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ON THE SECOND EIGENVALUE OF THE LAPLACE
OPERATOR ON A SPHERICAL BAND
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(Communicated by Carmen C. Chicone)

Abstract. In this paper we prove that the second eigenvalue of the Laplacian
for a spherical band on the unit sphere S2 has multiplicity 2. We also show
that among all spherical bands of given fixed area less than 2π the second
eigenvalue is maximized at the band which is symmetrical with respect to the
equator.

1. Introduction

On the unit sphere S2, if we introduce the Euler coordinate

x = sinφ cos θ, y = sinφ sin θ, z = cosφ,
0 ≤ φ ≤ π, 0 ≤ θ < 2π,

then the Laplace operator ∆S2 on S2 can be written as

(1.1) ∆S2u(φ, θ) =
1

sinφ
[
∂

∂φ
(sin φ

∂u

∂φ
) +

∂

∂θ
(

1
sinφ

∂u

∂θ
)](θ, φ).

For 0 < φ1 < φ2 ≤ π, the set

B(φ1, φ2) = {(x, y, z) ∈ S2 : φ1 ≤ φ ≤ φ2}
shall be called a spherical band in S2. For B = B(φ1, φ2), consider the following
problem:

(1.2) ∆S2u+ λu = 0, u = 0 on ∂B.
Let {λn(B)}∞n=1 denote the set of eigenvalues of (1.2), which are arranged in as-
cending order as

λ1(B) < λ2(B) ≤ · · · .
The multiplicity of λn(B) is the dimension of the space of eigenfunctions of (1.2)
corresponding to λn(B). In [7] we proved that, among all bands B of given area,
λ1(B) attains its maximum when B is symmetric with respect to the equator. More
precisely, we proved that λ1(B) is decreasing as B moves from the equatorially
symmetric band towards a pole. In this paper we prove that the multiplicity of
λ2(B) is two for any band, and that among all bands of given fixed area smaller
than 2π the function λ2(B) attains its maximum at the band which is symmetric
with respect to the equator.
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2. The multiplicity of the second eigenvalue

of a spherical band

Employing the technique of separation of variables in (1.2) by letting u(φ, θ) =
v(φ)w(θ) we separate (1.2) into two equations,

v′′(φ) + cotφv′(φ) + (λ− c2

sin2 φ
)v(φ) = 0, v(φ1) = v(φ2) = 0,(2.1)

w′′(θ) + c2w(θ) = 0, w(j)(0) = w(j)(2π) = 0, j = 0, 1.(2.2)

Note that the eigenvalues of the periodic eigenvalue problem (2.2) are of the form
c2n = n2, n = 0, 1, · · · ; 0 is a simple eigenvalue of (2.2), for n > 0 the multiplicity
of n2 is two. If we denote the kth eigenvalue and the corresponding eigenfunction
of the Dirichlet eigenvalue of (2.1) by λk(c) and vk(φ; c), respectively, then the
spectrum of (1.1) consists of λk(n), where k = 1, 2, · · · and n = 0, 1, 2, · · · . Note
that λ1 = λ1(0), which is a simple eigenvalue, and the eigenfunctions corresponding
to λk(n) are linear combinations of vk(φ;n) cosnθ and vk(φ;n) sinnθ. To determine
the multiplicity of an eigenvalue λ∗ of (1.1) it is sufficient to find how many k’s and
n’s are such that λk(n) = λ∗. This problem is in general difficult to deal with, but
for the second eigenvalue of (1.1) the problem is much simpler. Indeed, Courant’s
nodal domain theorem tells us that the second eigenfunction of (1.1) has two nodal
domains. On the other hand, among the eigenfunctions of (1.1) constructed above,
only v2(φ; 0), v1(φ; 1) cos θ and v1(φ; 1) sin θ have two nodal domains. Thus if we
know the smallest between λ2(0) and λ1(1), then we can determine the multiplicity
of λ2. The following theorem answers this question.

Theorem 2.1. λ2(B) = λ1(1). The multiplicity of the second eigenvalue of (1.1)
is two.

