THE FORM SUM AND THE FRIEDRICHS EXTENSION OF SCHRÖDINGER-TYPE OPERATORS ON RIEMANNIAN MANIFOLDS

OGNJEN MILATOVIC

(Communicated by David S. Tartakoff)

ABSTRACT. We consider $H_V = \Delta_M + V$, where (M, q) is a Riemannian manifold (not necessarily complete), and Δ_M is the scalar Laplacian on M. We assume that $V = V_0 + V_1$, where $V_0 \in L^2_{loc}(M)$ and $-C \leq V_1 \in L^1_{loc}(M)$ (C is a constant) are real-valued, and $\Delta_M + V_0$ is semibounded below on $C_c^{\infty}(M)$. Let T_0 be the Friedrichs extension of $(\Delta_M + V_0)|_{C_c^{\infty}(M)}$. We prove that the form sum $T_0 + V_1$ coincides with the self-adjoint operator T_F associated to the closure of the restriction to $C_c^\infty(M) \times C_c^\infty(M)$ of the sum of two closed quadratic forms of T_0 and V_1 . This is an extension of a result of Cycon. The proof adopts the scheme of Cycon, but requires the use of a more general version of Kato's inequality for operators on Riemannian manifolds.

1. Introduction and the main result

Let (M,g) be a Riemannian manifold (i.e. M is a C^{∞} -manifold, (g_{ik}) is a Riemannian metric on M), dim M = n. We will assume that M is connected. We will also assume that we are given a positive smooth measure $d\mu$, i.e. in any local coordinates x^1, x^2, \ldots, x^n there exists a strictly positive C^{∞} -density $\rho(x)$ such that $d\mu = \rho(x)dx^1dx^2\dots dx^n$. We do not assume that (M,g) is complete.

We will consider a Schrödinger-type operator of the form

$$H_V = \Delta_M + V$$
.

Here $\Delta_M := d^*d$, where $d : C^{\infty}(M) \to \Omega^1(M)$, and $V \in L^1_{loc}(M)$ is real-valued.

- 1.1. Maximal operator. We define the maximal operator $H_{V,\text{max}}$ associated to H_V as an operator in $L^2(M)$ given by $H_{V,\max}u = H_Vu$ with domain
- $Dom(H_{V,max}) = \{ u \in L^2(M) : Vu \in L^1_{loc}(M), H_Vu \in L^2(M) \}.$ (1.1)

Here $\Delta_M u$ in $H_V u = \Delta_M u + V u$ is understood in the distributional sense. We make the following assumptions on V.

Assumption A. Assume $V = V_0 + V_1$, where

- (i) $V_0 \in L^2_{\mathrm{loc}}(M)$ and $\Delta_M + V_0$ is semibounded below on $C_c^\infty(M)$. (ii) $V_1 \in L^1_{\mathrm{loc}}(M)$ and $V_1 \geq -C$, where C > 0 is a constant.

Received by the editors August 20, 2002.

2000 Mathematics Subject Classification. Primary 35P05, 58G25; Secondary 47B25, 81Q10.

1.2. Quadratic forms. For any self-adjoint operator $T \colon \mathrm{Dom}(T) \subset L^2(M) \to L^2(M)$ such that $T \geq -\alpha$, we will denote by Q(T) the domain of the quadratic form t associated to T. By Theorem 2.1 in [3], t is a closed semibounded below form, i.e. Q(T) is a Hilbert space with the inner product

$$(1.2) (u,v)_t = t(u,v) + (1+\alpha)(u,v)_{L^2(M)},$$

where $t(\cdot, \cdot)$ is the sesquilinear form obtained by polarization of t.

1.3. Form sum. By (i) of Assumption A, $\Delta_M + V_0$ is symmetric and semibounded below on $C_c^{\infty}(M)$, so we can associate to it a semibounded below self-adjoint operator T_0 (Friedrichs extension, cf. Theorem 14.1 in [3]).

We will denote by $T_0 + V_1$ the form sum of T_0 and V_1 . By Theorem 4.1 in [3], this is the self-adjoint operator associated to the semibounded below closed quadratic form t_q given by the sum of two semibounded below closed quadratic forms corresponding to T_0 and V_1 . By the same theorem, the following is true: $Q(T_0 + V_1) = Q(T_0) \cap Q(V_1)$. Clearly, $T_0 + V_1$ is a self-adjoint restriction of $H_{V,\max}$.

