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(Communicated by David S. Tartakoff)

Abstract. This paper deals with the blow-up properties of the solution to the
degenerate nonlinear reaction diffusion equation with nonlocal source xqut −
(xγux)x =

∫ a
0 updx in (0, a) × (0, T ) subject to the homogeneous Dirichlet

boundary conditions. The existence of a unique classical nonnegative solution
is established and the sufficient conditions for the solution exists globally or
blows up in finite time are obtained. Furthermore, it is proved that under
certain conditions the blow-up set of the solution is the whole domain.

1. Introduction

Let T ≤ +∞, a, q, γ and p be constants with T > 0, a > 0, γ ∈ [0, 1), |q|+ γ 6= 0
and p > 1. Let D = (0, a) and Ωt = D× (0, t], and let D̄ and Ωt be their respective
closures. We consider the following initial boundary value problem of the degenerate
nonlinear reaction diffusion equation with nonlocal source:

(1.1)

xqut − (xγux)x =
∫ a

0 u
pdx, (x, t) ∈ (0, a)× (0, T ),

u(0, t) = u(a, t) = 0, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ [0, a],

where u0(x) ∈ C2+α(D) for some constant α ∈ (0, 1), u0(0) = u0(a) = 0, u0(x) ≥ 0.
Since |q|+ γ 6= 0, the coefficients of ut, ux and uxx may tend to 0 or ∞ as x tends
to 0, we can regard the equation as degenerate and singular.

Floater [7] and Chan & Liu [4] investigated the blow-up properties of the follow-
ing degenerate parabolic problem:

(1.2)

xqut − uxx = up, (x, t) ∈ (0, a)× (0, T ),

u(0, t) = u(a, t) = 0, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ [0, a],

where q > 0 and p > 1. Under certain conditions on the initial datum u0(x),
Floater [7] proved that for the case 1 < p ≤ q + 1, if the solution u(x, t) of (1.2)
blows up in finite time, then it blows up at the boundary x = 0. This contrasts
with a result of Friedman and Mcleod [9], who showed that for the case q = 0, the
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blow-up set of the solution u(x, t) of (1.2) is a proper compact subset of D. The
motivation for studying problem (1.2) comes from Ockendon’s model (see [13]) for
the flow in a channel of a fluid whose viscosity is temperature dependent

(1.3) xut = uxx + eu,

where u represents the temperature of the fluid. Floater in [7] approximated eu by
up and considered equation (1.2). Budd, Galaktionov and Chen in [2] generalized
the results of [7] to the following degenerate quasilinear parabolic equation:

(1.4) xqut = (um)xx + up

subject to homogeneous Dirichlet conditions in the critical exponent case q =
(p − 1)/m, where q > 0,m ≥ 1 and p > 1. They pointed out that the general
classification of blow-up solutions for the degenerate equation (1.4) stays the same
for the quasilinear equation

(1.5) ut = (um)xx + up;

see [2] and [15, Chapter 4]. Chan & Liu in [4] continued to study problem (1.2)
for the case p > q + 1. They proved that under certain conditions x = 0 is not a
blow-up point and the blow-up set is a proper compact subset of D.

In this paper, we continue to consider (1.2) with the reaction term up replaced
by
∫ a

0 u
pdx and investigate the effect of the singularity, degeneracy and nonlocal

reaction on the behavior of the solution of (1.1). The difficulties are the establish-
ment of the corresponding comparison principle and the construction of an upper
solution of (1.1). It is different from [4] and [7]; we prove that under certain con-
ditions the blow-up set of the solution of (1.1) is the whole domain. This is also
consistent with the conclusion that in a nonlocal problem blow-up can be global
(see [1, 16, 17]).

This paper is organized as follows: in section 2, we show the existence of a unique
classical solution; in section 3, we give some criteria for the solution u(x, t) to exist
globally or to blow up in finite time.

2. Local existence

In order to prove the existence of a unique positive solution to (1.1), we first
show the following comparison result.

