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BANACH SPACES EMBEDDING ISOMETRICALLY
INTO Lp WHEN 0 < p < 1

N. J. KALTON AND A. KOLDOBSKY

(Communicated by Jonathan M. Borwein)

Abstract. For 0 < p < 1 we give examples of Banach spaces isometrically
embedding into Lp but not into any Lr with p < r ≤ 1.

1. Introduction

It is a consequence of the Maurey-Nikishin factorization theory that every Ba-
nach space that embeds isomorphically into Lp(0, 1) for some 0 < p < 1 embeds
into every Lp(0, 1) for 0 < p < 1 (see [10], [11] and [15] pp. 257ff.). It is, however,
an open problem whether every Banach space that embeds isomorphically into Lp
for some 0 < p < 1 must also embed isomorphically into L1. This problem was
formulated by Kwapien [8] in 1969; see [4] where it is shown that X embeds into
L1 if and only if `1(X) embeds into Lp for some p < 1. The isometric version of
the problem asks: if X isometrically embeds into Lp for some p < 1 does it follow
that X isometrically embeds into L1? This problem was solved negatively by the
second author in 1996 [6] who showed that there is a Banach space embedding
into L1/2 but not into L1. The construction also yielded an example of a Banach
space embedding into L1/4 but not L1/2. Later, J. Borwein and the Center for
Computational Mathematics at Simon Fraser University (unpublished) showed by
computer methods that this algorithm yields examples of Banach spaces embedding
into La/64 but not into L(a+1)/64 for a = 1, 2, · · · , 63.

The purpose of this note is to show that for every 0 < p < 1 we can find a (real)
Banach space X embedding isometrically into Lp but not into any Lr for p < r ≤ 1.
The example constructed in [6] is finite-dimensional and is obtained by a perturba-
tion method. By contrast, our spaces are infinite-dimensional and we use probabilis-
tic ideas to construct them. It is, of course, true that an infinite-dimensional space
X embeds isometrically into Lp if and only if every finite-dimensional subspace
does, and so our methods also imply the existence of finite-dimensional examples.

We start in Section 2 by discussing the Plotkin-Rudin Equimeasurability and
Uniqueness Theorems, which we need for our applications. In Section 3 we con-
struct a very basic example, which we denote by Ep. This is the subspace of Lp(0, 1)
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spanned by a constant function and a sequence of symmetric 1-stable random vari-
ables. It turns out that this space is a Banach space that is an absolute direct sum
of a one-dimensional space and an isometric copy of `1. The spaces Ep provide
our first family of examples. We show this by establishing that they have a certain
extremal property (see Proposition 3.5).

In Section 4 we provide a second family of examples that are renormings of
Hilbert spaces. For each 0 < p < 1 we construct an example of such a space Xp

that embeds isometrically into Lp but not into any Lr for r > p. These spaces are
absolute direct sums of two infinite-dimensional Hilbert spaces. We observe that
these examples have the additional property that no subspace of finite codimension
can be embedded into any Lr where r > p.

2. Remarks on the Plotkin-Rudin theorem

In this section we discuss some essentially known results based on the Plotkin-
Rudin theorems on isometric embeddings ([12], [13], [14]). See [7] for a discussion
of these results.

We will always work in the setting of a Polish space Ω equipped with a nonatomic
Borel probability measure µ; we then say that (Ω, µ) is a standard probability space.
All functions are assumed to be Borel; if f1, · · · , fn are real Borel functions, then
their joint distribution is the Borel measure on Rn given by µ ◦ (f1, · · · , fn)−1, and
this will be denoted by ρf1,···,fn .

We say that if (Ω1, µ1) and (Ω2, µ2) are two standard probability spaces, then
a Borel map σ : Ω1 → Ω2 is a measure isomorphism if there is a Borel map
τ : Ω2 → Ω1 (an essential inverse) such that

• τσ(ω1) = ω1, µ1−a.e.;
• στ(ω2) = ω2, µ2−a.e.;
• µ2 ◦ τ−1 = µ1 and µ1 = µ2 ◦ σ−1.

If σ is a measure isomorphism, then it may be modified on a set of µ1-measure
zero to become a Borel isomorphism (i.e., an invertible Borel map). If (Ω, µ) is a
standard probability space, then there is always a Borel isomorphism σ : Ω→ [0, 1]
such that λ = µ ◦ σ−1 where λ is Lebesgue measure.

We shall need the following fact.