1.4. Operator T_F . Denote by t_{\min} the restriction of t_q to $C_c^{\infty}(M) \times C_c^{\infty}(M)$. Denote by T_F the self-adjoint operator associated to the closure of t_{\min} in the sense of the norm in $Q(T_0 + V_1)$. Clearly, T_F is a self-adjoint restriction of $H_{V,\max}$.

We will give a sufficient condition for $T_F = T_0 + V_1$.

Theorem 1.5. Suppose that Assumption A holds. Then $T_F = T_0 + V_1$. Remark 1.6. Theorem 1.5 was proven by Cycon [2] in the case of the operator

 $-\Delta + V$ in an open set $M \subset \mathbb{R}^n$, where Δ is the standard Laplacian on \mathbb{R}^n with the standard metric. In the case $V_0 = 0$ and $M = \mathbb{R}^n$ with standard metric, Theorem 1.5 was proven in Simon [13].

2. Operators with a positive form core

Definition 2.1. Let $T: C_c^{\infty}(M) \subset L^2(M) \to L^2(M)$ be a symmetric semibounded below operator. Let T_F denote its Friedrichs extension and $Q(T_F)^+$ the set of a.e. positive elements of $Q(T_F)$. We say that T_F has a positive form core if for every $u \in Q(T_F)^+$ there exists a sequence $u_k \in C_c^{\infty}(M)^+$ such that

$$||u_k - u||_t \to 0$$
 as $k \to \infty$,

where $\|\cdot\|_t$ is the norm associated to the closure of quadratic form t(v, w) := (Tv, w) $(v, w \in C_c^{\infty}(M))$ via (1.2).

The main result of this section is

Theorem 2.2. Suppose that $\Delta_M + V_0$ is as in (i) of Assumption A. Let T_0 be the Friedrichs extension of $(\Delta_M + V_0)|_{C^{\infty}_{\infty}(M)}$. Then T_0 has a positive form core.

Remark 2.3. In the case of the operator $-\Delta + V_0$ in an open set $M \subset \mathbb{R}^n$, Theorem 2.2 was proven in [2, Th. 1].

We will first prove the following special case of Theorem 2.2

Proposition 2.4. Suppose that $-C \leq V_0 \in L^2_{loc}(M)$, where C > 0 is a constant. Let T_b be the Friedrichs extension of $(\Delta_M + V_0)|_{C_c^{\infty}(M)}$. Then T_b has a positive form core.

We begin with a few preliminary lemmas.

In what follows T_b is as in the hypothesis of Proposition 2.4, and t_b is the closed quadratic form associated with T_b . Without loss of generality, we may and we will assume that $V_0 \geq 0$ so that T_b is a positive self-adjoint operator.

We will denote $W^{1,2}(M) := \{u \in L^2(M) : du \in L^2(T^*M)\}$. By $W_0^{1,2}(M)$ we will denote the closure of $C_c^{\infty}(M)$ in the norm $\|u\|_{W^{1,2}}^2 := \|du\|^2 + \|u\|^2$, where $\|\cdot\|$ is the L^2 norm. By $Q(V_0)$ we will denote the set $\{u \in L^2(M) : V_0^{1/2}u \in L^2(M)\}$. Clearly, $Q(V_0)$ is the closure of $C_c^{\infty}(M)$ in the norm

$$||u||_{V_0}^2 := ||V_0^{1/2}u||^2 + ||u||^2,$$

where $\|\cdot\|$ is the norm in $L^2(M)$.

In the proofs of the following three lemmas, we will use the arguments from the proof of Lemma 1 in [5].

Lemma 2.5.
$$Q(T_b) = W_0^{1,2}(M) \cap Q(V_0)$$
.

Proof. Denote by $\mathcal{H}_1 := W_0^{1,2}(M) \cap Q(V_0)$. Consider a sesquilinear form $S : \mathcal{H}_1 \times \mathcal{H}_1 \to \mathbb{C}$ given by

$$S(u,v) := (du,dv) + (V_0^{1/2}u, V_0^{1/2}v),$$

where (\cdot, \cdot) is the inner product in L^2 .