Lemma 2.1. Let b(x, t) be a continuous nonnegative function defined on [0, a] ×
[0, r] for any r ∈ (0, T ), and u(x, t) ∈ C(Ωr) ∩ C2,1(Ωr) satisfies

(2.1)

xqut − (xγux)x ≥
∫ a

0
b(x, t)u(x, t)dx, (x, t) ∈ (0, a)× (0, r],

u(0, t) ≥ 0, u(a, t) ≥ 0, t ∈ (0, r],

u(x, 0) ≥ 0, x ∈ [0, a].

Then u(x, t) ≥ 0 on [0, a]× [0, T ).

Proof. First, similar to the proof of Lemma 2.1 in [18], by using the positive Lemma
2.2.1 for uniformly parabolic equations in [14], we can easily obtain the following
conclusion:
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If w(x, t) ∈ C(Ωr) ∩ C2,1(Ωr) satisfies

(2.2)

xqwt − (xγwx)x ≥
∫ a

0 b(x, t)w(x, t)dx, (x, t) ∈ (0, a)× (0, r],

w(0, t) > 0, w(a, t) ≥ 0, t ∈ [0, r],

w(x, 0) ≥ 0, x ∈ [0, a],

then w(x, t) > 0, (x, t) ∈ (0, a)× (0, r].
Next, let γ′ ∈ (γ, 1) be a positive constant and

w(x, t) = u(x, t) + η(1 + xγ
′−γ)ect,

where η > 0 is sufficiently small and c is a positive constant to be determined.
Then w(x, t) > 0 on the parabolic boundary of Ωr and

xqwt − (xγwx)x −
∫ a

0
b(x, t)w(x, t)dx

≥ xqη(1 + xγ
′−γ)cect + (γ′ − γ)(1− γ′)ηect/x2−γ′ −

∫ a
0
b(x, t)η(1 + xγ

′−γ)ectdx

≥ ηect[cxq + (γ′ − γ)(1− γ′)/x2−γ′ − a(1 + aγ
′−γ) max(x,t)∈[0,a]×[0,r] b(x, t)].

If max(x,t)∈[0,a]×[0,r] b(x, t) ≤ (γ′ − γ)(1 − γ)/(a3−γ′(1 + aγ
′−γ)), then

xqwt − (xγwx)x −
∫ a

0 b(x, t)w(x, t)dx

≥ ηect[(γ′ − γ)(1 − γ′) 1
x2−γ′ − a(1 + aγ

′−γ) max(x,t)∈[0,a]×[0,r] b(x, t)]

≥ 0.

On the other hand, if max(x,t)∈[0,a]×[0,r] b(x, t) > (γ′−γ)(1−γ′)/(a3−γ′(1+aγ
′−γ)),

let x0 be the root of the algebraic equation

a(1 + aγ
′−γ) max(x,t)∈[0,a]×[0,r] b(x, t) = (γ′ − γ)(1 − γ′)/x2−γ′ ,

and let c > 0 be sufficiently large such that

(2.3) c >

{
(max(x,t)∈[0,a]×[0,r] b(x, t))a(1 + aγ

′−γ)/xq0 for q ≥ 0,

(max(x,t)∈[0,a]×[0,r] b(x, t))a(1 + aγ
′−γ)/aq for q < 0.

Then we have

xqwt − (xγwx)x −
∫ a

0 b(x, t)w(x, t)dx

≥

ηe
ct[(γ′ − γ)(1− γ′)/x2−γ′ − a(1 + aγ

′−γ) max
(x,t)∈[0,a]×[0,r]

b(x, t)] for x ≤ x0,

ηect[cxq − a(1 + aγ
′−γ) max(x,t)∈[0,a]×[0,r] b(x, t)] for x > x0

≥ 0.

From the above conclusion, we know that w(x, t) > 0 on [0, a] × [0, r]. Letting
η → 0+, we then have u(x, t) ≥ 0 on [0, a] × [0, r]. From the arbitrariness of
r ∈ (0, T ), we complete the proof. �

Obviously, û = 0 is a lower solution of (1.1); we need to construct an upper
solution.

