BANACH SPACES EMBEDDING ISOMETRICALLY INTO L_{p} WHEN $0<p<1$

N. J. KALTON AND A. KOLDOBSKY

(Communicated by Jonathan M. Borwein)

Abstract

For $0<p<1$ we give examples of Banach spaces isometrically embedding into L_{p} but not into any L_{r} with $p<r \leq 1$.

1. Introduction

It is a consequence of the Maurey-Nikishin factorization theory that every Banach space that embeds isomorphically into $L_{p}(0,1)$ for some $0<p<1$ embeds into every $L_{p}(0,1)$ for $0<p<1$ (see [10, [11] and [15] pp. 257ff.). It is, however, an open problem whether every Banach space that embeds isomorphically into L_{p} for some $0<p<1$ must also embed isomorphically into L_{1}. This problem was formulated by Kwapien [8] in 1969; see [4] where it is shown that X embeds into L_{1} if and only if $\ell_{1}(X)$ embeds into L_{p} for some $p<1$. The isometric version of the problem asks: if X isometrically embeds into L_{p} for some $p<1$ does it follow that X isometrically embeds into L_{1} ? This problem was solved negatively by the second author in 1996 [6] who showed that there is a Banach space embedding into $L_{1 / 2}$ but not into L_{1}. The construction also yielded an example of a Banach space embedding into $L_{1 / 4}$ but not $L_{1 / 2}$. Later, J. Borwein and the Center for Computational Mathematics at Simon Fraser University (unpublished) showed by computer methods that this algorithm yields examples of Banach spaces embedding into $L_{a / 64}$ but not into $L_{(a+1) / 64}$ for $a=1,2, \cdots, 63$.

The purpose of this note is to show that for every $0<p<1$ we can find a (real) Banach space X embedding isometrically into L_{p} but not into any L_{r} for $p<r \leq 1$. The example constructed in [6] is finite-dimensional and is obtained by a perturbation method. By contrast, our spaces are infinite-dimensional and we use probabilistic ideas to construct them. It is, of course, true that an infinite-dimensional space X embeds isometrically into L_{p} if and only if every finite-dimensional subspace does, and so our methods also imply the existence of finite-dimensional examples.

We start in Section 2 by discussing the Plotkin-Rudin Equimeasurability and Uniqueness Theorems, which we need for our applications. In Section 3 we construct a very basic example, which we denote by E_{p}. This is the subspace of $L_{p}(0,1)$

[^0]spanned by a constant function and a sequence of symmetric 1-stable random variables. It turns out that this space is a Banach space that is an absolute direct sum of a one-dimensional space and an isometric copy of ℓ_{1}. The spaces E_{p} provide our first family of examples. We show this by establishing that they have a certain extremal property (see Proposition 3.5).

In Section 4 we provide a second family of examples that are renormings of Hilbert spaces. For each $0<p<1$ we construct an example of such a space X_{p} that embeds isometrically into L_{p} but not into any L_{r} for $r>p$. These spaces are absolute direct sums of two infinite-dimensional Hilbert spaces. We observe that these examples have the additional property that no subspace of finite codimension can be embedded into any L_{r} where $r>p$.

2. Remarks on the Plotkin-Rudin theorem

In this section we discuss some essentially known results based on the PlotkinRudin theorems on isometric embeddings ([12, [13], [14]). See [7] for a discussion of these results.

We will always work in the setting of a Polish space Ω equipped with a nonatomic Borel probability measure μ; we then say that (Ω, μ) is a standard probability space. All functions are assumed to be Borel; if f_{1}, \cdots, f_{n} are real Borel functions, then their joint distribution is the Borel measure on \mathbb{R}^{n} given by $\mu \circ\left(f_{1}, \cdots, f_{n}\right)^{-1}$, and this will be denoted by $\rho_{f_{1}, \cdots, f_{n}}$.

We say that if $\left(\Omega_{1}, \mu_{1}\right)$ and $\left(\Omega_{2}, \mu_{2}\right)$ are two standard probability spaces, then a Borel map $\sigma: \Omega_{1} \rightarrow \Omega_{2}$ is a measure isomorphism if there is a Borel map $\tau: \Omega_{2} \rightarrow \Omega_{1}$ (an essential inverse) such that

- $\tau \sigma\left(\omega_{1}\right)=\omega_{1}, \mu_{1}$-a.e.;
- $\sigma \tau\left(\omega_{2}\right)=\omega_{2}, \mu_{2}$-a.e.;
- $\mu_{2} \circ \tau^{-1}=\mu_{1}$ and $\mu_{1}=\mu_{2} \circ \sigma^{-1}$.

If σ is a measure isomorphism, then it may be modified on a set of μ_{1}-measure zero to become a Borel isomorphism (i.e., an invertible Borel map). If (Ω, μ) is a standard probability space, then there is always a Borel isomorphism $\sigma: \Omega \rightarrow[0,1]$ such that $\lambda=\mu \circ \sigma^{-1}$ where λ is Lebesgue measure.