This sesquilinear form is closed, so the pre-Hilbert space \mathcal{H}_1 is complete in the norm

$$(2.2) (u,v)_{t_b} := (du,dv) + (V_0^{1/2}u,V_0^{1/2}v) + (u,v).$$

By definition of $W_0^{1,2}(M)$ and $Q(V_0)$, it follows that \mathcal{H}_1 is the closure of $C_c^{\infty}(M)$ in the norm $\|\cdot\|_{t_b}$ corresponding to (2.2).

For all $u, v \in C_c^{\infty}(M)$, $(u, v)_{t_b} = (u, v) + (T_b u, v)$. By Theorem 14.1 in [3], $Q(T_b)$ is the closure of $C_c^{\infty}(M)$ in the norm $\|\cdot\|_{t_b}$ corresponding to (2.2), so $Q(T_b) = W_0^{1,2}(M) \cap Q(V_0)$.

Lemma 2.6. Assume that $u \in C_c^{\infty}(M)$. Then there exists a sequence $\phi_k \in C_c^{\infty}(M)^+$ such that $\|\phi_k - |u|\|_{t_b} \to 0$ as $k \to \infty$, where $\|\cdot\|_{t_b}$ is the norm corresponding to (2.2).

Proof. Let $u \in C_c^{\infty}(M)$. Then $|u| \in W_{\text{comp}}^{1,2}(M)$. Using a partition of unity we may assume that u is supported in a coordinate neighborhood. Let $|u|^{\rho} = J^{\rho}|u|$, where J^{ρ} is the Friedrichs mollifying operator; cf. Sect. 5.11 in [1]. Then $|u|^{\rho} \in C_c^{\infty}(M)$. It is well-known that $|u|^{\rho} \to |u|$ as $\rho \to 0+$ both in the space $W_{\text{comp}}^{1,2}(M)$ and in the space $L_{\text{comp}}^2(M)$. Also, since |u| is continuous compactly supported on M and $V_0 \in L_{\text{loc}}^2(M)$, we have

(2.3)
$$\int V_0(|u|^{\rho})^2 d\mu \to \int V_0|u|^2 d\mu \quad \text{as } \rho \to 0+.$$

Therefore,

(2.4)
$$||u|^{\rho} - |u||_{t_b} \to 0$$
 as $\rho \to 0+$,

where $\|\cdot\|_{t_b}$ is the norm corresponding to (2.2).

Lemma 2.7. Suppose that $u \in Q(T_b)$. Then $|u| \in Q(T_b)$.

Proof. Let $u \in Q(T_b)$. By Lemma 2.5, we get $u \in W_0^{1,2}(M) \cap Q(V_0)$. Since $u \in W_0^{1,2}(M)$, Lemma 7.6 from [4] gives $|u| \in W_0^{1,2}(M)$. From $u \in Q(V_0)$, we immediately get $|u| \in Q(V_0)$. Therefore, $|u| \in W_0^{1,2}(M) \cap Q(V_0)$, so by Lemma 2.5, we obtain $|u| \in Q(T_b)$.

2.8. **Proof of Proposition 2.4.** We will follow the proof of Lemma 2 in [2].

Suppose that $u \in Q(T_b)^+$. By Lemma 2.5, there exists a sequence $\phi_j \in C_c^{\infty}(M)$ such that

where $\|\cdot\|_{t_b}$ is the norm corresponding to (2.2). In what follows, we will denote $(\operatorname{sign} w)(x) := \frac{w(x)}{|w(x)|}$ when $w(x) \neq 0$, and 0 otherwise.

We have

$$(2.6) |||\phi_{j}| - u||_{t_{b}}^{2} = |||\phi_{j}| - u||^{2} + ||d|\phi_{j}| - du||^{2} + ||V_{0}^{1/2}(|\phi_{j}| - u)||^{2}$$

$$\leq ||\phi_{j} - u||^{2} + ||d|\phi_{j}| - du||^{2} + ||V_{0}^{1/2}(\phi_{j} - u)||^{2}$$

$$= ||\phi_{j} - u||^{2} + ||\operatorname{Re}((\operatorname{sign}\bar{\phi_{j}})d\phi_{j}) - du||^{2} + ||V_{0}^{1/2}(\phi_{j} - u)||^{2},$$

where $\|\cdot\|$ denotes the norm L^2 .