Lemma 2.2. There exists a positive constant t0(t0 < T ) such that the problem
(1.1) has an upper solution h(x, t) ∈ C(Ωt0) ∩ C2,1(Ωt0).
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Proof. Let

ψ(x) = (
x

a
)1−γ(1− x

a
) + (

x

a
)

1−γ
2 (1 − x

a
)

1
2 ,

and let k0 be a positive constant such that k0ψ(x) ≥ u0(x). Denote the positive
constant

∫ 1

0
[s1−γ(1 − s) + s

1−γ
2 (1 − s) 1

2 ]pds by b0. Let k2 ∈ (0, 1−γ
2−γ ) be a positive

constant such that

(2.4) k2 < (2pa3−γb0k
p−1
0 )−

2
1−γ ,

and let k(t) be the positive solution of the following initial value problem:

(2.5)
k′(t) =


b0k

p(t)

aq−1k
q+ 1

2
2 (1 − k2)

1−γ
2 [1 + k

1
2
2 (1− k2)

1−γ
2 ]

, q ≥ 0,

b0k
p(t)

aq−1k
1
2
2 (1− k2)q+

1−γ
2 [1 + k

1
2
2 (1− k2)

1−γ
2 ]

, q < 0,
t > 0,

k(0) = k0.

Since k(t) is increasing, we can choose t0 > 0 such that k(t) ≤ 2k0 for all t ∈ [0, t0].
Let h(x, t) = k(t)ψ(x); then h(x, t) ≥ 0 on Ωt0 . We would like to show that h(x, t)
is an upper solution of (1.1) in Ωt0 . To do this, let us construct a function J by

J = xqht − (xγhx)x −
∫ a

0
hpdx, (x, t) ∈ Ωt0 .

Then,

J = xqk′(t)ψ(x) − (xγψ′(x))′k(t)−
∫ a

0
kp(t)ψp(x)dx

= xqk′(t)ψ(x) + [(2− γ)/a2−γ + ( (1−γ)2

4 x
γ−3

2 (a− x)
1
2 + 1

2x
γ−1

2 (a− x)−
1
2

+ 1
4x

1+γ
2 (a− x)−

3
2 )/a1− γ2 ]k(t)− ab0kp(t)

≥ xqk′(t)ψ(x) + x
γ−1

2 (a− x)−
1
2 k(t)/(2a1− γ2 )− ab0kp(t), (x, t) ∈ Ωt0 .

For (x, t) ∈ (0, ak2)× (0, t0] ∪ (a(1− k2), a)× (0, t0], by (2.4), we have

J ≥ x γ−1
2 (a− x)−

1
2 k(t)/(2a1−γ2 )− ab0kp(t)

≥ [k
γ−1

2
2 /(2a2−γ)− ab0kp−1(t0)]k(t)

≥ [k
γ−1

2
2 /(2a2−γ)− ab0(2k0)p−1]k(t)

≥ 0.

For (x, t) ∈ [ak2, a(1− k2)]× (0, t0], by (2.5), we have

J ≥ xqk′(t)ψ(x) − ab0kp(t)

≥

 aqkq2k
′(t)[k2(1 − k2)1−γ + k

1
2
2 (1− k2)

1−γ
2 ]− ab0kp(t), q ≥ 0,

aq(1− k2)qk′(t)[k2(1− k2)1−γ + k
1
2
2 (1− k2)

1−γ
2 ]− ab0kp(t), q < 0

≥ 0.

Thus, J(x, t) ≥ 0 in Ωt0 . It follows from h(0, t) = h(a, t) = 0 and h(x, 0) =
k0ψ(x) ≥ u0(x) that h(x, t) is an upper solution of (1.1) in Ωt0 . �
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To show the existence of the classical solution u(x, t) of (1.1), let us introduce
a “cut-off function” ρ(x). By Dunford and Schwartz [6, p. 1640], there exists a
nondecreasing function ρ(x) ∈ C3(R) such that ρ(x) = 0 if x ≤ 0, and ρ(x) = 1 if
x ≥ 1. Let 0 < δ < 1−γ

2−γa,

ρδ(x) =


0, x ≤ δ,
ρ(xδ − 1), δ < x < 2δ,

1, x ≥ 2δ,

and let u0δ(x) = ρδ(x)u0(x). We note that

∂
∂δu0δ(x) =


0, x ≤ δ,
− x
δ2 ρ
′(xδ − 1)u0(x), δ < x < 2δ,

0, x ≥ 2δ.

