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Abstract. We consider HV = ∆M + V , where (M, g) is a Riemannian man-
ifold (not necessarily complete), and ∆M is the scalar Laplacian on M . We

assume that V = V0 +V1, where V0 ∈ L2
loc(M) and −C ≤ V1 ∈ L1

loc(M) (C is
a constant) are real-valued, and ∆M + V0 is semibounded below on C∞c (M).
Let T0 be the Friedrichs extension of (∆M + V0)|C∞c (M). We prove that the

form sum T0+̃V1 coincides with the self-adjoint operator TF associated to the
closure of the restriction to C∞c (M) × C∞c (M) of the sum of two closed qua-
dratic forms of T0 and V1. This is an extension of a result of Cycon. The proof
adopts the scheme of Cycon, but requires the use of a more general version of
Kato’s inequality for operators on Riemannian manifolds.

1. Introduction and the main result

Let (M, g) be a Riemannian manifold (i.e. M is a C∞-manifold, (gjk) is a
Riemannian metric on M), dimM = n. We will assume that M is connected. We
will also assume that we are given a positive smooth measure dµ, i.e. in any local
coordinates x1, x2, . . . , xn there exists a strictly positive C∞-density ρ(x) such that
dµ = ρ(x)dx1dx2 . . . dxn. We do not assume that (M, g) is complete.

We will consider a Schrödinger-type operator of the form

HV = ∆M + V.

Here ∆M := d∗d, where d : C∞(M)→ Ω1(M), and V ∈ L1
loc(M) is real-valued.

1.1. Maximal operator. We define the maximal operator HV,max associated to
HV as an operator in L2(M) given by HV,maxu = HV u with domain

(1.1) Dom(HV,max) = {u ∈ L2(M) : V u ∈ L1
loc(M), HV u ∈ L2(M)}.

Here ∆Mu in HV u = ∆Mu+ V u is understood in the distributional sense.
We make the following assumptions on V .

Assumption A. Assume V = V0 + V1, where
(i) V0 ∈ L2

loc(M) and ∆M + V0 is semibounded below on C∞c (M).
(ii) V1 ∈ L1

loc(M) and V1 ≥ −C, where C > 0 is a constant.
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1.2. Quadratic forms. For any self-adjoint operator T : Dom(T ) ⊂ L2(M) →
L2(M) such that T ≥ −α, we will denote by Q(T ) the domain of the quadratic
form t associated to T . By Theorem 2.1 in [3], t is a closed semibounded below
form, i.e. Q(T ) is a Hilbert space with the inner product

(1.2) (u, v)t = t(u, v) + (1 + α)(u, v)L2(M),

where t(·, ·) is the sesquilinear form obtained by polarization of t.

1.3. Form sum. By (i) of Assumption A, ∆M +V0 is symmetric and semibounded
below on C∞c (M), so we can associate to it a semibounded below self-adjoint op-
erator T0 (Friedrichs extension, cf. Theorem 14.1 in [3]).

We will denote by T0+̃V1 the form sum of T0 and V1. By Theorem 4.1 in [3], this is
the self-adjoint operator associated to the semibounded below closed quadratic form
tq given by the sum of two semibounded below closed quadratic forms corresponding
to T0 and V1. By the same theorem, the following is true: Q(T0+̃V1) = Q(T0) ∩
Q(V1). Clearly, T0+̃V1 is a self-adjoint restriction of HV,max.

1.4. Operator TF . Denote by tmin the restriction of tq to C∞c (M) × C∞c (M).
Denote by TF the self-adjoint operator associated to the closure of tmin in the sense
of the norm in Q(T0+̃V1). Clearly, TF is a self-adjoint restriction of HV,max.

We will give a sufficient condition for TF = T0+̃V1.

Theorem 1.5. Suppose that Assumption A holds. Then TF = T0+̃V1.

Remark 1.6. Theorem 1.5 was proven by Cycon [2] in the case of the operator
−∆ + V in an open set M ⊂ Rn, where ∆ is the standard Laplacian on Rn with
the standard metric. In the case V0 = 0 and M = Rn with standard metric, Theo-
rem 1.5 was proven in Simon [13].