Proposition 2.1. Let (Ω, µ) be a standard probability space and suppose K is a
Polish space. Suppose σ : Ω → K is a Borel map and ν = µ ◦ σ−1. Suppose there
exists a Borel function f on Ω such that ρf = µ ◦ f−1 is nonatomic and f is
independent of σ (i.e., f is independent of the σ-algebra of sets of the form σ−1B
for B a Borel subset of K). Then there is a Borel map τ : Ω→ [0, 1] so that σ × τ
is a measure isomorphism of Ω onto (K × [0, 1], ν × λ).

Proof. This is surely well known, but we do not know an explicit reference. It
follows, for example, from Proposition 2.2 of [3] once one observes that σ is anti-
injective (i.e., if B is a Borel set such that σ is injective on B, then µ(B) = 0)).
It suffices by Lusin’s theorem to consider the case when B is compact and σ is
continuous on B; then σ is a Borel isomorphism of B onto σ(B). To see this, suppose
C1, · · · , CN form a partition of R so that ρf (Ck) = N−1. Let Bk = B ∩ f−1(Ck).
Then σ(Bk) is Borel and µ(f−1(Ck) ∩ σ−1σ(Bk)) = N−1ν(σ(Bk)). Hence µ(B) ≤
N−1

∑N
k=1 ν(σ(Bk)) ≤ N−1. �
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Let X be a separable normed space, and T : X → Lp(Ω, µ) an isometric em-
bedding. We say that T is in canonical position if it satisfies the following two
conditions:

• There exists x ∈ X so that Tx has full support, i.e., µ(Tx 6= 0) = 1.
• There exists a function f with ρf nonatomic such that f is independent of

the smallest σ-algebra Σ such that each Tx is Σ-measurable.
It is well known that if X embeds into Lp, then there is also an embedding in
canonical position.

Let us say that two embeddings S : X → Lp(Ω1, µ1) and T : X → Lp(Ω2, µ2)
are equivalent if

ρSx1,···,Sxn = ρTx1,···,Txn x1, · · · , xn ∈ X.
Theorem 2.2 ([12], [13], [14]). (1) Suppose p is not an even integer and (Ω, µ1)
and (Ω2, µ2) are two standard probability spaces. If S : X → Lp(Ω, µ1) and T :
X → Lp(Ω, µ2) are isometric embeddings such that for some x0 we have Sx0 = χΩ1

and Tx0 = χΩ2 , then S and T are equivalent.
(2) If, in addition, S and T are in canonical position, then there exists a measure

isomorphism σ : Ω1 → Ω2 such that µ2 = µ1 ◦ σ−1 and Tx ◦ σ = Sx for x ∈ X.
Proof. (1) is the usual Plotkin-Rudin equimeasurability theorem [12], [13], [14],
[7]. (2) is surely well known and follows directly from Proposition 2.1. Let us
indicate one proof. Let (xn) be any dense sequence in X and define, for j = 1, 2,
τj : Ωj → RN by τ1(ω1) = (Sxn(ω1)) and τ2(ω2) = ((Txn)(ω2)). Then by (1)
µ1◦τ−1

1 = µ2◦τ−1
2 = ν, say. By Proposition 2.1 we can define Borel maps κj : Ωj →

[0, 1] so that τj × κj is a measure isomorphism of (Ωj , µj) onto (RN × [0, 1], ν × λ).
The map σ is then the composition α(τ1 × κ1) where α is the essential inverse of
τ2 × κ2. �

If T : X → Lp(Ω, µ) is an isometric embedding, then we can always construct a
new embedding by a change of density. If ϕ is a nonvanishing Borel function, and∫
|ϕ|pdµ = 1, we define dν = |ϕ|pdµ and T ′x = ϕ−1Tx; then T ′ : X → Lp(Ω, ν) is

a new isometric embedding. We then say that T ′ is obtained from T by a change
of density.

Theorem 2.3. Suppose p is not an even integer and S : X → Lp(Ω, µ) is an
isometric embedding of canonical type. Then, if T : X → Lp(Ω1, µ1) is any other
isometric embedding, there exists a nonvanishing Borel function ϕ so that T ′ is
equivalent to T where T ′ : X → Lp(Ω, |ϕ|pdµ) is given by T ′x = ϕ−1Sx. (Thus T
is obtained from S by a change of density.)