Since ρ is nondecreasing, we have ∂
∂δu0δ(x) ≤ 0. From 0 ≤ ρ(x) ≤ 1, we have

u0(x) ≥ u0δ(x) and limδ→0 u0δ(x) = u0(x).
Let Dδ = (δ, a), ωδ = Dδ × (0, t0], Dδ and ωδ be their respective closures, and

let Sδ = {δ, a} × (0, t0]. We consider the following regularized problem:

(2.6)

xquδt − (xγuδx)x =
∫ a
δ u

p
δdx, (x, t) ∈ ωδ,

uδ(δ, t) = uδ(a, t) = 0, t ∈ (0, t0],

uδ(x, 0) = u0δ(x), x ∈ Dδ.

By using Schauder’s fixed point theorem, we have

Theorem 2.3. Problem (2.6) admits a unique nonnegative solution uδ ∈ C2+α,1+α
2

(ωδ). Moreover, 0 ≤ uδ(x, t) ≤ h(x, t), (x, t) ∈ ωδ, where h(x, t) is given by Lemma
2.2.

Proof. From the proof of Lemma 2.1, we know that there exists at most one non-
negative solution uδ. To prove existence, we use Schauder’s fixed point theorem.
Let

X = {v ∈ Cα,α2 (ωδ) : 0 ≤ v(x, t) ≤ h(x, t), (x, t) ∈ ωδ}.
Obviously, X is a closed convex subset of the Banach space Cα,

α
2 (ωδ). For any

v ∈ X , let us consider the following linearized uniformly parabolic problem:

(2.7)

xqwδt − (xγwδx)x =
∫ a
δ v

pdx, (x, t) ∈ ωδ,
wδ(δ, t) = wδ(a, t) = 0, t ∈ (0, t0),

wδ(x, 0) = u0δ(x), x ∈ [δ, a].

It is easy to see that ŵ(x, t) = 0 and w̃(x, t) = h(x, t) are lower and upper solu-
tions of the problem (2.7). We also note that x−q+γ , x−q−1+γ , x−q ∈ Cα,

α
2 (ωδ),

x−q
∫ a
δ
vpdx ∈ Cα,α2 (ωδ), u0δ ∈ C2+α(Dδ). It follows from Theorem 4.2.2 of Ladde

et al. [10, p. 143] that the problem (2.7) has a unique solution wδ(x, t; v) ∈
C2+α,1+α

2 (ωδ), which satisfies 0 ≤ wδ(x, t; v) ≤ h(x, t). Thus, we can define a map-
ping Z from X into C2+α,1+α

2 (ωδ) such that Z v(x, t) = wδ(x, t; v), where wδ(x, t; v)
denotes the unique solution of the problem (2.7) corresponding to v(x, t) ∈ X . To
use Schauder’s fixed point theorem, we need to verify that Z maps X into itself
and Z is continuous and compact.
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In fact, Z X ⊂ X and the embedding operator from the Banach space C2+α,1+α
2

(ωδ) to the Banach space Cα,
α
2 (ωδ) is compact. Therefore Z is compact. To show Z

is continuous, let us consider in X a sequence {vn(x, t)} which converges to v(x, t)
uniformly in the norm ‖ · ‖α,α2 . We know that v(x, t) ∈ X . Let wδn(x, t) and
wδ(x, t) be the solutions of the problem (2.7) corresponding to vn(x, t) and v(x, t),
respectively. Without loss of generality, let us assume that

‖vn(x, t)‖α,α2 ≤ ‖v(x, t)‖α,α2 + 1 for any n ≥ 1.