We shall need the following fact.
Proposition 2.1. Let (Ω, μ) be a standard probability space and suppose K is a Polish space. Suppose $\sigma: \Omega \rightarrow K$ is a Borel map and $\nu=\mu \circ \sigma^{-1}$. Suppose there exists a Borel function f on Ω such that $\rho_{f}=\mu \circ f^{-1}$ is nonatomic and f is independent of σ (i.e., f is independent of the σ-algebra of sets of the form $\sigma^{-1} B$ for B a Borel subset of $K)$. Then there is a Borel map $\tau: \Omega \rightarrow[0,1]$ so that $\sigma \times \tau$ is a measure isomorphism of Ω onto $(K \times[0,1], \nu \times \lambda)$.

Proof. This is surely well known, but we do not know an explicit reference. It follows, for example, from Proposition 2.2 of [3] once one observes that σ is antiinjective (i.e., if B is a Borel set such that σ is injective on B, then $\mu(B)=0)$). It suffices by Lusin's theorem to consider the case when B is compact and σ is continuous on B; then σ is a Borel isomorphism of B onto $\sigma(B)$. To see this, suppose C_{1}, \cdots, C_{N} form a partition of \mathbb{R} so that $\rho_{f}\left(C_{k}\right)=N^{-1}$. Let $B_{k}=B \cap f^{-1}\left(C_{k}\right)$. Then $\sigma\left(B_{k}\right)$ is Borel and $\mu\left(f^{-1}\left(C_{k}\right) \cap \sigma^{-1} \sigma\left(B_{k}\right)\right)=N^{-1} \nu\left(\sigma\left(B_{k}\right)\right)$. Hence $\mu(B) \leq$ $N^{-1} \sum_{k=1}^{N} \nu\left(\sigma\left(B_{k}\right)\right) \leq N^{-1}$.

Let X be a separable normed space, and $T: X \rightarrow L_{p}(\Omega, \mu)$ an isometric embedding. We say that T is in canonical position if it satisfies the following two conditions:

- There exists $x \in X$ so that $T x$ has full support, i.e., $\mu(T x \neq 0)=1$.
- There exists a function f with ρ_{f} nonatomic such that f is independent of the smallest σ-algebra Σ such that each $T x$ is Σ-measurable.
It is well known that if X embeds into L_{p}, then there is also an embedding in canonical position.

Let us say that two embeddings $S: X \rightarrow L_{p}\left(\Omega_{1}, \mu_{1}\right)$ and $T: X \rightarrow L_{p}\left(\Omega_{2}, \mu_{2}\right)$ are equivalent if

$$
\rho_{S x_{1}, \cdots, S x_{n}}=\rho_{T x_{1}, \cdots, T x_{n}} \quad x_{1}, \cdots, x_{n} \in X
$$

Theorem 2.2 ([12], [13], [14]). (1) Suppose p is not an even integer and (Ω, μ_{1}) and $\left(\Omega_{2}, \mu_{2}\right)$ are two standard probability spaces. If $S: X \rightarrow L_{p}\left(\Omega, \mu_{1}\right)$ and $T:$ $X \rightarrow L_{p}\left(\Omega, \mu_{2}\right)$ are isometric embeddings such that for some x_{0} we have $S x_{0}=\chi_{\Omega_{1}}$ and $T x_{0}=\chi_{\Omega_{2}}$, then S and T are equivalent.
(2) If, in addition, S and T are in canonical position, then there exists a measure isomorphism $\sigma: \Omega_{1} \rightarrow \Omega_{2}$ such that $\mu_{2}=\mu_{1} \circ \sigma^{-1}$ and $T x \circ \sigma=S x$ for $x \in X$.
Proof. (1) is the usual Plotkin-Rudin equimeasurability theorem [12], [13], [14], 7]. (2) is surely well known and follows directly from Proposition [2.1] Let us indicate one proof. Let $\left(x_{n}\right)$ be any dense sequence in X and define, for $j=1,2$, $\tau_{j}: \Omega_{j} \rightarrow \mathbb{R}^{\mathbb{N}}$ by $\tau_{1}\left(\omega_{1}\right)=\left(S x_{n}\left(\omega_{1}\right)\right)$ and $\tau_{2}\left(\omega_{2}\right)=\left(\left(T x_{n}\right)\left(\omega_{2}\right)\right)$. Then by (1) $\mu_{1} \circ \tau_{1}^{-1}=\mu_{2} \circ \tau_{2}^{-1}=\nu$, say. By Proposition 2.1 we can define Borel maps $\kappa_{j}: \Omega_{j} \rightarrow$ $[0,1]$ so that $\tau_{j} \times \kappa_{j}$ is a measure isomorphism of $\left(\Omega_{j}, \mu_{j}\right)$ onto $\left(\mathbb{R}^{\mathbb{N}} \times[0,1], \nu \times \lambda\right)$. The map σ is then the composition $\alpha\left(\tau_{1} \times \kappa_{1}\right)$ where α is the essential inverse of $\tau_{2} \times \kappa_{2}$.