Proof. We assume S is also of canonical type. Pick any x0 with ‖x0‖ = 1 so that
Sx0 = f and Tx0 = g have full support. Consider V1x = f−1Sx and V2x =
g−1Tx. Then V1 : X → Lp(Ω, |f |pdµ) and V2 : X → Lp(Ω1, |g|pdµ1) are isometric
embeddings with V1x0 = χΩ and V2x0 = χΩ1 . It follows that there is a measure
isomorphism σ : Ω → Ω1 so that |g|pµ1 = |f |pµ ◦ σ−1 and V1x = V2x ◦ σ. Now
Tx◦σ = g◦σV2x◦σ = g◦σf−1Sx, and if B is a Borel subset of Rn and x1, · · · , xn ∈
X , then

µ1((Tx1, · · · , Txn) ∈ B) =
∫
|g ◦ σ|−p|f |pχ((Tx1◦σ,···,Txn◦σ)∈B)dµ

and the conclusion follows with ϕ = f(g ◦ σ)−1. �
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Corollary 2.4. Let X be a (separable) Banach space that embeds into Lp where
p < 1. Let E be a subspace of X and suppose T : E → Lp(Ω, µ) is a given isometric
embedding. Then there is an isometric embedding S : X → Lp(Ω1, µ1) such that
the restriction of S to E is equivalent to T.

Proof. Let R : X → Lp(Ω, µ) be any isometric embedding of canonical type. We
note that R is also of canonical type when restricted to E. In fact, it is only
necessary to note that for every x ∈ X , Rx has full support in Ω. Indeed, if Rx0

has full support, then∫
|Rx+ tRx0|pdµ ≥ ‖x‖p + |t|p

∫
Rx=0

|Rx0|pdµ,

which contradicts the convexity of the norm unless Rx has full support. It follows
that we can make a change of density so that the new embedding S restricted to
E is equivalent to T. �

A random variable f is called symmetric p-stable 0 < p < 2 if the Fourier
transform of ρf is of the form e−c|t|

p

for some c > 0. We recall that there is an
isometric embedding T of Lr(0, 1) into Lp(0, 1) when 0 < p < r < 2 so that each Tf
has a symmetric r-stable distribution. (See the remarks on p. 213 of [9].) We will
call this the r-stable embedding. A particular case is that `1 can be embedded into
Lp for p < 1 by mapping the basic vectors to a sequence of independent 1-stable
random variables.

We will also need the following standard lemmas.

Lemma 2.5. Suppose X is a Banach space and T : X → Lp(Ω, µ) is an isometric
embedding where 0 < p < 1. Then {|Tx|p : ‖x‖ ≤ 1} is equi-integrable.

Proof. This follows by contradiction: if {|Tx|p : ‖x‖ ≤ 1} is not equi-integrable,
then (see [15] p. 137) there exists δ > 0, a disjoint sequence of Borel sets (Ak) and
xk with ‖xk‖ ≤ 1 so that

∫
Ak
|Txk|pdµ > δp. Then by an application of Khintchine’s

inequality we have for suitable c > 0,

Np ≥ Ave
εk=±1

‖
N∑
k=1

εkxk‖p

≥ cp
∫

(
N∑
k=1

|Txk|2)
p
2 dµ

≥ cpNδp,

and for large enough N this gives a contradiction. �

Lemma 2.6. Let F : Rm+1 → R be a continuous function. Suppose g1, · · · , gm
are measurable functions on (Ω, µ) and that (fn)∞n=1 is any sequence of identically
distributed independent random variables with common distribution ρ = ρfn . If
the functions F (g1, · · · , gm, fn) are equi-integrable for n = 1, 2, · · ·, then F (g1, · · · ,
gm, f0) is integrable and

(2.1) lim
n→∞

∫
F (g1, · · · , gm, fn)dµ =

∫
Ω

∫
R
F (g1, · · · , gm, t)dρ(t)dµ.
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Proof. First, suppose that F, g1, · · · , gm, fn are all bounded functions. Note that
for a1, · · · , am, b = 0, 1, 2, · · · , we have

lim
n→∞

∫
ga1

1 ga2
2 · · · gamm f bndµ =

(∫
ga1

1 · · · gamm dµ

)(∫
tbdρ(t)

)
since the f bn converge weakly in L2 to the constant

∫
f bndµ. Hence for any polynomial

P ,

lim
n→∞

∫
P (g1, · · · , gm, fn)dµ =

∫
Ω

∫
R
P (g1, · · · , gm, t)dρ(t)dµ.