Let w(x, t) = wδn(x, t)− wδ(x, t). Then we have

xqwt − (xγwx)x =
∫ a
δ (vpn − vp)dx, (x, t) ∈ ωδ,

w(δ, t) = 0, w(a, t) = 0, t ∈ (0, t0],

w(x, 0) = 0, x ∈ Dδ.

From theorem 4.5.2 of Ladyzenskaya et al. [11, p. 320], there exists a positive
constant C (independent of vn and v) such that

‖w‖2+α,1+α
2
≤ C‖

∫ a
δ (vpn − vp)dx‖α,α2

≤ C a p‖(v + τ(vn − v))p−1‖α,α2 ‖vn − v‖α,α2
≤ C a p[3(‖v‖α,α2 + 1)]p−1‖vn − v‖α,α2 ,

where τ ∈ (0, 1). This shows that the mapping Z is continuous. By Schauder’s
fixed point theorem, we complete the proof. �

Now we can prove the following local existence result.

Theorem 2.4. There exists some t0(< T ) such that problem (1.1) has a unique
nonnegative solution u(x, t) ∈ C(Ωt0) ∩C2,1(Ωt0).

Proof. From Theorem 2.3, the problem (2.6) has a unique nonnegative solution
uδ ∈ C2+α,1+α

2 (ωδ). It follows from Lemma 2.1 that uδ1(x, t) ≤ uδ2(x, t) in ωδ1 if
δ1 > δ2. Therefore limδ→0 uδ(x, t) exists for all (x, t) ∈ (0, a]× [0, t0]. Let u(x, t) =
limδ→0 uδ(x, t), (x, t) ∈ (0, a]×[0, t0] and define u(0, t) = 0, t ∈ [0, t0]. We would like
to show that u(x, t) is a classical solution of (1.1) in Ωt0 . For any (x1, t1) ∈ Ωt0 ,
there exist three domains Q′ = (a′1, a

′
2) × (t′2, t

′
3], Q′′ = (a′′1 , a

′′
2) × (t′′2 , t

′′
3 ], and

Q′′′ = (a′′′1 , a′′′2 )× (t′′′2 , t′′′3 ] such that (x1, t1) ∈ Q′ ⊂ Q′′ ⊂ Q′′′ ⊂ (0, a)× (0, t0] with
0 < a′′′1 < a′′1 < a′1 < x1 < a′2 < a′′2 < a′′′2 < a, 0 ≤ t′′′2 ≤ t′′2 ≤ t′2 < t1 < t′3 ≤ t′′3 ≤
t′′′3 ≤ t0. Since uδ(x, t) ≤ h(x, t) in Q′′′ and h(x, t) is finite on Q

′′′
, we have for any

constant q̃ > 1,
(i) ‖uδ‖Lq̃(Q′′′) ≤ ‖h‖Lq̃(Q′′′) ≤ k3 for some positive constant k3.
(ii) ‖x−q

∫ a
δ
upδdx‖Lq̃(Q′′′) ≤ (a∗)−q‖

∫ a
0
hp(x, t)dx‖Lq̃(Q′′′) ≤ k4 for some positive

constant k4, where a∗ = a′′′1 if q ≥ 0 and a∗ = a′′′2 if q < 0.
By the local Lp estimate of Ladyzenskaya et al. [11, pp. 341-342, 352], uδ ∈

W 2,1
q̃ (Q′′). By embedding theorems [11, pp. 61 and 80], W 2,1

q̃ (Q′′) ↪→ Hα,α2 (Q′′) if
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we choose q̃ > 2
1−α . Then, ‖uδ‖Hα, α2 (Q′′)

≤ k5 for some positive constant k5. Now

‖x−q
∫ a
δ u

p
δdx‖Hα, α2 (Q′′)

