by τ(x) = f(x)v for all x ∈ V . Obviously, τ has rank 1 with
image I = Cv and with ker τ = ker f = K of codimension 1 in V . Furthermore,
by the definitions of V ′ and W ′, τ corresponds to a matrix with entries in Q. In
particular, we can multiply τ by a nonzero element of Z to clear denominators.
This new τ corresponds to a Z-matrix, but with the same image I and kernel K
and, since f(v) = 0, we have I ⊆ K and hence τ2 = 0. On the other hand, since
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f(gv) 6= 0 and since I is 1-dimensional, we have gI ∩ K = Cgv ∩ K = 0 for all
g ∈ G \ (G ∩R•), and therefore Theorem 1.1 yields the result. �

Note that, in the above argument, if V ′i = Vi ∩ V ′ 6= 0 and if Vi is an eigenspace
for g ∈ G ⊆ GLn(R), then the corresponding eigenvalue is certainly contained in
F , the field of fractions of R. With Proposition 3.1 in hand, Theorem 1.3 is now
essentially obvious. There is just one small observation that needs to be made.

Proof of Theorem 1.3. Since G is finite, there exists a finitely generated subgroup
H of GLn(R) such that H/(H ∩R•) = G. We can now assume that R is generated
by the finitely many entries in the matrices representing these finitely many gener-
ators of H and in the matrices of their inverses. In other words, R is a countable
characteristic 0 domain, and hence it can be embedded in the complex numbers C.
By Proposition 3.1, there exists a transvection 1 + τ ∈ SLn(Z) ⊆ SLn(R) such that

〈H, 1 + tτ〉/(H ∩R•) ∼=
(
H/(H ∩R•)

)
∗ 〈1 + tτ〉 = G ∗ 〈1 + tτ〉

for all sufficiently large t ∈ R. Furthermore, note that 〈H, 1 + tτ〉 ∩ R• = H ∩R•.
Indeed, this is obvious if G = 1, and it is immediate when G 6= 1 since G ∗ 〈1 + tτ〉
has trivial center. This completes the proof. �

In a real sense, the final argument above using the center of the free product is
unnecessary. A close look at the proof of Theorem 1.1 shows that the ping-pong
lemma is applied to the action of the group 〈G, 1+cτ〉 on certain projective subsets
of V . Furthermore, the proof of that lemma not only shows that 〈G, 1+cτ〉/(G∩C•)
is a free product, but also that it acts faithfully when permuting the sets P and Q.
As a consequence, 〈G, 1 + cτ〉/(G∩C•) acts faithfully on the projective space of V .

Next, we have

Proof of Corollary 1.4. Let : GLn(R)→ PGLn(R) be the natural map. Since G is
finite, Theorem 1.3 implies that there exists a transvection 1+τ ∈ SLn(Z) ⊆ SLn(R)
such that 〈G, T 〉 ∼= G ∗ T , where T = 〈1 + τ〉. But G ∼= G and T ∼= T , so we have
〈G, T 〉 ∼= G ∗ T , as required. �

We close this paper by considering two examples of interest. The first one comes
from [GM].

Example 3.2. Let V be a complex vector space with basis {v0, v1, . . . , vn}, and let
G ⊆ GL(V ) be a subgroup of order n+ 1 that regularly permutes the basis vectors.
Suppose τ : V → V is defined by τ(vi) = aiv0 with a0 = 0, but with 0 6= ai ∈ C for
all i = 1, 2, . . . , n. Then 〈G, 1 + cτ〉 = G ∗ 〈1 + cτ〉 for all complex numbers c that
satisfy

|c| ≥
27
(
|a1|2 + |a2|2 + · · ·+ |an|2

)1/2
min {|a1|2, |a2|2, . . . , |an|2}

.