2. Operators with a positive form core

Definition 2.1. Let T : C∞c (M) ⊂ L2(M)→ L2(M) be a symmetric semibounded
below operator. Let TF denote its Friedrichs extension and Q(TF )+ the set of a.e.
positive elements of Q(TF ). We say that TF has a positive form core if for every
u ∈ Q(TF )+ there exists a sequence uk ∈ C∞c (M)+ such that

‖uk − u‖t → 0 as k→∞,
where ‖·‖t is the norm associated to the closure of quadratic form t(v, w) := (Tv,w)
(v, w ∈ C∞c (M)) via (1.2).

The main result of this section is

Theorem 2.2. Suppose that ∆M + V0 is as in (i) of Assumption A. Let T0 be the
Friedrichs extension of (∆M + V0)|C∞c (M). Then T0 has a positive form core.

Remark 2.3. In the case of the operator −∆ + V0 in an open set M ⊂ Rn, Theo-
rem 2.2 was proven in [2, Th. 1].

We will first prove the following special case of Theorem 2.2

Proposition 2.4. Suppose that −C ≤ V0 ∈ L2
loc(M), where C > 0 is a constant.

Let Tb be the Friedrichs extension of (∆M + V0)|C∞c (M). Then Tb has a positive
form core.
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We begin with a few preliminary lemmas.
In what follows Tb is as in the hypothesis of Proposition 2.4, and tb is the closed

quadratic form associated with Tb. Without loss of generality, we may and we will
assume that V0 ≥ 0 so that Tb is a positive self-adjoint operator.

We will denote W 1,2(M) := {u ∈ L2(M) : du ∈ L2(T ∗M)}. By W 1,2
0 (M) we

will denote the closure of C∞c (M) in the norm ‖u‖2W 1,2 := ‖du‖2 +‖u‖2, where ‖ · ‖
is the L2 norm. By Q(V0) we will denote the set {u ∈ L2(M) : V 1/2

0 u ∈ L2(M)}.
Clearly, Q(V0) is the closure of C∞c (M) in the norm

(2.1) ‖u‖2V0
:= ‖V 1/2

0 u‖2 + ‖u‖2,

where ‖ · ‖ is the norm in L2(M).
In the proofs of the following three lemmas, we will use the arguments from the

proof of Lemma 1 in [5].

Lemma 2.5. Q(Tb) = W 1,2
0 (M) ∩Q(V0).

Proof. Denote by H1 := W 1,2
0 (M) ∩Q(V0). Consider a sesquilinear form S : H1 ×

H1 → C given by
S(u, v) := (du, dv) + (V 1/2

0 u, V
1/2
0 v),

where (·, ·) is the inner product in L2.
This sesquilinear form is closed, so the pre-Hilbert space H1 is complete in the

norm

(2.2) (u, v)tb := (du, dv) + (V 1/2
0 u, V

1/2
0 v) + (u, v).

By definition of W 1,2
0 (M) and Q(V0), it follows that H1 is the closure of C∞c (M)

in the norm ‖ · ‖tb corresponding to (2.2).
For all u, v ∈ C∞c (M), (u, v)tb = (u, v) + (Tbu, v). By Theorem 14.1 in [3], Q(Tb)

is the closure of C∞c (M) in the norm ‖ · ‖tb corresponding to (2.2), so Q(Tb) =
W 1,2

0 (M) ∩Q(V0). �

Lemma 2.6. Assume that u ∈ C∞c (M). Then there exists a sequence φk ∈
C∞c (M)+ such that ‖φk − |u|‖tb → 0 as k → ∞, where ‖ · ‖tb is the norm cor-
responding to (2.2).

Proof. Let u ∈ C∞c (M). Then |u| ∈ W 1,2
comp(M). Using a partition of unity we may

assume that u is supported in a coordinate neighborhood. Let |u|ρ = Jρ|u|, where
Jρ is the Friedrichs mollifying operator; cf. Sect. 5.11 in [1]. Then |u|ρ ∈ C∞c (M).
It is well-known that |u|ρ → |u| as ρ → 0+ both in the space W 1,2

comp(M) and in
the space L2

comp(M). Also, since |u| is continuous compactly supported on M and
V0 ∈ L2

loc(M), we have

(2.3)
∫
V0(|u|ρ)2 dµ→

∫
V0|u|2 dµ as ρ→ 0 + .