≤ (a∗)−q‖
∫ a
δ
hp(x, t)dx‖∞ + sup

(x,t)∈Q′′
(x̃,t)∈Q′′

|
∫ a
δ
upδdx| · |x−q − (x̃)−q|
|x− x̃|α

+ sup
(x̃,t)∈Q′′

(x̃,t̃)∈Q′′

|(x̃)−q| · |
∫ a
δ p(uδ(x, t̃) + τ(uδ(x, t)− uδ(x, t̃)))p−1(uδ(x, t)− uδ(x, t̃))dx|

|t− t̃|α2

≤ (a∗)−q‖
∫ a

0
hp(x, t)dx‖∞ + ‖

∫ a
0
hp(x, t)dx‖∞‖x−q‖Hα(a′′1 ,a

′′
2 )

+(a∗)−q‖
∫ a

0 ph
p−1(x, t)dx‖∞‖uδ‖Hα, α2 (Q′′)

≤ k6

for some positive constant k6 which is independent of δ, where τ ∈ (0, 1). By
Theorem 4.10.1 of Ladyzenskaya et al. [11, pp. 351-352], we have

‖uδ‖H2+α,1+α
2 (Q′)

≤ k7

for some positive constant k7 independent of δ. This implies that uδ, uδt, uδx and
uδxx are equicontinuous in Q′. By the Ascoli-Arzela theorem, we know that

‖u‖
H2+α′,1+α′

2 (Q′)
≤ k8

for some α′ ∈ (0, α) and some positive constant k8 independent of δ, and that
the derivatives of u are the uniform limits of the corresponding partial deriva-
tives of uδ. Hence u satisfies (1.1) and limt→0 u(x, t) = limt→0 limδ→0 uδ(x, t) =
limδ→0 u0δ(x) = u0(x). Also from 0 ≤ u(x, t) ≤ h(x, t) and h(x, t)→ 0 as x→ 0 or
x→ a, we have limx→0 u(x, t) = limx→a u(x, t) = 0, thus u ∈ C(Ωt0) ∩C2,1(Ωt0) is
the solution of (1.1) in Ωt0 . We complete the proof. �

By using Lemma 2.1, there exists at most one nonnegative solution u of (1.1). A
proof similar to that of Theorem 2.5 of Floater [7] gives the following continuational
result.

Theorem 2.5. Let T be the supremum over t0 for which there is a unique non-
negative solution u(x, t) ∈ C(Ωt0) ∩ C2,1(Ωt0) of (1.1). Then (1.1) has a unique
nonnegative solution u(x, t) ∈ C([0, a]× [0, T )) ∩ C2,1((0, a)× (0, T )). If T < +∞,
then lim supt→T maxx∈[0,a] u(x, t) = +∞.

3. Blow-up of solution

In this section, we will give some global existence and blow-up results of the
solution of (1.1).

3.1. Existence and nonexistence of the global solution. In this subsection,
we would assume that q > γ − 1.

First, the solution of the following elliptic boundary value problem

−(xγψ′(x))′ = 1, x ∈ (0, a); ψ(0) = ψ(a) = 0

is given by ψ(x) = a2−γ

2−γ (xa )1−γ(1− x
a ). By direct computation,∫ a

0 ψ
p(x)dx = a(2−γ)p+1B(p(1 − γ) + 1, p+ 1)/(2− γ)p,
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where B(l,m) is a Beta function which is defined by B(l,m) =
∫ 1

0 x
l−1(1−x)m−1dx.

Let
a1 = [ a(2−γ)p+1B(p(1 − γ) + 1, p+ 1)/(2− γ)p ]−

1
p−1 .

Then we have the following global existence result.

Theorem 3.1. Let u(x, t) be the solution of (1.1). If u0(x) ≤ a1ψ(x), then u(x, t)
exists globally.

Proof. Since a1 =
[
a(2−γ)p+1B(p(1− γ) + 1, p+ 1)/(2− γ)p

]− 1
p−1 , we have

a1 = [a(2−γ)p+1B(p(1− γ) + 1, p+ 1)/(2− γ)p]ap1.