If $T: X \rightarrow L_{p}(\Omega, \mu)$ is an isometric embedding, then we can always construct a new embedding by a change of density. If φ is a nonvanishing Borel function, and $\int|\varphi|^{p} d \mu=1$, we define $d \nu=|\varphi|^{p} d \mu$ and $T^{\prime} x=\varphi^{-1} T x$; then $T^{\prime}: X \rightarrow L_{p}(\Omega, \nu)$ is a new isometric embedding. We then say that T^{\prime} is obtained from T by a change of density.

Theorem 2.3. Suppose p is not an even integer and $S: X \rightarrow L_{p}(\Omega, \mu)$ is an isometric embedding of canonical type. Then, if $T: X \rightarrow L_{p}\left(\Omega_{1}, \mu_{1}\right)$ is any other isometric embedding, there exists a nonvanishing Borel function φ so that T^{\prime} is equivalent to T where $T^{\prime}: X \rightarrow L_{p}\left(\Omega,|\varphi|^{p} d \mu\right)$ is given by $T^{\prime} x=\varphi^{-1} S x$. (Thus T is obtained from S by a change of density.)

Proof. We assume S is also of canonical type. Pick any x_{0} with $\left\|x_{0}\right\|=1$ so that $S x_{0}=f$ and $T x_{0}=g$ have full support. Consider $V_{1} x=f^{-1} S x$ and $V_{2} x=$ $g^{-1} T x$. Then $V_{1}: X \rightarrow L_{p}\left(\Omega,|f|^{p} d \mu\right)$ and $V_{2}: X \rightarrow L_{p}\left(\Omega_{1},|g|^{p} d \mu_{1}\right)$ are isometric embeddings with $V_{1} x_{0}=\chi_{\Omega}$ and $V_{2} x_{0}=\chi_{\Omega_{1}}$. It follows that there is a measure isomorphism $\sigma: \Omega \rightarrow \Omega_{1}$ so that $|g|^{p} \mu_{1}=|f|^{p} \mu \circ \sigma^{-1}$ and $V_{1} x=V_{2} x \circ \sigma$. Now $T x \circ \sigma=g \circ \sigma V_{2} x \circ \sigma=g \circ \sigma f^{-1} S x$, and if B is a Borel subset of \mathbb{R}^{n} and $x_{1}, \cdots, x_{n} \in$ X, then

$$
\mu_{1}\left(\left(T x_{1}, \cdots, T x_{n}\right) \in B\right)=\int|g \circ \sigma|^{-p}|f|^{p} \chi_{\left(\left(T x_{1} \circ \sigma, \cdots, T x_{n} \circ \sigma\right) \in B\right)} d \mu
$$

and the conclusion follows with $\varphi=f(g \circ \sigma)^{-1}$.

Corollary 2.4. Let X be a (separable) Banach space that embeds into L_{p} where $p<1$. Let E be a subspace of X and suppose $T: E \rightarrow L_{p}(\Omega, \mu)$ is a given isometric embedding. Then there is an isometric embedding $S: X \rightarrow L_{p}\left(\Omega_{1}, \mu_{1}\right)$ such that the restriction of S to E is equivalent to T.

Proof. Let $R: X \rightarrow L_{p}(\Omega, \mu)$ be any isometric embedding of canonical type. We note that R is also of canonical type when restricted to E. In fact, it is only necessary to note that for every $x \in X, R x$ has full support in Ω. Indeed, if $R x_{0}$ has full support, then

$$
\int\left|R x+t R x_{0}\right|^{p} d \mu \geq\|x\|^{p}+|t|^{p} \int_{R x=0}\left|R x_{0}\right|^{p} d \mu
$$

which contradicts the convexity of the norm unless $R x$ has full support. It follows that we can make a change of density so that the new embedding S restricted to E is equivalent to T.

A random variable f is called symmetric p-stable $0<p<2$ if the Fourier transform of ρ_{f} is of the form $e^{-c|t|^{p}}$ for some $c>0$. We recall that there is an isometric embedding T of $L_{r}(0,1)$ into $L_{p}(0,1)$ when $0<p<r<2$ so that each $T f$ has a symmetric r-stable distribution. (See the remarks on p. 213 of [9].) We will call this the r-stable embedding. A particular case is that ℓ_{1} can be embedded into L_{p} for $p<1$ by mapping the basic vectors to a sequence of independent 1 -stable random variables.

We will also need the following standard lemmas.
Lemma 2.5. Suppose X is a Banach space and $T: X \rightarrow L_{p}(\Omega, \mu)$ is an isometric embedding where $0<p<1$. Then $\left\{|T x|^{p}:\|x\| \leq 1\right\}$ is equi-integrable.

