
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 132, Number 1, Pages 47–58
S 0002-9939(03)07034-5
Article electronically published on May 22, 2003

CHARACTERIZATION OF CLIFFORD-VALUED HARDY SPACES
AND COMPENSATED COMPACTNESS

LIZHONG PENG AND JIMAN ZHAO

(Communicated by David R. Larson)

Abstract. In this paper, the general Clifford Rn,s-valued Hardy spaces and
conjugate Hardy spaces are characterized. In particular, each function in Rn-
valued Hardy space can be determined by half of its function components
through Riesz transform, and the explicit determining formulas are given. The
products of two functions in the Hardy space give six kinds of compensated
quantities, which correspond to six paracommutators, and their boundedness,
compactness and Schatten-von Neumann properties are given.

1. Introduction

Clifford-valued (Rn-valued) Hardy spaces have been the subject of many works,
in particular, by F. Sommen, F. Brackx, R. Delanghe, J. Ryan, T. Qian, M. Mitrea,
K. Gürlebeck, W. Sprößig, S. Bernstein, etc.; see [10], [11], [3], [9], [5], [4], [1], etc. In
this paper, we give the general Clifford-valued (Rn,s-valued) a new characterization.

To explain the Hardy space theory on the general Clifford algebras Rn,s, let us
go back to the classical Hardy space theory on the complex numbers C. Denote the
square-integrable complex-valued function space on the real line R by L2(R,C).
The classical Hardy space H2(R,C) is defined to be

H2(R,C) = {f ∈ L2(R,C) | F (x+ iy) = Py ∗ f(x),
∂F

∂z
= 0},

where Py ∗ f(x) is the Poisson integral of f(x). By Fourier theory it turns out to
be

H2(R,C) = {f + iHf | f ∈ L2(R,R)} = {f ∈ L2(R,C) | suppf̂ ⊂ [0,+∞)}.
In this space, each complex-valued function f + iHf is determined by its real

component. There is a decomposition L2(R,C) = H2(R,C)
⊕
H

2
(R,C), where

H
2
(R,C) is the conjugate Hardy space.
In this paper, we generalize these to the general Clifford algebras Rn,s and give

the characterizations of the general Clifford-valued Hardy spaces and conjugate
Hardy spaces. In particular, Rn-valued Hardy spaces are characterized, and each
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function in this kind of Hardy space is determined by half of its function components
through Riesz transform. Moreover, for those representations, the explicit formulas
are given. Comparing with the decomposition of square-integrable function space
on the real line R into the direct sum of Hardy space and conjugate Hardy space,
the square-integrable Clifford algebra-valued function spaces are decomposed into
the orthogonal sum of Clifford-valued Hardy and conjugate Hardy spaces.

In the classical case, taking two functions f = f0 + iHf0 and g = g0 + iHg0 ∈
H2(R,C), one has studied the product fg = f0g0 −Hf0Hg0 + i(f0Hg0 + Hf0g0);
both its real part and imaginary part have compensated compactness. They are
called compensated quantities. A one-to-one correspondence between paracommu-
tator Tb(A)f and compensated quantity QA(f, g) has been established in [8]. The
paracommutator was studied systematically by Janson, Peetre and Peng ([6], [7]).
For the special case, the corresponding relation is as follows: 〈fg, b〉 = 〈Hbf, g〉.
Therefore the BMO-boundedness, VMO-compactness and Schatten-von Neumann
properties of Hbf or fg can be read in theorems in [8]. In [13], [14], Zhijian Wu
studied the product of a left monogenic function and a right monogenic function. In
this paper, we shall consider the product of two left monogenic functions in Hardy
spaces. This gives a nature method to obtain some examples of compensated quan-
tities.

In §2 we give some preliminaries. In §3 we characterize the Hardy space
H(k)(Rn, Rn,s). By the characterization of Hardy space, we give some examples
of the compensated quantities and paracommutators arising from the product of
two functions in Hardy space.

2. Preliminaries

This section is an overview of some basic facts which are concerned with Clifford
algebras. We set up the general formalism which will be used in the sequel (cf. [2]).

Let V(n,s) (0 ≤ s ≤ n) be an n-dimensional (n ≥ 1) real linear space with
basis {e1, · · · , en}, and provided with a bilinear form (v, w), v, w ∈ V(n.s), such that
(ei, ej) = 0, i 6= j; (ei, ei) = 1, i = 1, · · · , s; and (ei, ei) = −1, i = s+ 1, · · · , n.