Proof. To prove our assertion it is sufficient to prove that λ1(1) < λ2(0). Since
λ2(0) is the second eigenvalue of the eigenvalue problem

(2.3) v′′(φ) + cotφv′(φ) + λv(φ) = 0, v(φ1) = v(φ2) = 0,

by the classical Sturm-Liouville theory, v2(φ; 0) have only one nodal point in (φ1, φ2).
Let φ3 be the nodal point of v2(φ; 0). Then there exist ξ, η such that φ1 < ξ < φ3 <
η < φ2, and v2

′(ξ; 0) = v2
′(η; 0) = 0. Denote f(φ) = v2

′(φ; 0). If we differentiate
the equation in (2.3) with respect to φ, we find that

f ′′(φ) + cotφf ′(φ) + (λ2(0)− 1
sin2 φ

)f(φ) = 0, f(ξ) = f(η) = 0,

i.e., λ2(0) is an eigenvalue of the problem

(2.4) f ′′(φ) + cotφf ′(φ) + (λ− 1
sin2 φ

)f(φ) = 0, f(ξ) = f(η) = 0.

Note that λ1(1) is the first eigenvalue of the problem

(2.5) v′′(x) + cotφv′(φ) + (λ− 1
sin2 φ

)v(φ) = 0, v(φ1) = v(φ2) = 0.

Since (ξ, η) is a proper subinterval of (φ1, φ2), the first eigenvalue of (2.5) is strictly
less than that of (2.4). Hence λ1(1) < λ2(0). This completes the proof. �
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Following Theorem 2.1 we find that the nodal set of a second eigenfunction of
a spherical band consists of two longitudes which separate the spherical band into
two equal parts.

3. The extremal problem for λ2(B)

In this section, we prove the following theorem

Theorem 3.1. Let 0 < A < 1, and let B0 be the spherical band symmetric with
respect to the equator and with area 2πA. Then, for all bands B with given area
2πA we have

λ2(B) ≤ λ2(B0).

Before proving the theorem, we need some preliminary observations and results.
Note that λ2(B) coincides with the first eigenvalue of the problem

(3.1)
d

ds
{(4s− s2)f

′
(s)} + (ν − 4

4s− s2
)f(s) = 0, f(s1) = f(s2) = 0

which is obtained from (2.5) via change of variables

s = 2(1− cosφ), s1 = 2(1− cosφ1), s2 = 2(1− cosφ2).

If A < 2 is fixed and 2π(s2 − s1) = 2πA is the area of the band, then the last
problem is equivalent to

(3.2)

{
d
ds{(4(s+ s1)− (s+ s1)2)f

′
(s)} + (ν − 4

4(s+s1)−(s+s1)2 )f(s) = 0,
f(0) = f(2A) = 0,

simply by replacing s with s1 + s.
Let ν1(s1) = λ2(B), which is the first eigenvalue of the above problem. Let

H0 = W 1,2
0 (0, 2A), and define for f ∈ H0

R(s1; f) =
∫ 2A

0

(4(s+ s1)− (s+ s1)2)(f
′
(s))2 ds+

∫ 2A

0

4f2(s)
4(s+ s1)− (s+ s1)2

ds.

By the classical Rayleigh-Ritz variational principle (see [1])

(3.3) ν1(s1) = inf
f∈H0

R(s1; f)∫ 2A

0
f2(s) ds

.

Lemma 3.1. Given 0 < A < 1, then for all s1 ≥ 0 with 2A + s1 < 2, if f is a
C2−function defined in [0, 2A], which is symmetric with respect to s = A and such
that f(0) = f(2A) = 0 and f(x) is not identically zero for all x ∈ (0, 2A), we have

(3.4)

∫ 2A

0 (4− 2(s+ s1))(f
′
(s))2 dx∫ 2A

0

(1− 2(s+s1)
4 )f2(s)

(s+s1)2(1− s+s14 )2
ds

> 4

∫ A
0 (f

′
(s))2 ds∫A

0
f2(s)

(s+s1)2(1− s+s14 )2 ds
.