Proof. This follows by contradiction: if $\left\{|T x|^{p}:\|x\| \leq 1\right\}$ is not equi-integrable, then (see [15] p. 137) there exists $\delta>0$, a disjoint sequence of Borel sets $\left(A_{k}\right)$ and x_{k} with $\left\|x_{k}\right\| \leq 1$ so that $\int_{A_{k}}\left|T x_{k}\right|^{p} d \mu>\delta^{p}$. Then by an application of Khintchine's inequality we have for suitable $c>0$,

$$
\begin{aligned}
N^{p} & \geq \underset{\epsilon_{k}= \pm 1}{\operatorname{Ave}}\left\|\sum_{k=1}^{N} \epsilon_{k} x_{k}\right\|^{p} \\
& \geq c^{p} \int\left(\sum_{k=1}^{N}\left|T x_{k}\right|^{2}\right)^{\frac{p}{2}} d \mu \\
& \geq c^{p} N \delta^{p}
\end{aligned}
$$

and for large enough N this gives a contradiction.
Lemma 2.6. Let $F: \mathbb{R}^{m+1} \rightarrow \mathbb{R}$ be a continuous function. Suppose g_{1}, \cdots, g_{m} are measurable functions on (Ω, μ) and that $\left(f_{n}\right)_{n=1}^{\infty}$ is any sequence of identically distributed independent random variables with common distribution $\rho=\rho_{f_{n}}$. If the functions $F\left(g_{1}, \cdots, g_{m}, f_{n}\right)$ are equi-integrable for $n=1,2, \cdots$, then $F\left(g_{1}, \cdots\right.$, g_{m}, f_{0}) is integrable and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int F\left(g_{1}, \cdots, g_{m}, f_{n}\right) d \mu=\int_{\Omega} \int_{\mathbb{R}} F\left(g_{1}, \cdots, g_{m}, t\right) d \rho(t) d \mu \tag{2.1}
\end{equation*}
$$

Proof. First, suppose that $F, g_{1}, \cdots, g_{m}, f_{n}$ are all bounded functions. Note that for $a_{1}, \cdots, a_{m}, b=0,1,2, \cdots$, we have

$$
\lim _{n \rightarrow \infty} \int g_{1}^{a_{1}} g_{2}^{a_{2}} \cdots g_{m}^{a_{m}} f_{n}^{b} d \mu=\left(\int g_{1}^{a_{1}} \cdots g_{m}^{a_{m}} d \mu\right)\left(\int t^{b} d \rho(t)\right)
$$

since the f_{n}^{b} converge weakly in L_{2} to the constant $\int f_{n}^{b} d \mu$. Hence for any polynomial P,

$$
\lim _{n \rightarrow \infty} \int P\left(g_{1}, \cdots, g_{m}, f_{n}\right) d \mu=\int_{\Omega} \int_{\mathbb{R}} P\left(g_{1}, \cdots, g_{m}, t\right) d \rho(t) d \mu
$$

If $\left|f_{n}\right|,\left|g_{1}\right|, \cdots,\left|g_{m}\right| \leq M$ and $\epsilon>0$, we approximate F on the cube $[-M, M]^{m+1}$ by a polynomial P so that the range of

$$
\left|P\left(x_{1}, \cdots, x_{m}, y\right)-F\left(x_{1}, \cdots, x_{m}, y\right)\right| \leq \epsilon \quad\left|x_{j}\right| \leq M, 1 \leq j \leq m,|y| \leq M
$$

Then it follows that we have

$$
\left|\lim _{n \rightarrow \infty} \int F\left(g_{1}, \cdots, g_{m}, f_{n}\right) d \mu-\int_{\Omega} \int_{\mathbb{R}} F\left(g_{1}, \cdots, g_{m}, t\right) d \rho(t) d \mu\right| \leq \epsilon
$$

Letting $\epsilon \rightarrow 0$ we obtain (2.1) under the assumption that f, g_{1}, \cdots, g_{m} are bounded.
Next assume that $|F|$ is bounded by M, but allow f and g_{j} to be unbounded. For any $m \in \mathbb{N}$, let $f_{k, n}=f_{n} \chi_{\left|f_{n}\right| \leq k}$, and $g_{k, j}=g \chi_{|g| \leq k}$. Then for $n \geq 0$,

$$
\begin{aligned}
& \left|\int F\left(g_{1}, \cdots, g_{m}, f_{n}\right) d \mu-\int F\left(g_{k, 1}, \cdots, g_{k, m}, f_{k, n}\right) d \mu\right| \\
& \leq 2 M\left(\mu\left(\left|f_{0}\right|>k\right)+\sum_{j=1}^{m} \mu\left(\left|g_{j}\right|>k\right)\right)
\end{aligned}
$$

Since we have (2.1) for bounded $f_{n}, g_{1}, \cdots, g_{m}$, we obtain the result in general for F bounded.