If v =
∑n

i=1 viei ∈ V(n,s), then the associated quadratic form reads

(v, v) =
s∑
i=1

v2
i −

n∑
i=s+1

v2
i .

Consider the 2n-dimensional real linear space C(V(n,s)) with basis

{eA = eh1,··· ,hr : A = (h1, · · · , hr) ∈ PN, 1 ≤ h1 < · · · < hr ≤ n}
where N stands for the set {1, · · · , n} and e∅ = e0.

Now a product on C(V(n,s)) is defined by

eAeB = (−1)n((A∩B)\S)(−1)p(A,B)eA4B

where S stands for the set {1, · · · , n}, n(A) = |A|,

p(A,B) =
∑
j∈B

p(A, j), p(A, j) = {i ∈ A : i > j}

and the sets A, B and A4B are ordered in the prescribed way. It is easy to check
that C(Vn,s) turned into a linear, associative, but non-commutative algebra over
R; it is called the universal Clifford algebra over V(n,s).
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In this paper, we use the real Clifford algebra Rn,s, which means that in Rn the
basis {e1, · · · , en} satisfies eiei = 1, i = 1, · · · , s, and eiei = −1, i = s + 1, · · · , n.
When s = 0, we simply set Rn,s = Rn.

If f is Lipschitz continuous, then at any point of differentiability x ∈ U (U is an
open subset of Rn+1) of f(x) =

∑
I fI(x)eI , we have

(Df)(x) =
∑
I

n∑
j=0

∂fI
∂xj

(x)ejeI , (fD)(x) =
∑
I

n∑
j=0

∂fI
∂xj

(x)eIej ,

Dkf = D(Dk−1)f, fDk = (fDk−1)D.

We shall call f left k-monogenic (right k-monogenic, or two-sided k-monogenic,
respectively) if Dkf = 0 (fDk = 0, or Dkf = fDk = 0, respectively); D is called
the Cauchy-Riemann operator.

3. Hardy space H(k)(Rn, Rn,s)

Definition 1. Let Rn,s be a real Clifford algebra. A Clifford module L2(Rn, Rn,s)
is defined to be

L2(Rn, Rn,s) = {f : Rn → Rn,s, f(x) =
∑
I

fI(x)eI |, fI ∈ L2(Rn, R), ∀I}.

The Hardy space H(k)(Rn, Rn,s) is defined to be

H(k)(Rn, Rn,s) = {f ∈ L2(Rn, Rn,s) | F (x0, x) = Px0 ∗ f(x), x0 > 0,

Dk−1F (x, x0) 6= 0, DkF (x0, x) = 0},
where k ∈ N , 0 ≤ s ≤ n, and Px0 is the Poisson kernel.

In these Hilbert spaces, the inner product is denoted by

(f, g) =
∫
Rn

∑
I

fI(x)gI(x)dx,

where, f(x), g(x) ∈ L2(Rn, Rn,s).
In detail, for arbitrary f(x) =

∑
I fI(x)eI ∈ H(1)(Rn, Rn,s), let

F (x0, x) = Px0 ∗ f(x) =
∑
I

(Px0 ∗ fI(x))eI

and

FI(x0, x) = Px0 ∗ fI(x), ∂jFI(x, x0) =
∂FI(x, x0)

∂xj
.

Then we have

F (x0, x) =
∑
I

FI(x0, x)eI , DF (x0, x) =
∑
I

n∑
j=0

∂jFIejeI .

The latter can be rewritten as

DF (x0, x) = (e0, e1, · · · , en, · · · , e(1,2,··· ,n))A(F0, F1, · · · , Fn, · · · , F(1,2,··· ,n))T ,

where e0, e1, · · · , en, · · · , e(1,2,··· ,n) is an ordered basis of Rn,s. It is arranged ac-
cording to I in lexicographical order. A is a 2n × 2n matrix uniquely determined
when the order of this basis is set.
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Example 1. H(1)(R2, R2,1) = {f ∈ L2(R2, R2,1) | F (x0, x) = Px0 ∗ f(x), x0 >
0, DF (x0, x) = 0}, DF = (e0, e1, e2, e12)A(F0, F1, F2, F12)T , where

A =


∂0 ∂1 −∂2 0

∂1 ∂0 0 ∂2

∂2 0 ∂0 ∂1

0 −∂2 ∂1 ∂0

 .