If |fn|, |g1|, · · · , |gm| ≤ M and ε > 0, we approximate F on the cube [−M,M ]m+1

by a polynomial P so that the range of

|P (x1, · · · , xm, y)− F (x1, · · · , xm, y)| ≤ ε |xj | ≤M, 1 ≤ j ≤ m, |y| ≤M.

Then it follows that we have∣∣∣∣ lim
n→∞

∫
F (g1, · · · , gm, fn)dµ−

∫
Ω

∫
R
F (g1, · · · , gm, t)dρ(t)dµ

∣∣∣∣ ≤ ε.
Letting ε→ 0 we obtain (2.1) under the assumption that f, g1, · · · , gm are bounded.

Next assume that |F | is bounded by M , but allow f and gj to be unbounded.
For any m ∈ N, let fk,n = fnχ|fn|≤k, and gk,j = gχ|g|≤k. Then for n ≥ 0,∣∣∣∣∫ F (g1, · · · , gm, fn)dµ−

∫
F (gk,1, · · · , gk,m, fk,n)dµ

∣∣∣∣
≤ 2M

µ(|f0| > k) +
m∑
j=1

µ(|gj | > k)

 .

Since we have (2.1) for bounded fn, g1, · · · , gm, we obtain the result in general for
F bounded.

Now assume that F (g1, · · · , gm, fn) is equi-integrable and let Fk = min(F, k) if
F ≥ 0 and Fk = max(F,−k) if F ≤ 0. Then

lim
n→∞

∫
Ω

|Fk(g1, · · · , gm, fn)|dµ =
∫

Ω

∫
R
|Fk(g1, · · · , gm, t)|dρ(t)dµ,

and it follows that F (g1, · · · , gm, t) is integrable with respect to µ×ρ. We also have

lim
k→∞

∫
Fk(g1, · · · , gm, fn)dµ =

∫
F (g1, · · · , gm, fn)dµ

uniformly in k, so that the general result follows by uniform convergence. �

3. The spaces Ep for 0 < p < 1

Lemma 3.1. Suppose 0 < p < 1. Then for −π/2 < θ ≤ π/2,

(3.1)
1
π

∫ ∞
−∞

|x cos θ + sin θ|p
1 + x2

dx =
cospθ

cos pπ/2
.

Proof. We consider the case θ 6= 0 of (3.1); the other cases are similar. We define
f(z) to be the branch of (z cos θ+ sin θ)p defined in C \ {− tan θ− it : t ≥ 0} such
that f(x) is real and positive if x ≥ − tan θ. Now by a routine contour integration
we have

1
π

∫ ∞
−∞

f(x)
1 + x2

dx = eip(
π
2−θ).
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Taking imaginary parts gives

1
π

∫ − tan θ

−∞

|x cos θ + sin θ|p
1 + x2

dx =
sin p(π2 − θ)

sin pπ
.

Taking real parts and substituting in, we have

1
π

∫ ∞
− tan θ

|x cos θ + sin θ|p
1 + x2

dx = cos p(
π

2
− θ)− cot pπ sin p(

π

2
− θ) =

sin p(π2 + θ)
sin pπ

.

Combining gives (3.1). �

Lemma 3.2. Let M : C → [0,∞) be a continuous nonnegative function. Suppose
M is subharmonic and positively homogeneous (i.e., M(az) = aM(z) for a ≥ 0).
Then M is convex.

Proof. First, we assume that M is C2 on C \ {0}. Then for any z = x+ iy 6= 0 the
second derivative of M is given by a symmetric 2× 2 matrix that has rank at most
one. To see this, note that the equation M(az) = aM(z) implies on differentiation
by a, and then by setting a = 1 that

x
∂M

∂x
+ y

∂M

∂y
= M.

Differentiating again with respect to x and y gives

x
∂2M

∂x2
+ y

∂2M

∂x∂y
= 0,

x
∂2M

∂x∂y
+ y

∂2M

∂y2
= 0,

and hence the second derivative has determinant zero. Thus if ∇2M ≥ 0, the
second derivative of M is nonnegative at z. This shows that M is convex.