Now assume that $F\left(g_{1}, \cdots, g_{m}, f_{n}\right)$ is equi-integrable and let $F_{k}=\min (F, k)$ if $F \geq 0$ and $F_{k}=\max (F,-k)$ if $F \leq 0$. Then

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left|F_{k}\left(g_{1}, \cdots, g_{m}, f_{n}\right)\right| d \mu=\int_{\Omega} \int_{\mathbb{R}}\left|F_{k}\left(g_{1}, \cdots, g_{m}, t\right)\right| d \rho(t) d \mu
$$

and it follows that $F\left(g_{1}, \cdots, g_{m}, t\right)$ is integrable with respect to $\mu \times \rho$. We also have

$$
\lim _{k \rightarrow \infty} \int F_{k}\left(g_{1}, \cdots, g_{m}, f_{n}\right) d \mu=\int F\left(g_{1}, \cdots, g_{m}, f_{n}\right) d \mu
$$

uniformly in k, so that the general result follows by uniform convergence.

$$
\text { 3. THE SPACES } E_{p} \text { FOR } 0<p<1
$$

Lemma 3.1. Suppose $0<p<1$. Then for $-\pi / 2<\theta \leq \pi / 2$,

$$
\begin{equation*}
\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{|x \cos \theta+\sin \theta|^{p}}{1+x^{2}} d x=\frac{\cos p \theta}{\cos p \pi / 2} \tag{3.1}
\end{equation*}
$$

Proof. We consider the case $\theta \neq 0$ of (3.1); the other cases are similar. We define $f(z)$ to be the branch of $(z \cos \theta+\sin \theta)^{p}$ defined in $\mathbb{C} \backslash\{-\tan \theta-i t: t \geq 0\}$ such that $f(x)$ is real and positive if $x \geq-\tan \theta$. Now by a routine contour integration we have

$$
\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{f(x)}{1+x^{2}} d x=e^{i p\left(\frac{\pi}{2}-\theta\right)}
$$

Taking imaginary parts gives

$$
\frac{1}{\pi} \int_{-\infty}^{-\tan \theta} \frac{|x \cos \theta+\sin \theta|^{p}}{1+x^{2}} d x=\frac{\sin p\left(\frac{\pi}{2}-\theta\right)}{\sin p \pi}
$$

Taking real parts and substituting in, we have

$$
\frac{1}{\pi} \int_{-\tan \theta}^{\infty} \frac{|x \cos \theta+\sin \theta|^{p}}{1+x^{2}} d x=\cos p\left(\frac{\pi}{2}-\theta\right)-\cot p \pi \sin p\left(\frac{\pi}{2}-\theta\right)=\frac{\sin p\left(\frac{\pi}{2}+\theta\right)}{\sin p \pi}
$$

Combining gives (3.1).
Lemma 3.2. Let $M: \mathbb{C} \rightarrow[0, \infty)$ be a continuous nonnegative function. Suppose M is subharmonic and positively homogeneous (i.e., $M(a z)=a M(z)$ for $a \geq 0$). Then M is convex.

Proof. First, we assume that M is C^{2} on $\mathbb{C} \backslash\{0\}$. Then for any $z=x+i y \neq 0$ the second derivative of M is given by a symmetric 2×2 matrix that has rank at most one. To see this, note that the equation $M(a z)=a M(z)$ implies on differentiation by a, and then by setting $a=1$ that

$$
x \frac{\partial M}{\partial x}+y \frac{\partial M}{\partial y}=M
$$

Differentiating again with respect to x and y gives

$$
\begin{aligned}
& x \frac{\partial^{2} M}{\partial x^{2}}+y \frac{\partial^{2} M}{\partial x \partial y}=0 \\
& x \frac{\partial^{2} M}{\partial x \partial y}+y \frac{\partial^{2} M}{\partial y^{2}}=0
\end{aligned}
$$

and hence the second derivative has determinant zero. Thus if $\nabla^{2} M \geq 0$, the second derivative of M is nonnegative at z. This shows that M is convex.

If M is not C^{2}, then we may approximate it by functions of the form

$$
\tilde{M}(z)=\int_{0}^{2 \pi} \varphi(\theta) M\left(z e^{i \theta}\right) d \theta
$$

where φ is smooth and nonnegative. Each such function \tilde{M} is convex and so M is convex.

Now, for $0<p<1$, let us define a function $N_{p}(x, y)$ on \mathbb{R}^{2} by setting

$$
N_{p}(x, y)=r\left(\frac{\cos p \theta}{\cos \frac{p \pi}{2}}\right)^{\frac{1}{p}}
$$

whenever $x \geq 0$ and $x=r \cos \theta, y=r \sin \theta$ with $r \geq 0,-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$. Then extend N_{p} to be an even function, i.e., so that $N_{p}(x, y)=N_{p}(-x,-y)$ whenever $x \leq 0$. Note also that $N_{p}(0,1)=1$ but $N_{p}(1,0)=\left(\sec \frac{p \pi}{2}\right)^{\frac{1}{p}}$.
Lemma 3.3. If $0<p<1, N_{p}$ is an absolute norm on \mathbb{R}^{2}; i.e., N_{p} is a norm so that $N_{p}(x, y)=N_{p}(|x|,|y|)$.

Proof. Let $u(z)=r^{p} \cos p \theta$ when $z=r e^{i \theta}$ with $-\pi<\theta \leq \pi$. Then u is subharmonic and $N_{p}(x, y)=\left(\sec \frac{p \pi}{2}\right)^{\frac{1}{p}}(\max (u(z), u(-z)))^{\frac{1}{p}}$ where $z=x+i y$. Hence N_{p} is a norm by Lemma 3.2. The fact that N_{p} is absolute is trivial.