Proof. Since (f
′
(s))2 is symmetric with respect to s = A on [0, 2A], we have∫ 2A

0

(4 − 2(s+ s1))(f
′
(s))2 ds(3.5)

=
∫ A

0

(4− 2(s+ s1))(f
′
(s))2 ds+

∫ A

0

(4 − 2(2A− s+ s1))(f
′
(s))2 ds

= 4[2− (A+ s1)]
∫ A

0

(f
′
(s))2 ds.
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On the other hand, for 0 < s < A, 2A+ s1 < 2, we have

(3.6) (s+ s1)(1 − s+ s1

4
) = 1− (s+ s1 − 2)2

4
< 1− (2A− s+ s1 − 2)2

4
.

Thus if we denote
Gs1(s) = (s+ s1)(1 − s+ s1

4
),

then we have, for 0 < s < A,

(3.7) Gs1(s) < Gs1(2A− s),
where s1 satisfies the condition 2A < 2A+ s1 < 2. Now if f(s) is an even function
in [0, 2A], using (3.7) we have∫ 2A

0

(1− 2(s+s1)
4 )f2(s)

(s+ s1)2(1− s+s1
4 )2

ds(3.8)

=
∫ A

0

(1− 2(s+s1)
4 )f2(s)

(s+ s1)2(1− s+s1
4 )2

ds+
∫ A

0

(1− 2(2A−s+s1)
4 )f2(s)

(2A− s+ s1)2(1 − 2A−s+s1
4 )2

ds

<

∫ A

0

[(1 − 2(s+s1)
4 ) + (1 − 2(2A−s+s1)

4 )]f2(s)
(s+ s1)2(1− s+s1

4 )2
ds

=
∫ A

0

([2− (A+ s1)]f2(s)
(s+ s1)2(1− s+s1

4 )2
ds.

(3.4) follows immediately from (3.5) and (3.8). �
Lemma 3.2. Given 0 < A < 1, and s1 ≥ 0 with 0 < 2A+s1 < 2, let f(x) ∈ C2[0, A]
with f(0) = f

′
(A) = 0 and f(x) is not identically zero. Then

(3.9)
∫ A

0

(f
′
(s))2 ds ≥ 1

4

∫ A

0

f2(s)
(s+ s1)2(1− s+s1

4 )2
ds.

“=” could possibly hold only when s1 = 0.

Proof. At first we treat only the case for s1 > 0. For the case s1 = 0, inequality
follows simply from the s1 > 0 inequality by letting s1 → 0. Let η1 denote the first
eigenvalue of the problem

(3.10) w
′′
(s) + η

1
s2(1− s

4 )2
w(s) = 0, w(s1) = w

′
(s1 +A) = 0.

To prove our assertion for s1 > 0 it is sufficient to prove that η1 > 1/4. If the
following transformations are made

z =
1
K

∫ s

s1

(
1
s

+
1

4− s ) ds, u = (
1
s

+
1

4− s )1/2w,

ρ = K2η, K =
1
π

∫ s1+A

s1

(
1
s

+
1

4− s) ds,

(3.10) can be transformed into

(3.11) u
′′
(z) + [ρ− q(z)]u(z) = 0, u(0) = u

′
(π) = 0,

where q(z) = θ
′′
(z)/θ(z), and θ(z) = (1

s+ 1
4−s)1/2. By a direct calculation we obtain

q(z) = K2

4 , so that the first eigenvalue of (3.11) is ρ1 = 1/4 +K2/4. Hence we have
η1 = 1

4 + 1
4K2 > 1/4, since η1 = ρ1/K

2. �
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Remark. Inequality (3.9) belongs to a class of general Wirtinger-type inequalities
studied in [2]. In fact, if we take p(x) = η1/[s2(1− s

4 )2], then the equation

y
′′
(x) + p(x)y(x) = 0, s1 ≤ x ≤ s1 +A

possesses a positive solution y1(x) with y1(s1) = 0, y
′

1(s1) > 0, since η1 is the
first eigenvalue of (3.10) and the corresponding eigenfunction never vanishes in
(s1, s1 +A). Inequality (3.9) follows from Theorem 1.1 in [2].

