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TIGHT WAVELET FRAMES GENERATED BY
THREE SYMMETRIC B-SPLINE FUNCTIONS

WITH HIGH VANISHING MOMENTS

BIN HAN AND QUN MO

(Communicated by David R. Larson)

Abstract. In this note, we show that one can derive from any B-spline func-
tion of order m (m ∈ N) an MRA tight wavelet frame in L2(R) that is gen-
erated by the dyadic dilates and integer shifts of three compactly supported
real-valued symmetric wavelet functions with vanishing moments of the highest
possible order m.

1. Introduction

B-spline functions and tight wavelet frames are of great interest in many appli-
cations. The B-spline function of order m (m ∈ N), denoted by Bm throughout
this note, can be obtained via the following recursive formula: B1 = χ[0,1], the
characteristic function of the interval [0, 1], and

(1.1) Bm(x) :=
∫ 1

0

Bm−1(x− t) dt, x ∈ R, m = 2, 3, . . . .

The B-spline function Bm ∈ Cm−2(R) is a function of piecewise polynomials of
degree less than m, vanishes outside the interval [0,m] and is symmetric about the
point x = m/2 (that is, Bm(m − x) = Bm(x) for all x ∈ R). It is well known that
the B-spline function Bm is a refinable function satisfying the refinement equation

(1.2) B̂m(2ξ) =
(1 + e−iξ

2

)m
B̂m(ξ), ξ ∈ R,

where the Fourier transform of f ∈ L1(R) is defined to be f̂(ξ) :=
∫
R f(t)e−itξ dt, ξ ∈

R.
Tight wavelet frames can be constructed from refinable functions. We say that

a set {ψ1, . . . , ψr} of functions in L2(R) generates a (normalized) tight wavelet
frame in L2(R) if

(1.3)
r∑
`=1

∑
j∈Z

∑
k∈Z
|〈f, ψ`j,k〉|2 = ‖f‖2 ∀ f ∈ L2(R),
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where 〈f, g〉 :=
∫
R f(t)g(t) dt, ‖f‖2 := 〈f, f〉 and ψ`j,k := 2j/2ψ`(2j · −k). The

set {ψ1, . . . , ψr} is called a set of generators for the tight frame {ψ`j,k : ` = 1,
. . . , r; j, k ∈ Z}. Throughout this note, we assume that the generators for any
tight wavelet frame discussed in this note are real-valued and compactly supported
functions in L2(R).

One of the most important properties of a tight wavelet frame is its vanishing
moments. A set {ψ1, . . . , ψr} of compactly supported functions in L2(R) is said to
have vanishing moments of order n if∫

R
ψ`(t)tk dt = 0, ` = 1, . . . , r; k = 0, . . . , n− 1.

Recently, there is a growing interest in constructing MRA tight wavelet frames
derived from refinable functions, in particular, derived from the B-spline functions
Bm (m ∈ N) (see [1], [2], [4], [5], [8], [9]). For example, Ron and Shen in [9]
demonstrated that a tight wavelet frame with m symmetric generators with short
support can be derived from the B-spline function Bm (m ∈ N). Recently, Chui
and He in [1] further showed that a tight wavelet frame with only 3 symmetric
generators (or 2 generators without symmetry) of compact support can be derived
from the B-spline function Bm (m ∈ N). Though the constructions in [1], [9] are
very interesting, such tight wavelet frames derived from the B-spline functions in [1],
[9] can have vanishing moments of order no more than one ([2], [4]). It is known that
in certain applications the order of vanishing moments of a tight wavelet frame is
very important. In order to achieve high order of vanishing moments, very recently,
Chui, He and Stöckler [2] and Daubechies, Han, Ron and Shen [4] proposed a very
interesting method to derive MRA wavelet tight frames from refinable functions.
In particular, it was shown in [2], [4] that a tight wavelet frame with 2 generators
of compact support can be derived from any B-spline function Bm (m ∈ N) such
that it can have vanishing moments of the highest possible order m. Unfortunately,
except for very few cases, the tight wavelet frames with 2 generators derived from
B-spline functions in [2], [4] are not symmetric. It is desirable to have symmetric
tight wavelet frames with high vanishing moments in applications. On the other
hand, it was shown in Petukhov [8] that it is not possible to construct tight wavelet
frames with 2 symmetric generators of compact support from the B-spline functions
Bm(1 6 m 6 100,m 6= 1, 2, 3, 7) by using the unitary extension principle in [9].