Therefore,

(2.4) ‖|u|ρ − |u|‖tb → 0 as ρ→ 0+,

where ‖ · ‖tb is the norm corresponding to (2.2). �

Lemma 2.7. Suppose that u ∈ Q(Tb). Then |u| ∈ Q(Tb).
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Proof. Let u ∈ Q(Tb). By Lemma 2.5, we get u ∈ W 1,2
0 (M) ∩ Q(V0). Since

u ∈ W 1,2
0 (M), Lemma 7.6 from [4] gives |u| ∈ W 1,2

0 (M). From u ∈ Q(V0), we
immediately get |u| ∈ Q(V0). Therefore, |u| ∈W 1,2

0 (M)∩Q(V0), so by Lemma 2.5,
we obtain |u| ∈ Q(Tb). �

2.8. Proof of Proposition 2.4. We will follow the proof of Lemma 2 in [2].
Suppose that u ∈ Q(Tb)+. By Lemma 2.5, there exists a sequence φj ∈ C∞c (M)

such that

(2.5) ‖φj − u‖tb → 0 as j →∞,
where ‖ · ‖tb is the norm corresponding to (2.2).

In what follows, we will denote (signw)(x) := w(x)
|w(x)| when w(x) 6= 0, and 0

otherwise.
We have

(2.6) ‖|φj | − u‖2tb = ‖|φj | − u‖2 + ‖d|φj | − du‖2 + ‖V 1/2
0 (|φj | − u)‖2

≤ ‖φj − u‖2 + ‖d|φj | − du‖2 + ‖V 1/2
0 (φj − u)‖2

= ‖φj − u‖2 + ‖Re((sign φ̄j)dφj)− du‖2 + ‖V 1/2
0 (φj − u)‖2,

where ‖ · ‖ denotes the norm L2.
From (2.6) we obtain

‖|φj | − u‖2tb ≤ ‖φj − u‖
2 + [‖(sign φ̄j)(dφj − du)‖+ ‖(sign φ̄j − 1)du‖]2

+ ‖V 1/2
0 (φj − u)‖2

≤ ‖φj − u‖2 + [‖dφj − du‖+ ‖(sign φ̄j − 1)du‖]2 + ‖V 1/2
0 (φj − u)‖2,

(2.7)

where ‖ · ‖ denotes the norm in L2.
By (2.5), the first, second and fourth term on the right-hand side of (2.7) go to

0 as j →∞.
It remains to show that

(2.8) ‖(sign φ̄j − 1)du‖ → 0 as j →∞.
Since φj → u in L2(M), a lemma of Riesz shows that there exists a subsequence

φjk such that φjk → u a.e. dµ, as k → ∞. By Lemma 7.7 from [4], it follows that
du = 0 almost everywhere on {x ∈M : u(x) = 0}. Hence, as k →∞, sign φ̄jk → 1
a.e. on M . Since du ∈ L2(T ∗M), dominated convergence theorem immediately
implies (2.8) (after passing to the chosen subsequence φjk).

This shows that

(2.9) ‖|φjk | − u‖tb → 0 as k →∞.
By (2.9) and Lemma 2.6, there exists a sequence ψl in C∞c (M)+ such that

‖ψl − u‖tb → 0 as l → ∞. By Definition 2.1 it follows that Tb has a positive form
core. �

In what follows, we will use a version of Kato’s inequality. For the proof of this
inequality in general setting, cf. Theorem 5.6 in [1].

Theorem 2.9. Let E be a Hermitian vector bundle on M , and let ∇ : C∞(E) →
C∞(T ∗M⊗E) be a Hermitian connection on E. Let ∇∗ : C∞(T ∗M⊗E)→ C∞(E)
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be formal adjoint of ∇ with respect to the usual inner product on L2(E). Assume
that u ∈ L1

loc(E) and ∇∗∇u ∈ L1
loc(E). Then

(2.10) ∆M |u| ≤ Re〈∇∗∇u, signu〉,

where

signu(x) =

{
u(x)
|u(x)| if u(x) 6= 0,

0 otherwise.

Definition 2.10. Let (X,µ) be a measure space. A bounded linear operator
A : L2(X,µ) → L2(X,µ) is said to be positivity preserving if for every 0 ≤ u ∈
L2(X,µ) we have Au ≥ 0.

We will also use the following abstract theorem due to Simon; cf. Theorem 2.1
in [11].

Theorem 2.11 (Simon [11]). Suppose that (X,µ) is a measure space. Suppose
that H is a positive self-adjoint operator in L2(X,µ). Then (H + 1)−1 is positivity
preserving if and only if the following two conditions are satisfied :

(i) For every u ∈ Q(H), we have |u| ∈ Q(H).
(ii) For every u ∈ Dom(H) and 0 ≤ v ∈ Q(H), the following is true:

Re[h(|u|, v)] ≤ Re((signu)v,Hu),

where h is the quadratic form associated to H, and (signu)(x) = u(x)
|u|

whenever u(x) 6= 0, and 0 otherwise.