Now, let us go into the proof of our main theorem.

Proof of Theorem 3.1. It is enough to show that the first eigenvalue ν1(s1) of (3.2)
attains its maximum at s1 = 2−A. Let (ν(s1), f1(s1; s)) denote the first normalized
eigenpair of (3.2) with f1(s1; s) > 0 in (0, 2A). Taking f(s) ∈ H0, we then have

∂R(s1; f)
∂s1

=
∫ 2A

0

[4− 2(s+ s1)](f
′
(s))2 ds−

∫ 2A

0

(1 − s+s1
2 )f2(s)

(s+ s1)2(1− s+s1
4 )2

ds(3.12)

=
∫ 2A

0

[4− 2(s+ s1)](f
′
(s))2 ds−

∫ 2A

0

f2(s)
(s+ s1)2

ds

+
∫ 2A

0

f2(s)
[4− (s+ s1)]2

ds,

(3.13)
∂2R(s1; f)

∂s2
1

= −2
∫ 2A

0

(f
′
(s))2 ds+

∫ 2A

0

2f2(s)
(s+ s1)3

ds+
∫ 2A

0

2f2(s)
[4− (s+ s1)]3

ds,

and

(3.14)
∂3R(s1; f)

∂s3
1

= −6
∫ 2A

0

f2(s)
(s+ s1)4

ds+ 6
∫ 2A

0

f2(s)
[(4 − (s+ s1)]4

ds.

Notice that for the case s1 = 2 − A in (3.2), the corresponding spherical band is
symmetric with respect to the equator, hence the corresponding first eigenfunction
f1(2 −A; s) is symmetric with respect to s = A. Hence

∂3R(s1; f1(2 −A; s))
∂s3

1

= −6
∫ 2A

0

f2
1 (2−A; s)
(s+ s1)4

ds+ 6
∫ 2A

0

f2
1 (2−A; s)

[(s+ (4− 2A− s1)]4
ds.

Since 0 < s1 < 2−A, we have s1 < 4− 2A− s1, which implies that
1

(s+ s1)4
>

1
[s+ (4− 2A− s1)]4

for all s in [0, 2A]. Hence for 0 < s1 < 2−A,

(3.15)
∂3R

∂s3
1

(s1; f1(2 −A; s)) < 0.

Also notice that, as

∂R

∂s1
(2−A, f1(2−A; s)) =

∫ 2A

0

(2A− 2s)(f
′

1(2−A; s))2 ds,

(f
′

1(2 − A; s))2 is symmetric with respect to s = A on [0, 2A] and 2A− 2s is anti-
symmetric with respect s = A on [0, 2A], we have

(3.16)
∂R

∂s1
(2−A, f1(2−A; s)) = 0.
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Moreover, by Lemmas 3.1 and 3.2 and (3.15), we have that

(3.17)
∂R

∂s1
(s1, f1(2−A; s)) > 0, for 0 < s1 < 2− 2A.

Hence, we have that ∂R(s1;f1(2−A;s))
∂s1

is concave, ∂R(0+;f1(2−A;s))
∂s1

≥ 0 and
∂R(2−A;f1(2−A;s))

∂s1
= 0, so

(3.18)
∂R

∂s1
(s1, f1(2 −A; s)) > 0, for 0 < s1 < 2−A.

Therefore, for 0 ≤ s1 < 2−A,
(3.19) ν1(2−A) = R(2−A, f1(2 −A; s)) ≥ R(s1, f1(2−A; s)) > ν1(s1).

This completes the proof. �

We believe that Lemmas 3.1 and 3.2, and hence Theorem 3.1, can be extended
to the case 0 < A < 2. We also conjecture that λ2 is monotonic in s1. We will prove
the monotonicity of λ2 for the flat 2-dimensional case in the following section.