From (2.6) we obtain

$$\begin{aligned} \||\phi_j| - u\|_{t_b}^2 &\leq \|\phi_j - u\|^2 + [\|(\operatorname{sign}\bar{\phi_j})(d\phi_j - du)\| + \|(\operatorname{sign}\bar{\phi_j} - 1)du\|]^2 \\ &+ \|V_0^{1/2}(\phi_j - u)\|^2 \\ &\leq \|\phi_j - u\|^2 + [\|d\phi_j - du\| + \|(\operatorname{sign}\bar{\phi_j} - 1)du\|]^2 + \|V_0^{1/2}(\phi_j - u)\|^2, \end{aligned}$$

where $\|\cdot\|$ denotes the norm in L^2 .

By (2.5), the first, second and fourth term on the right-hand side of (2.7) go to $0 \text{ as } i \to \infty.$

It remains to show that

(2.8)
$$\|(\operatorname{sign}\bar{\phi}_i - 1)du\| \to 0$$
 as $j \to \infty$.

Since $\phi_i \to u$ in $L^2(M)$, a lemma of Riesz shows that there exists a subsequence ϕ_{j_k} such that $\phi_{j_k} \to u$ a.e. $d\mu$, as $k \to \infty$. By Lemma 7.7 from [4], it follows that du=0 almost everywhere on $\{x\in M: u(x)=0\}$. Hence, as $k\to\infty$, sign $\phi_{j_k}\to 1$ a.e. on M. Since $du \in L^2(T^*M)$, dominated convergence theorem immediately implies (2.8) (after passing to the chosen subsequence ϕ_{j_k}).

This shows that

(2.9)
$$\||\phi_{j_k}| - u\|_{t_b} \to 0 \quad \text{as } k \to \infty.$$

By (2.9) and Lemma 2.6, there exists a sequence ψ_l in $C_c^{\infty}(M)^+$ such that $\|\psi_l - u\|_{t_b} \to 0$ as $l \to \infty$. By Definition 2.1 it follows that T_b has a positive form

In what follows, we will use a version of Kato's inequality. For the proof of this inequality in general setting, cf. Theorem 5.6 in [1].

Theorem 2.9. Let E be a Hermitian vector bundle on M, and let $\nabla : C^{\infty}(E) \to$ $C^{\infty}(T^*M \otimes E)$ be a Hermitian connection on E. Let $\nabla^* : C^{\infty}(T^*M \otimes E) \to C^{\infty}(E)$ be formal adjoint of ∇ with respect to the usual inner product on $L^2(E)$. Assume that $u \in L^1_{loc}(E)$ and $\nabla^* \nabla u \in L^1_{loc}(E)$. Then

(2.10)
$$\Delta_M|u| \leq \operatorname{Re}\langle \nabla^* \nabla u, \operatorname{sign} u \rangle,$$

where

$$\operatorname{sign} u(x) = \begin{cases} \frac{u(x)}{|u(x)|} & \text{if } u(x) \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

Definition 2.10. Let (X, μ) be a measure space. A bounded linear operator $A: L^2(X, \mu) \to L^2(X, \mu)$ is said to be *positivity preserving* if for every $0 \le u \in L^2(X, \mu)$ we have $Au \ge 0$.

We will also use the following abstract theorem due to Simon; cf. Theorem 2.1 in [11].

Theorem 2.11 (Simon [11]). Suppose that (X, μ) is a measure space. Suppose that H is a positive self-adjoint operator in $L^2(X, \mu)$. Then $(H+1)^{-1}$ is positivity preserving if and only if the following two conditions are satisfied:

- (i) For every $u \in Q(H)$, we have $|u| \in Q(H)$.
- (ii) For every $u \in Dom(H)$ and $0 \le v \in Q(H)$, the following is true:

$$\operatorname{Re}[h(|u|, v)] \leq \operatorname{Re}((\operatorname{sign} u)v, Hu),$$

where h is the quadratic form associated to H, and $(\operatorname{sign} u)(x) = \frac{u(x)}{|u|}$ whenever $u(x) \neq 0$, and 0 otherwise.

The following lemma extends Lemma 1 from [5] to the case of Riemannian manifolds.

Lemma 2.12. The operator $(T_b + 1)^{-1}$ is positivity preserving.

Proof. Let t_b be the quadratic form associated to T_b . By Theorem 2.11, it suffices to check the following conditions:

- (i) For every $u \in Q(T_b)$, we have $|u| \in Q(T_b)$ and
- (ii) For every $u \in \text{Dom}(T_b)$ and $0 \le v \in Q(T_b)$, the following is true:

$$\operatorname{Re}[t_b(|u|,v)] \leq \operatorname{Re}((\operatorname{sign} u)v, T_b u).$$

Condition (i) follows immediately by Lemma 2.7.