The following lemma extends Lemma 1 from [5] to the case of Riemannian man-
ifolds.

Lemma 2.12. The operator (Tb + 1)−1 is positivity preserving.

Proof. Let tb be the quadratic form associated to Tb. By Theorem 2.11, it suffices
to check the following conditions:

(i) For every u ∈ Q(Tb), we have |u| ∈ Q(Tb) and
(ii) For every u ∈ Dom(Tb) and 0 ≤ v ∈ Q(Tb), the following is true:

Re[tb(|u|, v)] ≤ Re((signu)v, Tbu).

Condition (i) follows immediately by Lemma 2.7.
We now prove that condition (ii) holds. Let u ∈ Dom(Tb). Then (∆M + V0)u

∈ L2(M) and hence ∆Mu ∈ L1
loc(M).

For u ∈ Dom(Tb) and 0 ≤ φ ∈ C∞c (M) we have

Re[tb(|u|, φ)] = Re(|u|, (∆M + V0)φ) = (|u|,∆Mφ) + (|u|, V0φ)

= (∆M |u|, φ) + (V0|u|, φ)

≤ Re((sign ū)∆Mu, φ) + ((sign ū)V0u, φ)

= Re((sign ū)Tbu, φ) = Re((signu)φ, Tbu).

(2.11)

Here we used integration by parts and the special case of Kato inequality (2.10) for
∆M .

Let 0 ≤ v ∈ Q(Tb). By Proposition 2.4, there exists a sequence φj ∈ C∞c (M)+

such that ‖φj−v‖tb → 0 as j →∞, where ‖·‖tb is the norm corresponding to (2.2).
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From (2.11), we obtain

Re[tb(|u|, v)] = lim
j→∞

Re[tb(|u|, φj)] ≤ lim
j→∞

Re((signu)φj , Tbu) = Re((signu)v, Tbu).

This proves condition (ii) and the lemma. �

In what follows T0 is as in the hypothesis of Theorem 2.2. Without loss of
generality we may and we will assume that T0 is a positive self-adjoint operator.

We will also use the notation Z+ := {1, 2, 3, . . .}.

Proposition 2.13. (T0 + 1)−1 is positivity preserving.

Proof. We will adopt the arguments from the proof of Lemma 2 in [5] to our setting.
For every k ∈ Z+ and x ∈M , define

Qk(x) =

{
V0(x) if V0(x) ≥ −k ,
−k if V0(x) < −k.

Let Tk be the Friedrichs extension of (∆M +Qk)|C∞c (M). Then for all k ∈ Z+

and u ∈ C∞c (M), we have

(2.12) (u, Tku) ≥ (u, T0u) ≥ 0,

where (·, ·) is the inner product in L2(M).
From (2.12) it follows that

(2.13) T0 ≤ Tk for all k ∈ Z+,

i.e. Q(Tk) ⊂ Q(T0), and for all u ∈ Q(Tk), t0(u, u) ≤ tk(u, u), where t0 and tk are
the quadratic forms associated to T0 and Tk, respectively.

Furthermore, for all u ∈ C∞c (M), the following is true:

(2.14) (u, Tku)→ (u, T0u) as k →∞.
Clearly, C∞c (M) ⊂ Q(Tk) for all k ∈ Z+. By definition of Friedrichs extension,

it follows that C∞c (M) is dense in Q(T0) (in the norm of Q(T0)).
This, (2.13) and (2.14) show that the hypotheses of abstract Theorem 7.9 from [3]

are satisfied.
Therefore, as k→∞, Tk → T0 in the strong resolvent sense.
By Lemma 2.12, (Tk + 1)−1 is positivity preserving for all k ∈ Z+. Therefore,

(T0 + 1)−1 is also positivity preserving. �

Corollary 2.14. Assume that u ∈ Q(T0). Then |u| ∈ Q(T0).