4. Monotonicity of the second Dirichlet eigenvalue

on a flat 2-dimensional annulus of given area

Let A1 and A2 be two fixed positive constants, A1 < A2 and A(A1, A2) denote
the annulus 2A1 ≤ x2 + y2 ≤ 2A2 in R2. We denote 2πA as the area of A(A1, A2)
and {λn(A1)} as the eigenvalues of the problem

(4.1) ∆u+ λu = 0 on A(A1, A2), u|∂A(A1,A2) = 0,

which is arranged in ascending order. Then by the same arguments as that in
Theorem 2.1, we can show that the second eigenvalue of (4.1) is equal to the first
eigenvalue ν1 of the problem

(4.2) z
′′
(r) +

1
r
z
′
(r) + (ν − 1

r2
)z(r) = 0, z(γ1) = z(γ2) = 0,

where γj = (2Aj)1/2. Following the theory of Bessel functions (see [3, ch. 9] or [6]),
we see that λ2(A1) = ν1 is the first zero of

F(λ) = Y1(
√
λγ1)J1(

√
λγ2)− Y1(

√
λγ2)J1(

√
λγ1),

where J1(x) and Y1(x) denote the first and second kinds of Bessel functions of order
1, respectively. So if we know how the zeros of F(λ) varies as A1 changes, we can
know how λ2(A1) changes as A1 tends to infinity. However, the investigation for
the zeros of F(λ) is a little bit complicated, so we avoid this approach. Note that
(4.2) can be transformed into

(4.3)
d

ds
(4sw

′
(s)) + (ν − 1

s
)w(s) = 0, w(s1) = w(s2) = 0

via the change of variables

s = r2, sj = γ2
j = 2Aj, j = 1, 2.

For convenience, we simply replace s with s1 + s to get

(4.4)
d

ds
(4(s1 + s)w

′
(s)) + (ν − 1

s1 + s
)w(s) = 0, w(0) = w(2A) = 0.
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Then we have

Theorem 4.1. Given a positive constant A > 0, let 0 < A1 < A2 be two positive
numbers with A(A1, A2) = 2πA, where A(A1, A2) is as that defined in section 2.
Denote λ2(A1) to be the second eigenvalue of

(4.5)

{
∆u+ λu = 0 on A(A1, A2),
u|∂A(A1,A2) = 0.

Then, as a function of A1, λ2(A1) is monotonically increasing. Moreover

lim
A1→∞

λ2(A1) =∞.

Proof. Let 2Aj = sj , j = 1, 2, and let w(s) be the normalized eigenfunction corre-
sponding to the first eigenvalue ν1(s1) = λ2(A1) of (4.4). Then

ν(s1) =
∫ 2A

0

4(s+ s1)[w
′
(s)]2 ds+

∫ 2A

0

[w(s)]2

s+ s1
ds.

Define the functional

K(s1;w) =
∫ 2A

0

4(s+ s1)[w
′
(s)]2 ds+

∫ 2A

0

[w(s)]2

s+ s1
ds.

Then by the following inequality due to Hardy and Littlewood ([4], Thm. 253)∫ ∞
0

4(f
′
(x))2 dx >

∫ ∞
0

f2(x)
x2

dx

for all f with f
′ ∈ L2 and f(0) = 0, we have

∂K(s1;w)
∂s1

=
∫ 2A

0

4[w
′
(s)]2 ds−

∫ 2A

0

w(s)2

(s+ s1)2
ds > 0.

Hence, for s̃ < s1,

ν1(s̃) < K(s̃;w) < K(s1;w) = ν1(s1),

i.e., λ2(A1) = ν1(s1) is monotonically increasing.
Next, let us compute the limit of λ2(A1). For s1 very large and f ∈ W 1,2

0 (0, 2A)
with

∫ 2A

0
f2ds = 1, we have

4s1

∫ 2A

0

[w
′
(s)]2 ds ≤

∫ 2A

0

4(s+ s1)[w
′
(s)]2 ds+

∫ 2A

0

[w(s)]2

s+ s1
ds.(4.6)

Taking the infimum at both sides, we have lim
A1→∞

λ2(A1) =∞. �
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