All the above known results naturally lead to the following interesting question:

Question. Can one obtain a tight wavelet frame with 3 symmetric generators of
compact support from any given B-spline function Bm (m ∈ N) of order m such
that the symmetric tight wavelet frame can have the vanishing moments of the
highest possible order m?

By numerical computation, it was possible to verify in [4] (also see [2]) that the
above question is true for m = 1, 2, 4, and 6. It is the purpose of this note to
completely settle the above question. The following is the main result of this note.

Theorem 1. Let m be a positive integer and let Bm denote the B-spline function of
order m which is defined in (1.1). Then there exist three finitely supported sequences
b1, b2, b3 on Z, which can be easily constructed by a simple procedure, such that by
defining

ψ` :=
∑
k∈Z

b`(k)Bm(2 · −k), ` = 1, 2, 3,
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one has
(1) {ψ1, ψ2, ψ3} generates a tight wavelet frame in L2(R) and has the vanishing

moments of order m;
(2) ψ1, ψ2, ψ3 are real-valued, symmetric and compactly supported functions

such that

ψ1(1 − t) = (−1)mψ1(t), ψ2(m− t) = ψ2(t), ψ3(m− t) = −ψ3(t), t ∈ R.

The following is an outline of the note. In Section 2, we shall establish some
auxiliary results. In Section 3, we shall prove Theorem 1. Also in Section 3, we
shall give a step-by-step simple procedure for deriving the sequences b1, b2, b3 in
Theorem 1.

2. Auxiliary results

In order to prove Theorem 1, let us introduce some auxiliary results in this
section which are of interest in their own right.

The following lemma can be easily verified.

Lemma 2. If aj > 0 and bj > 0 for all j = 1, . . . , n such that a1
b1
> a2

b2
> · · · > an

bn
,

then
a1

b1
> a1 + a2

b1 + b2
> · · · > a1 + a2 + · · ·+ an

b1 + b2 + · · ·+ bn
.

For any positive integer m, throughout this note, we define

(2.1) c0 := 1 and cj :=
(2j − 1)!!

(2j)!!(2j + 1)
=

1
2j + 1

j∏
k=1

(
1− 1

2k

)
, j ∈ N.

Note that

(2.2)
ξ/2

sin(ξ/2)
=

arcsin(sin(ξ/2))
sin(ξ/2)

=
∞∑
j=0

cj sin2j ξ

2
, ξ ∈ [−π, π].

Clearly, we have

(2.3)
∞∑
j=0

cj =
π

2
.

The following estimate will be needed later.

Lemma 3. Let cj (j ∈ N ∪ {0}) be defined in (2.1). For any positive integer m,
define

(2.4) fm(x) := 4m(1 + x)2m
∞∑
j=0

cm+j(1− x2)j , x ∈ [0, 1].

Then for m > 3, fm is an increasing function on the interval [0, 1] and

fm(x) > π

1− 21/2−m ∀ x ∈ [0, 1].

Proof. By (2.3), it is easy to see that fm is a continuous function on [0, 1]. For
x ∈ (0, 1), by computation, we have

f ′m(x) = 8m2(1 + x)2m−1
∞∑
j=0

cm+j(1− x2)j − 8m(1 + x)2mx

∞∑
j=0

jcm+j(1− x2)j−1.
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Consequently,

f ′m(x)
8m(1 + x)2mx

= m
x−1 − 1
1− x2

∞∑
j=0

cm+j(1−x2)j−
∞∑
j=0

jcm+j(1−x2)j−1, x ∈ (0, 1).