Proof. Let the Hermitian inner product ( , ) be defined on V so that {v0, v1, . . . , vn}
is an orthonormal basis. Then certainly G acts as unitary operators on V . Fur-
thermore, if we set α = a1v1 +a2v2 + · · ·+anvn, then τ(x) = (x, α)v0 for all x ∈ V .
Since G ∩ C• = 1, Corollary 1.2 implies that 〈G, 1 + cτ〉 = G ∗ 〈1 + cτ〉 if c is a
complex number with |c| ≥ 27‖τ‖/m2, where m = min {|τ(gv0)|/|gv0| | g ∈ G \ 1}.
By Lemma 2.4(ii), ‖τ‖ = |α| |v0| = (|a1|2 + |a2|2 + · · · + |an|2)1/2. Furthermore,
if g ∈ G \ 1, then gv0 = vi for some i 6= 0, and all such vi occur. Thus, since
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τ(gv0) = τ(vi) = aiv0, it follows that m = min {|ai| | i 6= 0} and, in particular, we
have m2 = min {|ai|2 | i 6= 0}. �

In a recent unpublished note, Dan Goldstein showed that if p is an odd prime
and ζ is a primitive complex pth root of unity, then SL2(Q[ζ + ζ−1]) contains the
free product G1 ∗G2 of two cyclic groups of order p. Our final example is motivated
by this result.

Example 3.3. Let p be an odd prime and let ζ be a complex primitive pth root
of unity. Let

g =
(

0 1
−1 ζ + ζ−1

)
and h =

(
−1 1
−1 1

)
be 2 × 2 matrices over the ring R = Z[ζ + ζ−1]. If r ∈ R with |r| ≥ p3/2, then
SL2(R) contains the free product G ∗ T , where G = 〈g〉 is cyclic of order p and
T = 〈1 + rh〉 is infinite cyclic.

Proof. We work in the larger ring Z[ζ]. If

` =
(

1 1
ζ−1 ζ

)
, then `−1g` =

(
ζ−1 0
0 ζ

)
and `−1h` = µ

(
1 −ζ
ζ−1 −1

)
,

where µ = (1−ζ)/(1+ζ). Thus, it suffices to assume that V has basis {v1, v2} with
gv1 = ζ−1v1 and gv2 = ζv2. Furthermore, if v = ζ1/2v1 + ζ−1/2v2, then h = µτ
where τ(v1) = v1 + ζ−1v2 = ζ−1/2v and τ(v2) = −(ζv1 + v2) = −ζ1/2v. Now
assume that ( , ) is an inner product on V with v1 and v2 orthonormal vectors.
Then g is a unitary operator on V and τ(x) = (x, α)v, where α = ζ1/2v1− ζ−1/2v2.
By Lemma 2.4(ii), ‖τ‖ = |α| |v| = 2, and τ(giv) = (giv, α)v = (ζ−i − ζi)v. Thus
|τ(giv)|/|giv| = |ζi − ζ−i| = |2=m(ζi)|, and hence

m = min
{
|τ(giv)|
|giv|

∣∣∣∣ i = 1, 2, . . . , p− 1
}

= 2 sin(π/p).

By Corollary 1.2, if c is a complex number with |c| ≥ 27 ‖τ‖/m2 = 27/(2 sin2(π/p)),
then 〈G, 1 + cτ〉 ∼= G ∗ 〈1 + cτ〉.

In particular, if r ∈ R with |rµ| ≥ 27/(2 sin2(π/p)), then 〈G, 1+rh〉 ∼= G∗〈1+rh〉.
Finally, observe that µ = (1− ζ)/(1 + ζ) = (ζ−1/2 − ζ1/2)/(ζ−1/2 + ζ1/2), so |µ| =
|=m(ζ1/2)|/|<e(ζ1/2)|. In particular, the smallest value for |µ| over all embeddings
of Z[ζ] in C is tan(π/p), and hence we need |r| ≥ (27 cos(π/p))/(2 sin3(π/p)).
Since the latter trigonometric expression is easily seen to be smaller than p3/2, the
condition |r| ≥ p3/2 guarantees that 〈G, 1 + rh〉 is a free product. �

Note that no nonidentity element of the subgroup G = 〈g〉 ⊆ SL2(R) can have
an eigenvalue in F = Q[ζ + ζ−1]. Thus, in view of the proof of Proposition 3.1 and
the remarks that follow it, we could take h in the above example to be any nonzero
Z-matrix of square 0. For instance, we could take h to be either of the matrix units
e1,2 or e2,1. Of course, the bound on r would necessarily change. Our choice of the
particular h in Example 3.3 is therefore somewhat random, but it does seem to be
more symmetrically placed with respect to the matrix g. Furthermore, the same h
can be used for p = 2 if we take g = diag(1,−1) ∈ GL2(Z).
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