3.1. Characterization of H(k)(Rn, Rn,s).

Theorem 1. In the Hardy space H(1)(Rn, Rn) = {f ∈ L2(Rn, Rn) | F (x0, x) =
Px0 ∗ f(x), x0 > 0, Dk−1F (x0, x) 6= 0, DF (x0, x) = 0}, each function f =

∑
I fIeI

is determined by its 2n−1 linearly independent function components. Explicitly for
Ω = {A = (h1, · · · , hr) ∈ PN, 1 ≤ h1 < · · · < hr ≤ n}, denote Λ = {A =
(h1, h2, · · · , h2k+1), 1 ≤ h1 < · · · < h2k+1 ≤ n} when n = 2m, k = 0, 1, · · · ,m− 1,
when n = 2m+ 1, k = 0, 1, · · · ,m. Then each fJ can be represented by the Riesz
transforms of all fK; fK can also be represented by the Riesz transforms of all fJ ,
where J ∈ Λ,K ∈ Ω \ Λ.

Proof. For convenience, we consider DF in its Fourier transform

D̂F (x0, ξ) =
∑
I

n∑
j=0

∂̂jFI(x0, ξ)ejeI .

Since ∂̂0FI(x0, ξ) = −|ξ|F̂I(x0, ξ), ∂̂jFI(x0, ξ) = iξjF̂I(x0, ξ), j = 1, 2, · · · , n, for
all I, then

D̂F (x0, ξ) =
∑
I

(−|ξ|F̂Ie0 +
n∑
j=1

iξjF̂Iej)eI

= (e0, e1, · · · , eI , · · · , e(1,2,··· ,n))B(F̂0, F̂1, · · · , F̂I , · · · , F̂(1,2,··· ,n))T .

(1)

1) Let us prove that B is a Hermitian matrix. Denote

B = (u0, u1, · · · , uI , · · · , u(1,2,··· ,n))T = (v0, v1, · · · , vI , · · · , v(1,2,··· ,n)),

where u0, u1, · · · , uI , · · · , u(1,2,··· ,n) are the rows of B, and v0, v1, · · · , vI , · · · ,
v(1,2,··· ,n) are the columns of B.

Let

−→u0 = −|ξ|e0 −
n∑
j=1

iξjej ,
−→uI = −→u0eI ,

−→w0 = −|ξ|e0 +
n∑
j=1

iξjej ,
−→wI = −→w0eI ,

for all I.
We will prove that uI are the coordinates of −→uI with respect to the basis {e0, e1,

· · · , e(1,2,··· ,n)}, and vI are the transpose of wI . Here wI are the coordinates of −→wI
with respect to the basis, I = (0), (1), · · · , (1, 2, · · · , n).

In fact, let λ = (F̂0, F̂1, · · · , F̂I , · · · , F̂(1,2,··· ,n))T . From (1), we have

D̂F = (e0, e1, · · · , e(1,2,··· ,n))(u0λ, u1λ, · · · , uIλ, · · · , u(1,2,··· ,n)λ)T .

Obviously, uIλ = uI(F̂0, F̂1, · · · , F̂I , · · · , F̂(1,2,··· ,n))T is the coefficient of eI in D̂F ,
for each I.
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On the other hand, for each j = 1, 2, · · · , n, there is a unique Ij satisfying
ejeIj = (−1)IjeI .

From (1), the eI component in D̂F is

−|ξ|F̂IeI +
n∑
j=1

iξjF̂IjejeIj = (−|ξ|F̂I +
n∑
j=1

(−1)Ij iξjF̂Ij )eI ,

so

(2) uIλ = −|ξ|F̂I +
n∑
j=1

(−1)Ij iξjF̂Ij

and

−→uI = −|ξ|e0eI −
n∑
j=1

iξjejeI

= −|ξ|e0eI −
n∑
j=1

(−1)Ij+1iξjeIj = −|ξ|eI +
n∑
j=1

(−1)Ij iξjeIj .

(3)

From (2) and (3), we obtain that uI is the component of −→uI with respect to the
basis ∀I.

Now to prove that vI is the transpose of wI , i.e. to prove

(e0, e1, · · · , e(1,2,··· ,n))vI = −→wJ .