If M is not C2, then we may approximate it by functions of the form

M̃(z) =
∫ 2π

0

ϕ(θ)M(zeiθ)dθ

where ϕ is smooth and nonnegative. Each such function M̃ is convex and so M is
convex. �

Now, for 0 < p < 1, let us define a function Np(x, y) on R2 by setting

Np(x, y) = r

(
cos pθ
cos pπ2

) 1
p

,

whenever x ≥ 0 and x = r cos θ, y = r sin θ with r ≥ 0, −π2 ≤ θ ≤
π
2 . Then extend

Np to be an even function, i.e., so that Np(x, y) = Np(−x,−y) whenever x ≤ 0.
Note also that Np(0, 1) = 1 but Np(1, 0) = (sec pπ2 )

1
p .

Lemma 3.3. If 0 < p < 1, Np is an absolute norm on R2; i.e., Np is a norm so
that Np(x, y) = Np(|x|, |y|).

Proof. Let u(z) = rp cos pθ when z = reiθ with −π < θ ≤ π. Then u is subharmonic
and Np(x, y) = (sec pπ2 )

1
p (max(u(z), u(−z)))

1
p where z = x+iy. Hence Np is a norm

by Lemma 3.2. The fact that Np is absolute is trivial. �
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We now define a Banach space Ep for 0 < p < 1. We define this to be the space
`1 ⊕ R with the norm ‖(x, y)‖Ep = Np(‖x‖, |y|).

Let (fn) be a sequence of independent 1-stable random variables on some proba-
bility space (Ω, µ) so that

∫
eitfndµ = e−|t|. Then for any finitely nonzero sequence

(ξn)∞n=1 and any η we have

‖
∞∑
n=1

ξnfn + η‖p = Np(
∞∑
n=1

|ξn|, |η|).

It follows that:

Proposition 3.4. Ep is isometric to a closed subspace of Lp for 0 < p < 1.

Next, we show that Ep cannot be embedded into Lr for any p < r < 1. To do
this we introduce the quantity

ap = lim
t→0

N((cos pπ2 )
1
p t, 1)− 1
t

= (cos pπ2 )
1
p−1 sin pπ

2 .

Proposition 3.5. Suppose 0 < p < 1 and that (gn) is a sequence in Lp(Ω, µ) that
is 1-equivalent to the standard unit vector basis of `1. Suppose h ∈ Lp and ‖h‖p = 1.
Then

lim
n→∞

‖h+ tgn‖p ≥ Np((cos pπ2 )
1
p t, 1) ≥ 1 + ap|t|.

Proof. It follows from Theorem 2.3 and Corollary 2.4 that it suffices to consider
the case when gn = (cos pπ2 )

1
p fn where (fn) is a sequence of independent 1-stable

random variables with
∫
eitfndµ = e−|t|. We now apply Lemma 2.6:

lim
n→∞

∫
|h+ τfn|pdµ =

1
π

∫
Ω

∫ ∞
−∞

|h(ω) + τx|p
1 + x2

dx dµ(ω)

=
∫
Np(τ, h(ω))pdµ(ω).

Now since Np is an absolute norm,∫
Np(τ, 1)1−pNp(τ, h(ω))pdµ ≥

∫
Np(τ, |h(ω)|p)dµ

≥ Np(τ, 1)

and hence ∫
Np(τ, h(ω))pdµ(ω) ≥ Np(τ, 1)p.

This gives us the first inequality.
For the second part observe that

lim
t→0+

Np((cos pπ2 )
1
p t, 1)− 1

t
= ap

and use the fact that Np is a norm. �

Theorem 3.6. For 0 < p < 1 the space Ep is a Banach space isometric to a
subspace of Lp, which is not isometric to a subspace of any Lr for r > p.
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Proof. This is immediate from Proposition 3.5 once we show that the function
p → ap is strictly increasing on (0, 1). Since Lr embeds into Lp when p < r and
Er embeds into Lr, it is clear from Proposition 3.5 that p→ ap is increasing. This
function is non-constant since limp→1 ap = 1 and a1/2 = 1

2 . Since it is a real-analytic
function, it must therefore be strictly increasing. �

Remark. It would be interesting to estimate the smallest integer n = n(r, p)
so that the n-dimensional subspace of Ep spanned by the constant function and
f1, · · · , fn−1 fails to embed into Lr. We also mention that the span of the constant
function and the sequence |fn| is isomorphic to the Ribe space [2]; for similar
examples involving p-stable random variables see [1].

4. Perturbed Hilbert spaces

In this section we give an alternative construction of examples that are isomor-
phic but not isometric to Hilbert spaces.

Lemma 4.1. Suppose 0 < p < 1. Then there exists ε(p) > 0 so that if 0 < a < ε(p),
the following equation defines an absolute norm on R2:

(4.1) N(x, y)p =
1
2

(x2 + (1 + a)
2
p y2)

p
2 + (x2 + (1− a)

2
p y2)

p
2 .