We now prove that condition (ii) holds. Let $u \in \text{Dom}(T_b)$. Then $(\Delta_M + V_0)u \in L^2(M)$ and hence $\Delta_M u \in L^1_{\text{loc}}(M)$.

For $u \in \text{Dom}(T_b)$ and $0 \le \phi \in C_c^{\infty}(M)$ we have

(2.11)
$$\operatorname{Re}[t_{b}(|u|,\phi)] = \operatorname{Re}(|u|,(\Delta_{M} + V_{0})\phi) = (|u|,\Delta_{M}\phi) + (|u|,V_{0}\phi)$$
$$= (\Delta_{M}|u|,\phi) + (V_{0}|u|,\phi)$$
$$\leq \operatorname{Re}((\operatorname{sign}\bar{u})\Delta_{M}u,\phi) + ((\operatorname{sign}\bar{u})V_{0}u,\phi)$$
$$= \operatorname{Re}((\operatorname{sign}\bar{u})T_{b}u,\phi) = \operatorname{Re}((\operatorname{sign}u)\phi,T_{b}u).$$

Here we used integration by parts and the special case of Kato inequality (2.10) for Λ_M

Let $0 \le v \in Q(T_b)$. By Proposition 2.4, there exists a sequence $\phi_j \in C_c^{\infty}(M)^+$ such that $\|\phi_j - v\|_{t_b} \to 0$ as $j \to \infty$, where $\|\cdot\|_{t_b}$ is the norm corresponding to (2.2).

From (2.11), we obtain

$$\operatorname{Re}[t_b(|u|,v)] = \lim_{j \to \infty} \operatorname{Re}[t_b(|u|,\phi_j)] \le \lim_{j \to \infty} \operatorname{Re}((\operatorname{sign} u)\phi_j, T_b u) = \operatorname{Re}((\operatorname{sign} u)v, T_b u).$$

This proves condition (ii) and the lemma.

In what follows T_0 is as in the hypothesis of Theorem 2.2. Without loss of generality we may and we will assume that T_0 is a positive self-adjoint operator.

We will also use the notation $\mathbb{Z}_+ := \{1, 2, 3, \dots\}.$

Proposition 2.13. $(T_0+1)^{-1}$ is positivity preserving.

Proof. We will adopt the arguments from the proof of Lemma 2 in [5] to our setting. For every $k \in \mathbb{Z}_+$ and $x \in M$, define

$$Q_k(x) = \begin{cases} V_0(x) & \text{if } V_0(x) \ge -k, \\ -k & \text{if } V_0(x) < -k. \end{cases}$$

Let T_k be the Friedrichs extension of $(\Delta_M + Q_k)|C_c^{\infty}(M)$. Then for all $k \in \mathbb{Z}_+$ and $u \in C_c^{\infty}(M)$, we have

$$(2.12) (u, T_k u) \ge (u, T_0 u) \ge 0,$$

where (\cdot, \cdot) is the inner product in $L^2(M)$.

From (2.12) it follows that

$$(2.13) T_0 \le T_k \text{for all } k \in \mathbb{Z}_+,$$

i.e. $Q(T_k) \subset Q(T_0)$, and for all $u \in Q(T_k)$, $t_0(u, u) \leq t_k(u, u)$, where t_0 and t_k are the quadratic forms associated to T_0 and T_k , respectively.

Furthermore, for all $u \in C_c^{\infty}(M)$, the following is true:

$$(2.14) (u, T_k u) \to (u, T_0 u) as k \to \infty.$$

Clearly, $C_c^{\infty}(M) \subset Q(T_k)$ for all $k \in \mathbb{Z}_+$. By definition of Friedrichs extension, it follows that $C_c^{\infty}(M)$ is dense in $Q(T_0)$ (in the norm of $Q(T_0)$).

This, (2.13) and (2.14) show that the hypotheses of abstract Theorem 7.9 from [3] are satisfied.

Therefore, as $k \to \infty$, $T_k \to T_0$ in the strong resolvent sense.

By Lemma 2.12, $(T_k + 1)^{-1}$ is positivity preserving for all $k \in \mathbb{Z}_+$. Therefore, $(T_0 + 1)^{-1}$ is also positivity preserving.