We now define a Banach space E_{p} for $0<p<1$. We define this to be the space $\ell_{1} \oplus \mathbb{R}$ with the norm $\|(x, y)\|_{E_{p}}=N_{p}(\|x\|,|y|)$.

Let $\left(f_{n}\right)$ be a sequence of independent 1 -stable random variables on some probability space (Ω, μ) so that $\int e^{i t f_{n}} d \mu=e^{-|t|}$. Then for any finitely nonzero sequence $\left(\xi_{n}\right)_{n=1}^{\infty}$ and any η we have

$$
\left\|\sum_{n=1}^{\infty} \xi_{n} f_{n}+\eta\right\|_{p}=N_{p}\left(\sum_{n=1}^{\infty}\left|\xi_{n}\right|,|\eta|\right)
$$

It follows that:
Proposition 3.4. E_{p} is isometric to a closed subspace of L_{p} for $0<p<1$.
Next, we show that E_{p} cannot be embedded into L_{r} for any $p<r<1$. To do this we introduce the quantity

$$
a_{p}=\lim _{t \rightarrow 0} \frac{N\left(\left(\cos \frac{p \pi}{2}\right)^{\frac{1}{p}} t, 1\right)-1}{t}=\left(\cos \frac{p \pi}{2}\right)^{\frac{1}{p}-1} \sin \frac{p \pi}{2} .
$$

Proposition 3.5. Suppose $0<p<1$ and that $\left(g_{n}\right)$ is a sequence in $L_{p}(\Omega, \mu)$ that is 1 -equivalent to the standard unit vector basis of ℓ_{1}. Suppose $h \in L_{p}$ and $\|h\|_{p}=1$. Then

$$
\lim _{n \rightarrow \infty}\left\|h+t g_{n}\right\|_{p} \geq N_{p}\left(\left(\cos \frac{p \pi}{2}\right)^{\frac{1}{p}} t, 1\right) \geq 1+a_{p}|t|
$$

Proof. It follows from Theorem 2.3 and Corollary 2.4 that it suffices to consider the case when $g_{n}=\left(\cos \frac{p \pi}{2}\right)^{\frac{1}{p}} f_{n}$ where $\left(f_{n}\right)$ is a sequence of independent 1 -stable random variables with $\int e^{i t f_{n}} d \mu=e^{-|t|}$. We now apply Lemma 2.6

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int\left|h+\tau f_{n}\right|^{p} d \mu & =\frac{1}{\pi} \int_{\Omega} \int_{-\infty}^{\infty} \frac{|h(\omega)+\tau x|^{p}}{1+x^{2}} d x d \mu(\omega) \\
& =\int N_{p}(\tau, h(\omega))^{p} d \mu(\omega)
\end{aligned}
$$

Now since N_{p} is an absolute norm,

$$
\begin{aligned}
\int N_{p}(\tau, 1)^{1-p} N_{p}(\tau, h(\omega))^{p} d \mu & \geq \int N_{p}\left(\tau,|h(\omega)|^{p}\right) d \mu \\
& \geq N_{p}(\tau, 1)
\end{aligned}
$$

and hence

$$
\int N_{p}(\tau, h(\omega))^{p} d \mu(\omega) \geq N_{p}(\tau, 1)^{p}
$$

This gives us the first inequality.
For the second part observe that

$$
\lim _{t \rightarrow 0+} \frac{N_{p}\left(\left(\cos \frac{p \pi}{2}\right)^{\frac{1}{p}} t, 1\right)-1}{t}=a_{p}
$$

and use the fact that N_{p} is a norm.
Theorem 3.6. For $0<p<1$ the space E_{p} is a Banach space isometric to a subspace of L_{p}, which is not isometric to a subspace of any L_{r} for $r>p$.

Proof. This is immediate from Proposition 3.5 once we show that the function $p \rightarrow a_{p}$ is strictly increasing on $(0,1)$. Since L_{r} embeds into L_{p} when $p<r$ and E_{r} embeds into L_{r}, it is clear from Proposition 3.5 that $p \rightarrow a_{p}$ is increasing. This function is non-constant since $\lim _{p \rightarrow 1} a_{p}=1$ and $a_{1 / 2}=\frac{1}{2}$. Since it is a real-analytic function, it must therefore be strictly increasing.

Remark. It would be interesting to estimate the smallest integer $n=n(r, p)$ so that the n-dimensional subspace of E_{p} spanned by the constant function and f_{1}, \cdots, f_{n-1} fails to embed into L_{r}. We also mention that the span of the constant function and the sequence $\left|f_{n}\right|$ is isomorphic to the Ribe space [2]; for similar examples involving p-stable random variables see [1].