Proof. This follows easily from Lemma 3.2 since, if a is small enough, (x2 + (1 +
a)

2
p y2)

p
2 and (x2 + (1− a)

2
p y2)

p
2 are both subharmonic. �

Theorem 4.2. Suppose 0 < p < 1 and N is given by (4.1). Then the space
X = `2 ⊕N `2 embeds into Lp but does not embed into any space Lr where r > p.

Proof. We first establish an embedding of X into Lp(Ω, µ). Let (en) and (e′n) be
the canonical orthonormal bases of the two factors of X. Let (fn), (gn) be two
mutually independent sequences of independent normalized Gaussians; we denote
by γ their common distribution so that dγ(t) = (2π)−

1
2 exp(− t22 )dt. Let E be a

Borel set independent of (fn, gn) with µE = 1
2 . Let h = (1 + a)

1
pχE + (1− a)

1
pχẼ .

We define our embedding by

Ten = b1fn,

T e′n = b1hgn

where b−p1 = ‖fn‖pp =
∫
|t|pdγ(t). We can and do assume that T is of canonical

type. Suppose (ξn), (ηn) are two finitely nonzero sequences of reals. Then∫
Ω

|
∞∑
n=1

ξnTen +
∞∑
n=1

ηnTe
′
n|pdµ = bp1

∫
Ω

|
∞∑
n=1

ξnfn + h
∞∑
n=1

ηngn|pdµ

=
∫

Ω

(
∞∑
n=1

|ξ|2 + h2
∞∑
n=1

η2
n)

p
2 dµ

= N((
∞∑
n=1

ξ2
n)

1
2 , (

∞∑
n=1

η2
n)

1
2 )p.

Now assume X also embeds isometrically into Lr for some p < r < 2. Then X
can also be embedded into Lp by an r-stable embedding S. In view of Theorem 2.3,
it may be assumed that S is obtained from T by a change of density, i.e., there exists
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a nonvanishing Borel function ϕ with ‖ϕ‖p = 1 such that S : X → Lp(Ω, |ϕ|pdµ)
is given by Sx = ϕ−1Tx. Fix any 0 < q < p. It follows for an appropriate choice
of b2 that the map S′x = b2Sx embeds X into Lq(Ω, |ϕ|pdµ). Now we make a
further change of density. Let bq3 =

∫
Ω
|ϕ|p−qdµ and define ψ = b−1

3 ϕ−1. Let
R : X → Lq(Ω, |ψ|q|ϕ|pdµ) by Rx = ψ−1S′x. Then Rx = b3b2Tx. Let b0 = b3b2b1.

We now use Lemma 2.5 and Lemma 2.6. Suppose x, y ∈ R.

N(x, y)q = bq0 lim
m→∞

lim
n→∞

∫
Ω

|xfm + yhgn|q|ϕ|p|ψ|qdµ

= bq0 lim
m→∞

∫
Ω

∫
R
|xfm + yth|qdγ(t)|ϕ|p|ψ|qdµ

= bq0

∫
Ω

∫
R

∫
R
|xs+ yth|qdγ(s)dγ(t)|ϕ|p|ψ|qdµ

= bq0

∫
R
|t|qdγ(t)

∫
Ω

(x2 + y2h2)
q
2 |ϕ|p|ψ|qdµ.

Since h takes only the values (1 ± a)
1
p , this implies that we can find positive

constants c1, c2 so that for all x, y,

N(x, y)q = c1(x2 + (1− a)
2
p y2)

q
2 + c2(x2 + (1 + a)

2
p y2)

q
2 .

Since N(1, 0) = N(0, 1) = 1, this requires

c1 + c2 = 1,

c1(1 − a)
q
p + c2(1 + a)

q
p = 1.

Note also that

lim
t→0

N(1, t)2 − 1
t2

=
1
2

((1 + a)
2
p + (1− a)

2
p )

= c1(1 − a)
2
p + c2(1 + a)

2
p .

It is clearly impossible to satisfy these three conditions. This contradiction shows
that we cannot embed X into Lr for any r > p. �
Remark. It is worth remarking in this context that it is unknown if there is an
infinite-dimensional space X that embeds isometrically into Lp and Lr where p <
2 < r and is isomorphic but not isometric to a Hilbert space (see [5]).
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