Let λ = (0, 0, · · · , f̂ , · · · , 0)T be the vector in R2n with all zeros except for an f̂

(f̂ ∈ L2(Rn, R)) in the Ith entry. From (1), we have

(−|ξ|e0eI +
n∑
j=1

iξjejeI)f̂ = (e0, e1, · · · , eI , · · · , e(1,2,··· ,n))vI f̂ .

This is −→wI = (e0, e1, · · · , eI , · · · , e(1,2,··· ,n)vI , so the transpose of wI is precisely vI .
These cases and

(4)

−→uI = −|ξ|e0eI +
n∑
j=1

(−1)Ij iξjeIj ,

−→wI = −|ξ|e1eI −
n∑
j=1

(−1)Ij iξjeIj

show that uI is the conjugate transpose of vI for each I. So B
T

= B, i.e. B is a
Hermitian matrix.

2) Let us prove BB = −2|ξ|B. By the properties of Fourier transform, we know
that the Cauchy-Riemann operator D corresponds to the operator D̂ = −|ξ| +∑n
j=1 iξjej , and the latter corresponds to B, so we get

(5) BB = −2|ξ|B.

3) We are going to prove that rB = 2n−1. From (5), we get

(B + 2|ξ|E2n)B = −BTB = 0,
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i.e. BBT = BTB = 0. Therefore, −2|ξ| and 0 are eigenvalues of B. Denote
by V0, V−2|ξ| the eigenspace of B associated with 0,−2|ξ|, respectively; V ′0 is the
eigenspace of BT associated with 0. Then

(6) dimV−2|ξ| = dimV ′0 ≥ rB .
Applying the Plus Nullity Theorem, we get

(7) rB + dimV0 = 2n

and
rBT + dimV ′0 = 2n.

Threfore
dimV0 = dimV ′0 = dimV−2|ξ|.

Since B is a hermitian matrix, B can be diagonalized. If B has other eigenvalues
different from −2|ξ| and 0, let d be the sum of the dimensions of their eigenspaces.
Then

dimV−2|ξ| + dimV0 + d = 2n.

Together with (6) and (7), we have

2n = dimV−2|ξ| + dimV0 + d ≥ 2n + d > 2n,

which is a contradiction. So the eigenvalues of B are −2|ξ| and 0, and we get

dimV−2|ξ| = rB .

Thus from dimV−2|ξ| = dimV ′0 and (7), we know rB = 2n−1. Therefore each f can
be determined by 2n−1 of its function components.

In fact, the rows uJ are the maximum linearly independent in all rows of B,
where

J ∈ Λ = {A = (h1, h2, · · · , h2k+1), 1 ≤ h1 < · · · < h2k+1 ≤ n}.
This can be deduced from −→uJ = −|ξ|eJ −

∑n
j=1 iξjejeJ .

If ∑
J∈Λ

aJuJ = 0,

there must be an aJ = 0. Hence the uJ are linearly independent and, together with
rB = 2n−1, we know all the rows of B can be determined by these uJ .

On the other hand, for each j = 1, · · · , n, there is a Jj ∈ Ω \ Λ, which uniquely
satisfies ejeJ = (−1)JjJj , so

−→uJ = −|ξ|eJ −
n∑
j=1

(−1)Jj iξjeJj .

Solving the equations uJ(F̂0, F̂1, · · · , ̂F(1,··· ,n))T = 0, we get

fJ(x) = −
n∑
j=1

(−1)JjRjfJj ,

where J ∈ Λ, i.e. each fJ can be represented by the Riesz transforms of all fK ,
where J ∈ Λ, K ∈ Ω \Λ. Similarly, fK can be represented by the Riesz transforms
of all fJ . The proof is finished. �
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Remark. From the proof of the above theorem, we can write each function f ∈
H(1)(Rn, Rn) as follows:

1) When n is even,

(8)

f =
∑
I

fIeI

= (f0 +R1f0e1 +R2f0e2 + · · ·+Rnfnen)
+(f12 +R1f12e1 +R2f12e2 + · · ·+Rnf12en)e12 + · · ·
+(fn−1,n +R1fn−1,ne1 +R2fn−1,ne2 + · · ·+Rnfn−1,nen)en−1,n + · · ·
+(f12···n +R1f12···ne1 +R2f12···ne2 + · · ·+Rnf12···nen)e12···n.