Let ũ(x, t) = a1ψ(x). Then we have

xqũt(x, t)− (xγ ũx(x, t))x = −(xγa1ψ
′(x))′ = a1

= ap1[a(2−γ)p+1B(p(1 − γ) + 1, p+ 1)/(2− γ)p]

=
∫ a

0
[ a1ψ(x) ]pdx =

∫ a
0
ũp(x, t)dx, (x, t) ∈ (0, a)× (0, T ),

ũ(0, t) = ũ(a, t) = 0, t ∈ (0, T ),

ũ(x, 0) = a1ψ(x) ≥ u0(x), x ∈ [0, a],

that is to say, ũ(x, t) = a1ψ(x) is an upper solution of problem (1.1). By Theorem
2.5, T = +∞, i.e., u(x, t) exists globally. �

Next, we consider the following eigenvalue problem:

(3.1)
−(xγϕ′(x))′ = λxqϕ(x), x ∈ (0, a),

ϕ(0) = ϕ(a) = 0.

By transformation ϕ(x) = x
1−γ

2 y(x), the above differential equation becomes

x2y′′(x) + xy′(x) − (1−γ)2

4 y(x) + λxq+2−γy(x) = 0, x ∈ (0, a).

Again by transformation x = z
2

q+2−γ , problem (3.1) becomes

(3.2)
z2y′′(z) + zy′(z) + [ 4λz2

(q+2−γ)2 − (1−γ)2

(q+2−γ)2 ]y(z) = 0, z ∈ (0, b),

y(0) = y(b) = 0,

where b = a
q+2−γ

2 . Equation (3.2) is a Bessel equation. Its general solution is given
by

y(z) = AJ 1−γ
q+2−γ

( 2
√
λ

q+2−γ z ) +BJ− 1−γ
q+2−γ

( 2
√
λ

q+2−γ z ),

where A and B are arbitrary constants, and J 1−γ
q+2−γ

and J− 1−γ
q+2−γ

denote Bessel

functions of the first kind of orders 1−γ
q+2−γ and − 1−γ

q+2−γ , respectively. Let µ be the

first root of J 1−γ
q+2−γ

( 2
√
λ

q+2−γ b ). By Mclachlan [12, pp. 29 and 75], it is positive. It
is obvious that µ is the first eigenvalue of problem (3.1); also we can easily obtain
the corresponding eigenfunction

(3.3) ϕ(x) = kx
1−γ

2 J 1−γ
q+2−γ

( 2
√
µ

q+2−γx
q+2−γ

2 ),

which is positive for x ∈ (0, a). Since q > γ − 1, we can choose k > 0 such that
maxx∈[0,a] x

qϕ(x) = 1. Then, we have
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Theorem 3.2. Let u(x, t) be the solution of the problem (1.1). If∫ a

0

xqϕ(x)u0(x)dx >

(
µ∫ a

0
ϕ(x)dx

) 1
p−1 ∫ a

0

xqϕ(x)dx,

then u(x, t) blows up in finite time.

Proof. We set
U(t) =

∫ a
0 x

qϕ(x)u(x, t)dx.
Multiplying (1.1) by ϕ(x) and integrating it over x from 0 to a leads to∫ a

0 x
qutϕdx =

∫ a
0 (xγux)xϕdx+

∫ a
0 ϕdx

∫ a
0 u

pdx.

Integration by parts and Jensen’s inequality imply that

U ′(t) =
∫ a

0
xqϕ(x)ut(x, t)dx

≥ −µ
∫ a

0
xqϕ(x)u(x, t)dx +

∫ a
0
ϕ(x)dx

∫ a
0
xqϕ(x)up(x, t)dx

≥ −µU(t) +
∫ a

0 ϕ(x)dx(
∫ a

0 x
qϕ(x)dx)1−p(

∫ a
0 x

qϕ(x)u(x, t)dx)p

= −µU(t) +
∫ a

0 ϕ(x)dx(
∫ a

0 x
qϕ(x)dx)1−pUp(t).