Corollary 2.14. Assume that $u \in Q(T_0)$. Then $|u| \in Q(T_0)$.

Proof. T_0 is a positive self-adjoint operator in $L^2(M)$. By Proposition 2.13, the operator $(T_0+1)^{-1}$ is positivity preserving. Now the corollary follows immediately from Theorem 2.11.

2.15. Truncation operators corresponding to T_0 . Let T_0 be as in the hypothesis of Theorem 2.2.

Define $V_0^+ := \max\{V_0, 0\}, V_0^- := \max\{-V_0, 0\},$ and for each $k \in \mathbb{Z}_+$, let $V_0^k := \min\{k, V_0^-\}.$

Denote by T_+ and T_k the Friedrichs extension of $(\Delta_M + V_0^+)|_{C_c^{\infty}(M)}$ and $(\Delta_M + V_0^+ - V_0^k)|_{C_c^{\infty}(M)}$, respectively.

Let t_0 , t_+ and t_k $(k \in \mathbb{Z}_+)$ be the quadratic forms associated to T_0 , T_+ and T_k , respectively.

The following lemma is analogous to Lemma 3 in [2].

Lemma 2.16. With the notations of Section 2.15,

- (i) $T_k \to T_0$ in the strong resolvent sense as $k \to \infty$.
- (ii) $Q(T_+) \subset Q(T_0)$.

Proof. For all $k \in \mathbb{Z}_+$, we clearly have $T_0 \leq T_k$. Also, $C_c^{\infty}(M) \subset Q(T_k)$ for all $k \in \mathbb{Z}_+$. By definition of T_0 it follows that $C_c^{\infty}(M)$ is dense in $Q(T_0)$ (in the norm of $Q(T_0)$).

Clearly, for all $w \in C_c^{\infty}(M)$,

$$(w, T_k w) \to (w, T_0 w)$$
 as $k \to \infty$.

We now apply Theorem 7.9 in [3] to conclude the proof of (i).

Property (ii) follows immediately since $T_{+} \geq T_{0}$.

2.17. **Proof of Theorem 2.2.** We will adopt the arguments from the proof of Theorem 1 in [2].

By the proof of Lemma 2.16 it follows that

$$(2.15) Q(T_+) \subset Q(T_k) \subset Q(T_0)$$

and

where $\|\cdot\|_{t_0}$, $\|\cdot\|_{t_k}$ and $\|\cdot\|_{t_+}$ are the norms associated to t_0 , t_k and t_+ , respectively; cf. (1.2).

In fact, $Q(T_k) = Q(T_+)$ since the norms $\|\cdot\|_{t_k}$ and $\|\cdot\|_{t_+}$ are equivalent, because $V_0^+ - V_0^k$ and V_0^+ differ by a bounded function.

By Proposition 2.4, T_+ has a positive form core, i.e. for every $u \in Q(T_+)^+$ there exists a sequence $\phi_j \in C_c^{\infty}(M)^+$ such that $\|\phi_j - u\|_{t_+} \to 0$ as $j \to \infty$. By (2.16) it follows that

$$\|\phi_j - u\|_{t_0} \to 0$$
 as $j \to \infty$.

To prove the theorem, it remains to show that for every $w \in Q(T_0)^+$, there exists a sequence $w_j \in Q(T_+)^+$ such that

$$||w_i - w||_{t_0} \to 0$$
 as $j \to \infty$.

Let $w \in Q(T_0)^+$. For every $k, l \in \mathbb{Z}_+$ define

$$w_l := \left(\frac{1}{l}T_0 + 1\right)^{-1} w$$

and

$$w_l^k := \left(\frac{1}{l}T_k + 1\right)^{-1} w.$$

This makes sense since $0 \le T_0 \le T_k$ are self-adjoint operators.

By Lemma 2.12, the operator $(T_k + 1)^{-1}$ is positivity preserving. Hence $w_l^k \in \text{Dom}(T_k)^+ \subset Q(T_k)^+ = Q(T_+)^+$.

Since the operators $(T_0+1)^{1/2}$ and $(T_0/l+1)^{-1}$ commute, we have

(2.18)
$$||w_l - w||_{t_0} = \left| \left| \left(\left(\frac{1}{l} T_0 + 1 \right)^{-1} - 1 \right) (T_0 + 1)^{1/2} w \right| \right|,$$

where $\|\cdot\|$ denotes $L^2(M)$ norm.