Proof. T0 is a positive self-adjoint operator in L2(M). By Proposition 2.13, the
operator (T0 + 1)−1 is positivity preserving. Now the corollary follows immediately
from Theorem 2.11. �

2.15. Truncation operators corresponding to T0. Let T0 be as in the hypoth-
esis of Theorem 2.2.

Define V +
0 := max{V0, 0}, V −0 := max{−V0, 0}, and for each k ∈ Z+, let V k0 :=

min{k, V −0 }.
Denote by T+ and Tk the Friedrichs extension of (∆M + V +

0 )|C∞c (M) and
(∆M + V +

0 − V k0 )|C∞c (M), respectively.
Let t0, t+ and tk (k ∈ Z+) be the quadratic forms associated to T0, T+ and Tk,

respectively.
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The following lemma is analogous to Lemma 3 in [2].

Lemma 2.16. With the notations of Section 2.15,
(i) Tk → T0 in the strong resolvent sense as k →∞.
(ii) Q(T+) ⊂ Q(T0).

Proof. For all k ∈ Z+, we clearly have T0 ≤ Tk. Also, C∞c (M) ⊂ Q(Tk) for all
k ∈ Z+. By definition of T0 it follows that C∞c (M) is dense in Q(T0) (in the norm
of Q(T0)).

Clearly, for all w ∈ C∞c (M),

(w, Tkw)→ (w, T0w) as k →∞.
We now apply Theorem 7.9 in [3] to conclude the proof of (i).

Property (ii) follows immediately since T+ ≥ T0. �

2.17. Proof of Theorem 2.2. We will adopt the arguments from the proof of
Theorem 1 in [2].

By the proof of Lemma 2.16 it follows that

(2.15) Q(T+) ⊂ Q(Tk) ⊂ Q(T0)

and

(2.16) ‖ · ‖t0 ≤ ‖ · ‖tk ≤ ‖ · ‖t+ ,
where ‖·‖t0 , ‖·‖tk and ‖·‖t+ are the norms associated to t0, tk and t+, respectively;
cf. (1.2).

In fact, Q(Tk) = Q(T+) since the norms ‖ ·‖tk and ‖ ·‖t+ are equivalent, because
V +

0 − V k0 and V +
0 differ by a bounded function.

By Proposition 2.4, T+ has a positive form core, i.e. for every u ∈ Q(T+)+ there
exists a sequence φj ∈ C∞c (M)+ such that ‖φj − u‖t+ → 0 as j →∞. By (2.16) it
follows that

‖φj − u‖t0 → 0 as j →∞.
To prove the theorem, it remains to show that for every w ∈ Q(T0)+, there exists

a sequence wj ∈ Q(T+)+ such that

(2.17) ‖wj − w‖t0 → 0 as j →∞.
Let w ∈ Q(T0)+. For every k, l ∈ Z+ define

wl :=
(

1
l
T0 + 1

)−1

w

and

wkl :=
(

1
l
Tk + 1

)−1

w.

This makes sense since 0 ≤ T0 ≤ Tk are self-adjoint operators.
By Lemma 2.12, the operator (Tk + 1)−1 is positivity preserving. Hence wkl ∈

Dom(Tk)+ ⊂ Q(Tk)+ = Q(T+)+.
Since the operators (T0 + 1)1/2 and (T0/l + 1)−1 commute, we have

(2.18) ‖wl − w‖t0 =

∥∥∥∥∥
((

1
l
T0 + 1

)−1

− 1

)
(T0 + 1)1/2w

∥∥∥∥∥ ,
where ‖ · ‖ denotes L2(M) norm.
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Clearly, (
1
l
T0 + 1

)−1

→ 1 strongly as l→∞.

This and (2.18) show that

(2.19) ‖wl − w‖t0 → 0 as l→∞.
Fix l ∈ Z+. For each k ∈ Z+, let t0 + l and tk + l denote the quadratic forms

corresponding to (positive self-adjoint) operators T0 + l and Tk + l, respectively.
Let ‖ · ‖t0+l and ‖ · ‖tk+l denote the norms in Q(T0 + l) and Q(Tk + l), respectively;
cf. (1.2). The corresponding inner products will be denoted by (·, ·)t0+l and (·, ·)tk+l.

Using (2.15), (2.16) and the Cauchy-Schwarz inequality we have for all w ∈
Q(T0)+

(2.20) ‖(Tk + l)−1w − (T0 + l)−1w‖2t0+l

= ‖(Tk + l)−1w‖2t0+l + ‖(T0 + l)−1w‖2t0+l − 2((Tk + l)−1w, (T0 + l)−1w)t0+l

≤ ‖(Tk + l)−1w‖2tk+l + ‖(T0 + l)−1w‖2t0+l − 2((Tk + l)−1w, (T0 + l)−1w)t0+l

= ((T0 + l)−1w,w) − ((Tk + l)−1w,w)

+ (1− l)[‖(Tk + l)−1w‖2 + ‖(T0 + l)−1w‖2 − 2((Tk + l)−1w, (T0 + l)−1w)]

≤ ((T0 + l)−1w,w) − ((Tk + l)−1w,w) ≤ ‖(T0 + l)−1w − (Tk + l)−1w‖‖w‖,
where (·, ·) is the inner product in L2(M) and ‖ · ‖ is the norm in L2(M).