2) When n is odd,

(9)

f =
∑
I

fIeI

= (f0 +R1f0e1 +R2f0e2 + · · ·+Rnfnen)
+(f12 +R1f12e1 +R2f12e2 + · · ·+Rnf12en)e12 + · · ·
+(fn−1,n +R1fn−1,ne1 +R2fn−1,ne2 + · · ·+Rnfn−1,nen)en−1,n + · · ·
+(f2···n +R1f2···ne1 +R2f2···ne2 + · · ·+Rnf2···nen)e2···n.

In fact, we can represent the function by using other function components.

Example 2. The Hardy space H(1)(R1, R1) = {f ∈ L2(R1, R1) | F (x0, x) =
Px0 ∗ f(x), x0 > 0, DF (x0, x) = 0} is exactly the classical Hardy space. For each
f ∈ H(1)(R1, R1), it can be represented by the Hilbert transform (when n = 1, there
is only one Riesz transform, namely the Hilbert transform) of one of its function
components.

Example 3. For each f ∈ H(1)(R3, R3),

D̂F (x0, ξ)

= (e0, e1, e2, e3, e(1,2), e(1,3), e(2,3), e(1,2,3))

B(F̂0, F̂1, F̂2, F̂3, F̂(1,2), F̂(1,3), F̂(2,3), F̂(1,2,3))T ,

where

B =



u0

u1

u2

u3

u(1,2)

u(1,3)

u(2,3)

u(1,2,3)



=



−|ξ| −iξ1 −iξ2 −iξ3 0 0 0 0

iξ1 −|ξ| 0 0 iξ2 iξ3 0 0

iξ2 0 −|ξ| 0 −iξ1 0 iξ3 0

iξ3 0 0 −|ξ| 0 −iξ1 −iξ2 0

0 −iξ2 iξ1 0 −|ξ| 0 0 −iξ3
0 −iξ3 0 iξ1 0 −|ξ| 0 iξ2

0 0 −iξ3 iξ2 0 0 −|ξ| −iξ1
0 0 0 0 iξ3 −iξ2 iξ1 −|ξ|



.
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By using Theorem 1,

f1(x) = R1f0(x) +R2f(1,2)(x) +R3f(1,3)(x),

f2(x) = R2f0(x) −R1f(1,2)(x) +R3f(2,3)(x),

f3(x) = R3f0(x) −R1f(1,3)(x)−R2f(2,3)(x),

f(1,2,3)(x) = R3f(1,2)(x)−R2f(1,3)(x) +R1f(2,3)(x).

In fact, f0, f(1,2), f(1,3), f(2,3) can be represented by the Riesz transform of other
function components.

Corollary 1. In the Hardy space H(k)(Rn, Rn) = {f(x) ∈ L2(Rn, Rn)|F (x0, x) =
Px0 ∗ f(x), x0 > 0, Dk−1F (x0, x) 6= 0, DkF (x0, x) = 0}, each f is determined by
2n−1 linearly independent function components.

Proof. Let F (x0, x) =
∑

I FI(x0, x)eI and DF (x0, x) =
∑

I

∑n
j=0 ∂jFIejeI . For

convenience, we consider DF in its Fourier transform. Using the formula

D̂F (x0, ξ) = (e0, e1, · · · , eI , · · · , e(1,2,··· ,n))B(F̂0, F̂1, · · · , F̂I , · · · , F̂(1,2,··· ,n))T

k times, we obtain

D̂kF (xo, ξ) = (e0, e1, · · · , eI , · · · , e(1,2,··· ,n))Bk(F̂0, F̂1, · · · , F̂I , · · · , F̂(1,2,··· ,n))T .

Now we prove rBk = rB = 2n−1. From Theorem 1, we know BB = −2|ξ|B.
Therefore

Bk = −2|ξ|Bk−1 = (−2|ξ|)2Bk−2 = · · · = (−2|ξ|)k−1B.

Then rBk = 2n−1. This ends the proof. �

Theorem 2. H(1)(Rn, Rn,n) = {0}.