4. Perturbed Hilbert spaces

In this section we give an alternative construction of examples that are isomorphic but not isometric to Hilbert spaces.
Lemma 4.1. Suppose $0<p<1$. Then there exists $\epsilon(p)>0$ so that if $0<a<\epsilon(p)$, the following equation defines an absolute norm on \mathbb{R}^{2} :

$$
\begin{equation*}
N(x, y)^{p}=\frac{1}{2}\left(x^{2}+(1+a)^{\frac{2}{p}} y^{2}\right)^{\frac{p}{2}}+\left(x^{2}+(1-a)^{\frac{2}{p}} y^{2}\right)^{\frac{p}{2}} \tag{4.1}
\end{equation*}
$$

Proof. This follows easily from Lemma 3.2 since, if a is small enough, $\left(x^{2}+(1+\right.$ $\left.a)^{\frac{2}{p}} y^{2}\right)^{\frac{p}{2}}$ and $\left(x^{2}+(1-a)^{\frac{2}{p}} y^{2}\right)^{\frac{p}{2}}$ are both subharmonic.

Theorem 4.2. Suppose $0<p<1$ and N is given by 4.1). Then the space $X=\ell_{2} \oplus_{N} \ell_{2}$ embeds into L_{p} but does not embed into any space L_{r} where $r>p$.

Proof. We first establish an embedding of X into $L_{p}(\Omega, \mu)$. Let $\left(e_{n}\right)$ and $\left(e_{n}^{\prime}\right)$ be the canonical orthonormal bases of the two factors of X. Let $\left(f_{n}\right),\left(g_{n}\right)$ be two mutually independent sequences of independent normalized Gaussians; we denote by γ their common distribution so that $d \gamma(t)=(2 \pi)^{-\frac{1}{2}} \exp \left(-\frac{t^{2}}{2}\right) d t$. Let E be a Borel set independent of $\left(f_{n}, g_{n}\right)$ with $\mu E=\frac{1}{2}$. Let $h=(1+a)^{\frac{1}{p}} \chi_{E}+(1-a)^{\frac{1}{p}} \chi_{\tilde{E}}$. We define our embedding by

$$
\begin{aligned}
& T e_{n}=b_{1} f_{n} \\
& T e_{n}^{\prime}=b_{1} h g_{n}
\end{aligned}
$$

where $b_{1}^{-p}=\left\|f_{n}\right\|_{p}^{p}=\int|t|^{p} d \gamma(t)$. We can and do assume that T is of canonical type. Suppose $\left(\xi_{n}\right),\left(\eta_{n}\right)$ are two finitely nonzero sequences of reals. Then

$$
\begin{aligned}
\int_{\Omega}\left|\sum_{n=1}^{\infty} \xi_{n} T e_{n}+\sum_{n=1}^{\infty} \eta_{n} T e_{n}^{\prime}\right|^{p} d \mu & =b_{1}^{p} \int_{\Omega}\left|\sum_{n=1}^{\infty} \xi_{n} f_{n}+h \sum_{n=1}^{\infty} \eta_{n} g_{n}\right|^{p} d \mu \\
& =\int_{\Omega}\left(\sum_{n=1}^{\infty}|\xi|^{2}+h^{2} \sum_{n=1}^{\infty} \eta_{n}^{2}\right)^{\frac{p}{2}} d \mu \\
& =N\left(\left(\sum_{n=1}^{\infty} \xi_{n}^{2}\right)^{\frac{1}{2}},\left(\sum_{n=1}^{\infty} \eta_{n}^{2}\right)^{\frac{1}{2}}\right)^{p}
\end{aligned}
$$

Now assume X also embeds isometrically into L_{r} for some $p<r<2$. Then X can also be embedded into L_{p} by an r-stable embedding S. In view of Theorem 2.3, it may be assumed that S is obtained from T by a change of density, i.e., there exists
a nonvanishing Borel function φ with $\|\varphi\|_{p}=1$ such that $S: X \rightarrow L_{p}\left(\Omega,|\varphi|^{p} d \mu\right)$ is given by $S x=\varphi^{-1} T x$. Fix any $0<q<p$. It follows for an appropriate choice of b_{2} that the map $S^{\prime} x=b_{2} S x$ embeds X into $L_{q}\left(\Omega,|\varphi|^{p} d \mu\right)$. Now we make a further change of density. Let $b_{3}^{q}=\int_{\Omega}|\varphi|^{p-q} d \mu$ and define $\psi=b_{3}^{-1} \varphi^{-1}$. Let $R: X \rightarrow L_{q}\left(\Omega,|\psi|^{q}|\varphi|^{p} d \mu\right)$ by $R x=\psi^{-1} S^{\prime} x$. Then $R x=b_{3} b_{2} T x$. Let $b_{0}=b_{3} b_{2} b_{1}$.