By Lemma 2.16, it follows that for fixed l ∈ Z+, Tk + l → T0 + l in the strong
resolvent sense as k→∞.

Clearly, for any positive self-adjoint operator A, (A/l+1)−1 = l(A+l)−1. There-
fore by (2.20), for a fixed l ∈ Z+,

‖wkl − wl‖t0+l → 0 as k →∞.
This is equivalent to

(2.21) ‖wkl − wl‖t0 → 0 as k→∞.
Since wkl ∈ Q(T+)+, we can use (2.19) and (2.21) to choose a subsequence {wj}

from {wkl } so that (2.17) holds.
This concludes the proof of the theorem. �

3. Proof of Theorem 1.5

We essentially follow the proof of Theorem 2 in [2]; however, we need to use
Kato inequality (2.10) for operators on manifolds.

Without loss of generality, we may and we will assume that ∆M + V0 ≥ 0 and
V1 ≥ 0.

Let us denote Tq := T0+̃V1 and let tmin and tq be as in Sections 1.4 and 1.3.
Since tmin and tq coincide on C∞c (M), it is sufficient to show that C∞c (M) is dense
in the Hilbert space Q(Tq) = Q(T0) ∩Q(V1) with the inner product

(·, ·)tq := tq(·, ·) + (·, ·)L2(M),

where tq(·, ·) is the sesquilinear form obtained by polarization of tq.
Let v ∈ Q(Tq) be orthogonal to C∞c (M) in (·, ·)tq . This means that for all

w ∈ C∞c (M),
((∆M + V0 + V1)v, w)L2(M) + (v, w)L2(M) = 0.
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This leads to the following distributional equality:

(3.1) ∆Mv = −(V0 + V1 + 1)v.

Since V1 ∈ L1
loc(M) and v ∈ Q(V1), we have

2|V1v| = 2|V1||v| ≤ |V1|+ |V1||v|2

which immediately gives V1v ∈ L1
loc(M).

Since V0 ∈ L2
loc(M), it follows that V0v ∈ L1

loc(M). From (3.1) we obtain
∆Mv ∈ L1

loc(M).
Using Kato inequality (2.10) in case ∇ = d and (3.1), we get

(3.2) ∆M |v| ≤ Re(sign v̄∆Mv) = −V0|v| − V1|v| − |v| ≤ −(V0 + 1)|v|.
The last inequality in (3.2) holds since V1 ≥ 0.

From (3.2), we obtain the following distributional inequality:

(3.3) (∆M + V0 + 1)|v| ≤ 0.

Let T0 be as in the hypothesis, and let t0 denote the closed quadratic form
associated to T0.

Using (3.3), we get

(3.4) ((T0 + 1)w, |v|)L2(M) ≤ 0 for all w ∈ C∞c (M)+.

Since v ∈ Q(T0), Corollary 2.14 gives |v| ∈ Q(T0). Therefore, we can write (3.4) as

(3.5) (w, |v|)t0 ≤ 0 for all w ∈ C∞c (M)+,

where (·, ·)t0 = t0(·, ·) + (·, ·)L2(M) denotes the inner product in Q(T0).
Let f := (T0 + 1)−1|v|. By Proposition 2.13, (T0 + 1)−1 is positivity preserving,

so f ∈ Dom(T0)+ ⊂ Q(T0)+.
By Theorem 2.2, T0 has a positive form core. Therefore, there exists a sequence

fk ∈ C∞c (M)+ such that

(3.6) lim
k→∞

(fk, |v|)t0 = (f, |v|)t0 = ((T0 + 1)−1|v|, |v|)t0 = ‖v‖2,

where v and (·, ·)t0 are as in (3.5), and ‖ · ‖ is the norm in L2(M).
From (3.5) and (3.6) we obtain ‖v‖2 ≤ 0, i.e. v = 0.
This shows that C∞c (M) is dense in Q(Tq), and the theorem is proven. �
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