Proof. For convenience, we still consider DF in its Fourier transform. Denote B =
(u0, u1, · · ·uI , · · · , u(12···n))T = (v0, v1, · · · , vI , · · · , v(1,2,··· ,n)). Let −→u0 = −|ξ|e0 +∑n
j=1 iξjej ,

−→uI = −→u0eI , and −→w0 = −|ξ|e0 +
∑n
j=1 iξjej ,

−→wI = −→w0eI , for all I.
As in Theorem 1, we can prove that uI are the coordinates of −→uI with respect to

the basis {e0, e1, · · · , e(1,2,··· ,n)}, and vI are the transpose of wI . Here wI are the
coordinates of −→wI with respect to the basis, I = (0), (1), · · · , (1, 2, · · · , n). Then we
get

1) B is a symmetric matrix.
2) BB = 2|ξ|2E2n .

The method to prove this is similar to Theorem 1.
Therefore rB = 2n, i.e. F (x0, x) = 0. Thus H(1)(Rn, Rn,n) = {0}. �

Corollary 2.

H(k)(Rn, Rn,n) = {0}, k ∈ N.

More generally, we have the following theorem.

Theorem 3. For each f ∈ H(1)(Rn, Rn,s) = {f ∈ L2(Rn, Rn,s) | F = Px0 ∗f, x0 >
0, DF (x0, x) = 0}, if

∑s
j=1 x

2
j 6= 0, then f = 0; otherwise, f can be determined by

2n−1 linearly independent function components.
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Proof. We consider DF in its Fourier transform. Denote

B = (u0, u1, · · · , uI , · · · , u(12···n))T = (v0, v1, · · · , vI , · · · , v(1,2,··· ,n)).

Using a method similar to that in Theorem 1, we get BB = 2
∑s
j=1 ξ

2
jE2n . If∑s

j=1 ξ
2
j 6= 0, then rB = 2n. Therefore f = 0. If

∑s
j=1 ξ

2
j = 0, then B is a hermitian

matrix. Using Theorem 1, we have rB = 2n−1. Therefore f is determined by 2n−1

linearly independent function coefficients. �

Corollary 3. For each f ∈ H(k)(Rn, Rn,s) = {f ∈ L2(Rn, Rn,s) | F = Px0 ∗f, x0 >
0, Dk−1F (x0, x) 6= 0, DkF (x0, x) = 0}, if

∑s
j=1 x

2
j 6= 0, then f = 0; otherwise, f

can be determined by 2n−1 linearly independent function components.

Similarly, we denote the conjugate Hardy space H
(k)

(Rn, Rn,s) by

H
(k)

(Rn, Rn,s) = {f ∈ L2(Rn, Rn,s) | F (x0, x) = Px0 ∗ f(x),

x0 > 0, D
k−1

F (x0, x) 6= 0, D
k
F = 0},

where k ∈ N , 0 ≤ s ≤ n.
From the above theorems, we have

Corollary 4. In the conjugate Hardy space H
(k)

(Rn, Rn) = {f(x) ∈ L2(Rn, Rn) |
F (x0, x) = Px0 ∗ f(x), x0 > 0, D

k−1
F (x0, x) 6= 0 D

k
F (x0, x) = 0}, each f is

determined by 2n−1 linearly independent function components.

Corollary 5. H
(k)

(Rn, Rn,n) = {0}.

F. Sommen proved a decomposition of L2(Rn, Rn) first in [12]. The inner product
he used was Clifford algebra-valued. Here we can get the orthogonal decomposition
of L2(Rn, Rn) by using our characterization of Hardy space and conjugate Hardy
space:

L2(Rn, Rn) = H(1)(Rn, Rn)⊕H(1)
(Rn, Rn).

Now we give a natural method to obtain some compensated quantities. For each
f, g ∈ H(1)(Rn, Rn), for convenience, we assume n is an even number. By using
(8), in the product fg, we have

Rf0RgIeI

= (f0 +R1f0e1 +R2f0e2 + · · ·+Rnf0en)

· (gI +R1gIe1 +R2gIe2 + · · ·+RngIen)eI

= [(f0gI −
n∑
j=1

Rjf0RjgI) + · · ·+
n∑

j,k=1,j<k

(Rjf0RkgI −Rkf0RjgI)ejk]eI
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and

RfIeIRgJeJ

= (fI +R1fIe1 +R2fIe2 + · · ·+ RnfIen)eI
· (gJ +R1gJe1 +R2gJe2 + · · ·+RngJen)eJ

= (fI +R1fIe1 +R2fIe2 + · · ·+ RnfIen)

· (gJ −
∑
j∈I

RjgJej +
∑
j /∈I

RjgJej)eIeJ

= [(fIgJ +
∑
j∈I

RjfIRjgJ −
∑
j /∈I

RjfIRjgJ)