We now use Lemma 2.5 and Lemma 2.6, Suppose $x, y \in \mathbb{R}$.

$$
\begin{aligned}
N(x, y)^{q} & =b_{0}^{q} \lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{\Omega}\left|x f_{m}+y h g_{n}\right|^{q}|\varphi|^{p}|\psi|^{q} d \mu \\
& =b_{0}^{q} \lim _{m \rightarrow \infty} \int_{\Omega} \int_{\mathbb{R}}\left|x f_{m}+y t h\right|^{q} d \gamma(t)|\varphi|^{p}|\psi|^{q} d \mu \\
& =b_{0}^{q} \int_{\Omega} \int_{\mathbb{R}} \int_{\mathbb{R}}|x s+y t h|^{q} d \gamma(s) d \gamma(t)|\varphi|^{p}|\psi|^{q} d \mu \\
& =b_{0}^{q} \int_{\mathbb{R}}|t|^{q} d \gamma(t) \int_{\Omega}\left(x^{2}+y^{2} h^{2}\right)^{\frac{q}{2}}|\varphi|^{p}|\psi|^{q} d \mu .
\end{aligned}
$$

Since h takes only the values $(1 \pm a)^{\frac{1}{p}}$, this implies that we can find positive constants c_{1}, c_{2} so that for all x, y,

$$
N(x, y)^{q}=c_{1}\left(x^{2}+(1-a)^{\frac{2}{p}} y^{2}\right)^{\frac{q}{2}}+c_{2}\left(x^{2}+(1+a)^{\frac{2}{p}} y^{2}\right)^{\frac{q}{2}} .
$$

Since $N(1,0)=N(0,1)=1$, this requires

$$
\begin{aligned}
c_{1}+c_{2} & =1, \\
c_{1}(1-a)^{\frac{q}{p}}+c_{2}(1+a)^{\frac{q}{p}} & =1 .
\end{aligned}
$$

Note also that

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{N(1, t)^{2}-1}{t^{2}} & =\frac{1}{2}\left((1+a)^{\frac{2}{p}}+(1-a)^{\frac{2}{p}}\right) \\
& =c_{1}(1-a)^{\frac{2}{p}}+c_{2}(1+a)^{\frac{2}{p}}
\end{aligned}
$$

It is clearly impossible to satisfy these three conditions. This contradiction shows that we cannot embed X into L_{r} for any $r>p$.

Remark. It is worth remarking in this context that it is unknown if there is an infinite-dimensional space X that embeds isometrically into L_{p} and L_{r} where $p<$ $2<r$ and is isomorphic but not isometric to a Hilbert space (see [5]).

References

[1] G. Godefroy, N. J. Kalton and D. Li, On subspaces of L_{1} which embed into ℓ_{1}, J. reine angew. Math. 471 (1996) 43-75. MR 97d:46017
[2] N. J. Kalton, Sequences of random variables in L_{p} for $p<1$, J. reine angew. Math. 329 (1981) 204-214. MR 83a:46040
[3] N. J. Kalton, Isomorphisms between L_{p}-function spaces when $p<1$, J. Functional Analysis 42 (1981) 299-337. MR 83d:46032
[4] N. J. Kalton, Banach spaces embedding into L_{0}, Israel J. Math. 52 (1985) 305-319. MR 87k:46045
[5] A. Koldobsky, Common subspaces of L_{p}-spaces, Proc. Amer. Math. Soc. 122 (1994) 207-212. MR 94k:46060
[6] A. Koldobsky, A Banach subspace of $L_{1 / 2}$ which does not embed in L_{1} (isometric version), Proc. Amer. Math. Soc. 124 (1996) 155-160. MR 96d:46026
[7] A. Koldobsky and H. König, Aspects of the isometric theory of Banach spaces, Handbook of the geometry of Banach spaces, Volume 1, W. B. Johnson and J. Lindenstrauss, editors, North-Holland, Amsterdam, 2001, pp. 899-939. MR 2003c:46017
[8] S. Kwapien, Problem 3, Studia Math. 38 (1969) 469.
[9] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II, Function spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 97, Springer-Verlag, Berlin, 1979. MR 81c:46001
[10] B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces L_{p}, Asterisque 11, 1974.
[11] E. M. Nikishin, Resonance theorems and superlinear operators, Uspeki Mat. Nauk. 25 (1970) 129-191.
[12] A. I. Plotkin, Isometric operators on subspaces of L_{p}, Dokl. Akad. Nauk. SSSR 193 (1970) 537-539. MR 42:6601
[13] A. I. Plotkin, An algebra that is generated by translation operators and L_{p}-norms, Functional Analysis No. 6: Theory of Operators in Linear Spaces, Ulyanovsk. Gos. Ped. Inst. Ulyanovsk (1976) 112-121. MR 58:29837
[14] W. Rudin, L_{p}-isometries and equimeasurability, Indiana Univ. Math. J. 25 (1976) 215228. MR 53:14105
[15] P. Wojtaszczyk, Banach spaces for analysts, Cambridge University Press, Cambridge, 1991. MR 93d:46001

Department of Mathematics, University of Missouri-Columbia, Columbia, Missouri 65211

E-mail address: nigel@math.missouri.edu
Department of Mathematics, University of Missouri-Columbia, Columbia, Missouri 65211

E-mail address: koldobsk@math.missouri.edu

[^0]: Received by the editors March 31, 2002.
 2000 Mathematics Subject Classification. Primary 47A16, 47C15.
 Key words and phrases. Isometric embedding, L_{p}-space, stable random variables.
 The first author was supported by NSF grant DMS-9870027.
 The second author was supported by NSF grant DMS-9996431.