Therefore U(t) satisfies the following relation:

U ′(t) ≥ U(t)(−µ+
∫ a

0
ϕ(x)dxUp−1(t)/(

∫ a
0
xqϕ(x)dx)p−1),

U(0) =
∫ a

0
xqϕ(x)u0(x)dx.

By the hypothesis,

U(0) =
∫ a

0

xqϕ(x)u0(x) >

(
µ∫ a

0 ϕ(x)dx

) 1
p−1 ∫ a

0

xqϕ(x)dx,

hence U(t) tends to infinity in finite time. Therefore, u(x, t) ceases to exist at some
finite time; that is to say, u(x, t) blows up in finite time. �
3.2. Global blow-up. In this subsection, we would assume that q > 0 and γ = 0.
Chan & Chan [3] showed that the Green’s function G(x, ξ, t − τ) associated with
the operator L = xq ∂∂t −

∂2

∂x2 , subject to the first boundary condition, exists. For
ease of reference, we state their Lemmas 2 and 4 in the following lemma.

Lemma 3.3. (a) For t > τ , G(x, ξ, t − τ) is continuous for (x, t, ξ, τ) ∈ ([0, a] ×
(0, T ])× ((0, a]× [0, T )).

(b) For each fixed (ξ, τ) ∈ (0, a]× [0, T ), Gt(x, ξ, t− τ) ∈ C([0, a]× (τ, T ]).
(c) In {(x, t, ξ, τ) : x and ξ are in (0, a), T ≥ t > τ ≥ 0}, G(x, ξ, t−τ) is positive.

In Lemma 7 of [5], Chan & Yang gave some additional properties of G(x, ξ, t−τ).

Lemma 3.4. For fixed x0 ∈ (0, a], given any x ∈ (0, a) and any finite time T , there
exist positive constants C1(depending on x and T ) and C2(depending on T ) such
that ∫ a

0
G(x, ξ, t)dξ > C1 for 0 ≤ t ≤ T,∫ a

0 G(x0, ξ, t)dξ < C2 for 0 ≤ t ≤ T.
Now we give the global blow-up result

Theorem 3.5. If the solution u(x, t) of (1.1) blows up at the point x0 ∈ (0, a) and
in finite time T , then the blow-up set of u(x, t) is [0, a].
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Proof. By Green’s second identity, we have

(3.4) u(x, t) =
∫ a

0
ξqG(x, ξ, t)u0(ξ)dξ +

∫ t
0

∫ a
0
G(x, ξ, t− τ)

∫ a
0
up(y, τ)dydξdτ

for any (x, t) ∈ (0, a) × (0, T ). According to the conditions given in this theo-
rem, the solution u(x, t) of (1.1) blows up at x = x0 and in finite time T . Then
lim supt→T u(x0, t) = +∞. By (3.4) and Lemma 3.4, we have

u(x0, t) =
∫ a

0 ξ
qG(x0, ξ, t)u0(ξ)dξ +

∫ t
0

∫ a
0 G(x0, ξ, τ)

∫ a
0 u

p(y, t− τ)dydξdτ

≤ C2a
q maxx∈[0,a] u0(x) + C2

∫ t
0

∫ a
0
up(y, t− τ)dydτ.

Since lim supt→T u(x0, t) = +∞, we have

(3.5) limt→T
∫ t

0

∫ a
0
up(y, t− τ)dydτ = +∞.

On the other hand, for any given x ∈ (0, a), we have

(3.6)
u(x, t) ≥

∫ a
0 ξ

qG(x, ξ, t)u0(ξ)dξ + C1

∫ t
0

∫ a
0 u

p(y, t− τ)dydτ

≥ C1

∫ t
0

∫ a
0 u

p(y, t− τ)dydτ, t ∈ (0, T ).

It follows from the above inequality and (3.5) that lim supt→T u(x, t) = +∞.
For any x̃ ∈ {0, a}, we can choose a sequence {xn, tn} such that (xn, tn) →

(x̃, T )(n→ +∞) and limn→+∞ u(xn, tn) = +∞. Thus the blow-up set is the whole
domain [0, a], and we complete the proof. �
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