+
∑
j∈I

(gJRjfI − fIRjgJ)ej

+
∑
k/∈I

(gJRkfI + fIRkgJ)ek

+
∑

j∈I,k/∈I,j<k
(RjfIRkgJ +RkfIRjgJ)ejk

+
∑

k,j /∈I,j<k
(RjfIRkgJ −RkfIRjgJ)ejk

−
∑

j,k∈I,j<k
(RjfIRkgJ −RkfIRjgJ)ejk]eIeJ ,

where I ∈ Ω \ Λ, I 6= {0}.
If we denote

Q0(u, v) = uv −
n∑
j=1

RjuRjv,Qj(u, v) = uRjv −Rjuv,

Qj,k(u, v) = RjuRkv −RkuRjv,

P0(u, v) = uv +
∑
j∈I

RjuRjv −
∑
k/∈I

RkuRkv, Pj(u, v) = Rjuv − uR1v,

Pj,k(u, v) = RjuRkv +RkuRjv,

where j, k = 1, · · · , n, j < k, for real-valued functions u, v ∈ L2(Rn), then in the
product fg, there are six kinds of components as above.

For a real-valued symbol function b, write

〈Qj(u, v), b〉 = 〈Hj
bu, v〉, 〈Pj(u, v), b〉 = 〈T jb u, g〉,where j = 0, 1, · · · , n,

〈Qj,k(u, v), b〉 = 〈Hj,k
b u, v〉, 〈Pj,k(u, v), b〉 = 〈T j,kb u, v〉,

where, j, k =, 1, 2, · · · , n, j < k.
Denote the corresponding Fourier kernels of Hj

b by Aj(ξ, η), and the Fourier
kernels of Hj,k

b by Aj,k(ξ, η). Then we obtain

A0(ξ, η) = 1− ξ · η
|ξ||η| =

1
2

(
ξ

|ξ| −
η

|η| )
2, Aj(ξ, η) = −i( ξj|ξ| −

ηj
|η| ),
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where j = 1, · · · , n,

Aj,k(ξ, η) =
ηjξk − ηkξj
|ξ||η| , j, k = 1, · · · , n, j < k.

Similarly, denote the corresponding Fourier kernels of T jb , T
j,k
b by Bj(ξ, η), j =

0, 1, · · · , n, and Bj,k(ξ, η), respectively. Then

B0(ξ, η) = 1 +
∑
j∈I

ξjηj
|ξ||η| −

∑
k/∈I

ξkηk
|ξ||η| , Bj(ξ, η) = i(

ξj
|ξ| +

ηj
|η| ), j = 1, · · · , n,

Bj,k(ξ, η) =
ηjξk + ηkξj
|ξ||η| , j, k = 1, · · · , n, j < k.

Therefore we have six kinds of kernels: A0; Aj , j = 1, · · · , n; Aj,k, j, k = 1, · · · , n,
j < k; B0; Bj , j = 1, · · · , n; and Bj,k, j, k = 1, · · · , n, j < k.

Using theorems in [8], we get 〈Q0(u, v), b〉 is a compensated quantity which
belongs to the real Hardy space H1(R2), and its corresponding paracommutator is
bounded if and only if b ∈ BMO(R2). It is compact if and only if b ∈ VMO(R2);
for 2

2 = 1 < p < ∞, it belongs to Sp if and only if b ∈ Bp(R2); for 0 < p ≤ 2
2 = 1,

it belongs to Sp if and only if b is a polynomial.
〈Qj(u, v), b〉, j = 1, · · · , n, are compensated quantities which belong to the real

Hardy space H1(R2), and their corresponding paracommutators are bounded if
and only if b ∈ BMO(R2). They are compact if and only if b ∈ VMO(R2); for
2 < p <∞, they belong to Sp if and only if b ∈ Bp(R2); for 0 < p ≤ 2, they belong
to Sp if and only if b is a polynomial.

Similarly Qj,k, j, k = 1, · · · , n, j < k, have the same properties. The quantities
Pj(u, v), j = 0, 1, · · · , n, Pj,k(u, v), j, k = 1, · · · , nj < k, are not compensated,
they belong to L1(R2) only. Their corresponding paracommutators are bounded iff
b ∈ L∞(R2), and can never be compact unless b ≡ 0.
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