Clearly,

$$\left(\frac{1}{l}T_0+1\right)^{-1}\to 1$$
 strongly as $l\to\infty$.

This and (2.18) show that

(2.19)
$$||w_l - w||_{t_0} \to 0$$
 as $l \to \infty$.

Fix $l \in \mathbb{Z}_+$. For each $k \in \mathbb{Z}_+$, let $t_0 + l$ and $t_k + l$ denote the quadratic forms corresponding to (positive self-adjoint) operators $T_0 + l$ and $T_k + l$, respectively. Let $\|\cdot\|_{t_0+l}$ and $\|\cdot\|_{t_k+l}$ denote the norms in $Q(T_0+l)$ and $Q(T_k+l)$, respectively; cf. (1.2). The corresponding inner products will be denoted by $(\cdot, \cdot)_{t_0+l}$ and $(\cdot, \cdot)_{t_k+l}$. Using (2.15), (2.16) and the Cauchy-Schwarz inequality we have for all $w \in Q(T_0)^+$

where (\cdot, \cdot) is the inner product in $L^2(M)$ and $\|\cdot\|$ is the norm in $L^2(M)$.

By Lemma 2.16, it follows that for fixed $l \in \mathbb{Z}_+$, $T_k + l \to T_0 + l$ in the strong resolvent sense as $k \to \infty$.

Clearly, for any positive self-adjoint operator A, $(A/l+1)^{-1} = l(A+l)^{-1}$. Therefore by (2.20), for a fixed $l \in \mathbb{Z}_+$,

$$\|w_l^k - w_l\|_{t_0 + l} \to 0$$
 as $k \to \infty$.

This is equivalent to

(2.21)
$$||w_l^k - w_l||_{t_0} \to 0$$
 as $k \to \infty$.

Since $w_l^k \in Q(T_+)^+$, we can use (2.19) and (2.21) to choose a subsequence $\{w_j\}$ from $\{w_l^k\}$ so that (2.17) holds.

This concludes the proof of the theorem.

3. Proof of Theorem 1.5

We essentially follow the proof of Theorem 2 in [2]; however, we need to use Kato inequality (2.10) for operators on manifolds.

Without loss of generality, we may and we will assume that $\Delta_M + V_0 \geq 0$ and $V_1 \geq 0$.

Let us denote $T_q := T_0 + V_1$ and let t_{\min} and t_q be as in Sections 1.4 and 1.3. Since t_{\min} and t_q coincide on $C_c^{\infty}(M)$, it is sufficient to show that $C_c^{\infty}(M)$ is dense in the Hilbert space $Q(T_q) = Q(T_0) \cap Q(V_1)$ with the inner product

$$(\cdot,\cdot)_{t_q} := t_q(\cdot,\cdot) + (\cdot,\cdot)_{L^2(M)},$$

where $t_q(\cdot,\cdot)$ is the sesquilinear form obtained by polarization of t_q .

Let $v \in Q(T_q)$ be orthogonal to $C_c^{\infty}(M)$ in $(\cdot, \cdot)_{t_q}$. This means that for all $w \in C_c^{\infty}(M)$,

$$((\Delta_M + V_0 + V_1)v, w)_{L^2(M)} + (v, w)_{L^2(M)} = 0.$$

This leads to the following distributional equality:

(3.1)
$$\Delta_M v = -(V_0 + V_1 + 1)v.$$

Since $V_1 \in L^1_{loc}(M)$ and $v \in Q(V_1)$, we have

$$2|V_1v| = 2|V_1||v| \le |V_1| + |V_1||v|^2$$

which immediately gives $V_1v \in L^1_{loc}(M)$.

Since $V_0 \in L^2_{loc}(M)$, it follows that $V_0 v \in L^1_{loc}(M)$. From (3.1) we obtain $\Delta_M v \in L^1_{loc}(M)$.

Using Kato inequality (2.10) in case $\nabla = d$ and (3.1), we get

(3.2)
$$\Delta_M |v| \le \text{Re}(\text{sign } \bar{v} \Delta_M v) = -V_0 |v| - V_1 |v| - |v| \le -(V_0 + 1) |v|.$$

The last inequality in (3.2) holds since $V_1 \geq 0$.

From (3.2), we obtain the following distributional inequality:

$$(3.3) (\Delta_M + V_0 + 1)|v| \le 0.$$

Let T_0 be as in the hypothesis, and let t_0 denote the closed quadratic form associated to T_0 .

Using (3.3), we get

$$(3.4) ((T_0+1)w, |v|)_{L^2(M)} \le 0 \text{for all } w \in C_c^{\infty}(M)^+.$$

Since $v \in Q(T_0)$, Corollary 2.14 gives $|v| \in Q(T_0)$. Therefore, we can write (3.4) as

$$(3.5) (w,|v|)_{t_0} \le 0 \text{for all } w \in C_c^{\infty}(M)^+,$$

where $(\cdot,\cdot)_{t_0} = t_0(\cdot,\cdot) + (\cdot,\cdot)_{L^2(M)}$ denotes the inner product in $Q(T_0)$.

Let $f := (T_0 + 1)^{-1} |v|$. By Proposition 2.13, $(T_0 + 1)^{-1}$ is positivity preserving, so $f \in \text{Dom}(T_0)^+ \subset Q(T_0)^+$.

By Theorem 2.2, T_0 has a positive form core. Therefore, there exists a sequence $f_k \in C_c^{\infty}(M)^+$ such that

(3.6)
$$\lim_{k \to \infty} (f_k, |v|)_{t_0} = (f, |v|)_{t_0} = ((T_0 + 1)^{-1} |v|, |v|)_{t_0} = ||v||^2,$$

where v and $(\cdot, \cdot)_{t_0}$ are as in (3.5), and $\|\cdot\|$ is the norm in $L^2(M)$.

From (3.5) and (3.6) we obtain $||v||^2 \le 0$, i.e. v = 0.

This shows that $C_c^{\infty}(M)$ is dense in $Q(T_q)$, and the theorem is proven.

References

- [1] M. Braverman, O. Milatovic, M. A. Shubin, Essential self-adjointness of Schrödinger type operators on manifolds, Russian Math. Surveys, 57 (4) (2002), 641–692.
- [2] H. L. Cycon, On the form sum and the Friedrichs extension of Schrödinger operators with singular potentials, J. Operator Theory, 6 (1981), 75–86. MR 82k:47068
- [3] W. G. Faris, Self-adjoint Operators, Lecture Notes in Mathematics No. 433, Springer-Verlag, Berlin e.a., 1975. MR 57:7207
- [4] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Springer, New York, 1977. MR 57:13109
- [5] H.-W. Goelden, On non-degeneracy of the ground state of Schrödinger operators, Math. Z., 155 (1977), 239–247. MR 58:29426
- [6] H. Hess, R. Schrader, D.A. Uhlenbrock, Domination of semigroups and generalization of Kato's inequality, Duke Math. J., 44 (1977), 893–904. MR 56:16446
- [7] H. Hess, R. Schrader, D. A. Uhlenbrock, Kato's inequality and the spectral distribution of Laplacians on compact Riemannian manifold, J. Differential Geom., 15 (1980), 27-37. MR 82g:58090
- [8] T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York, 1980. reprint MR 96a:47025

- [9] T. Kato, A second look at the essential selfadjointness of the Schrödinger operators, Physical reality and mathematical description, Reidel, Dordrecht, 1974, 193–201. MR 57:16958
- [10] M. Reed, B. Simon, Methods of Modern Mathematical Physics I, II: Functional analysis. Fourier analysis, self-adjointness, Academic Press, New York e.a., 1975. MR 58:12429a; MR 58:12429b
- [11] B. Simon, An abstract Kato's inequality for generators of positivity preserving semigroups, Indiana Univ. Mat. J., 26 (1977), 1067–1073. MR 57:1194
- [12] B. Simon, Kato's inequality and the comparison of semigroups, J. Funct. Anal., 32 (1979), 97–101. MR 80e:47036
- [13] B. Simon, Maximal and minimal Schrödinger forms, J. Operator Theory, 1 (1979), 37–47. MR 81m:35104
- [14] M. Taylor, Partial Differential Equations II: Qualitative Studies of Linear Equations, Springer-Verlag, New York e.a., 1996. MR 98b:35003

Department of Mathematics, Northeastern University, Boston, Massachusetts 02115 $E\text{-}mail\ address:}$ ogmilato@lynx.neu.edu

 $\it Current \ address:$ Department of Mathematics, Fitchburg State College, Fitchburg, Massachusetts 01420

E-mail address: omilatovic@fsc.edu