Denote y := 1− x2. Then

1
x

=
1√

1− y = (1− y)−1/2 = 1 +
∞∑
j=1

(2j + 1)cjyj , x ∈ (0, 1).

Therefore, for x ∈ (0, 1), we have

f ′m(x)
8m(1 + x)2mx

= m

 ∞∑
j=0

(2j + 3)cj+1y
j

 ∞∑
j=0

cm+jy
j

− ∞∑
j=0

(j + 1)cm+j+1y
j

=
∞∑
j=0

gm,jcm+j+1y
j ,

where y = 1− x2 and the numbers gm,j are defined by

(2.5) gm,j := m

j∑
k=0

(2k + 3)ck+1
cm+j−k
cm+j+1

− (j + 1), j ∈ N ∪ {0}.

By the definition of the numbers cj (j ∈ N ∪ {0}) in (2.1), we have

(2.6) (2k + 3)ck+1
cm+j−k
cm+j+1

=
2m+ 2j + 3

2m+ 2j − 2k + 1

∏k+1
`=1 (1− 1

2` )∏m+j+1
`=m+j−k+1(1− 1

2` )
.

Note that for any nonnegative integer k, we have

k+1∏
`=1

(
1− 1

2`

)
=

1
2

k+1∏
`=2

(
1− 1

2`

)
> 1

2

k+1∏
`=2

√
1− 1

2`

√
1− 1

2`− 1

=
1
2

k+1∏
`=2

√
`− 1
`

=
1

2
√
k + 1

and for 0 6 k 6 j,
m+j+1∏

`=m+j−k+1

(
1− 1

2`

)
6

m+j+1∏
`=m+j−k+1

√
1− 1

2`

√
1− 1

2`+ 1

=
m+j+1∏

`=m+j−k+1

√
2`− 1√
2`+ 1

=
√

2m+ 2j − 2k + 1√
2m+ 2j + 3

.

It follows from (2.6) and the above two inequalities that

(2k + 3)ck+1
cm+j−k
cm+j+1

> 2m+ 2j + 3
2m+ 2j − 2k + 1

· 1
2
√
k + 1

·
√

2m+ 2j + 3√
2m+ 2j − 2k + 1

=
1

2
√
k + 1

(m+ j + 3/2)3/2

(m+ j + 1/2− k)3/2
.
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Hence,

gm,j + (j + 1) = m

j∑
k=0

(2k + 3)ck+1
cm+j−k
cm+j+1

> m(m+ j + 3/2)3/2

j∑
k=0

1
2
√
k + 1(m+ j + 1/2− k)3/2

= m(m+ j + 3/2)3/2

j+1∑
k=1

1
2
√
k(m+ j + 3/2− k)3/2

.

Let t1m,j,k :=
√

(k + 1)(m+ j + 5/2− k) and t2m,j,k :=
√
k(m+ j + 5/2− (k + 1)).

Then t1m,j,k >
√
k
√
m+ j + 3/2− k = t2m,j,k. We have

√
k + 1√

m+ j + 5/2− (k + 1)
−

√
k√

m+ j + 5/2− k

=
t1m,j,k − t2m,j,k√

m+ j + 5/2− (k + 1)
√
m+ j + 5/2− k

=
(k + 1)(m+ j + 5/2− k)− k(m+ j + 5/2− (k + 1))√
m+ j + 3/2− k

√
m+ j + 5/2− k

(
t1m,j,k + t2m,j,k

)
=

m+ j + 5/2√
m+ j + 3/2− k

√
m+ j + 5/2− k

(
t1m,j,k + t2m,j,k

)
6 m+ j + 5/2

2
√
k(m+ j + 3/2− k)3/2

.

We deduce that

gm,j + (j + 1)

> m(m+ j + 3/2)3/2

m+ j + 5/2

j+1∑
k=1

[ √
k + 1√

m+ j + 5/2− (k + 1)

−
√
k√

m+ j + 5/2− k

]

=
m(m+ j + 3/2)3/2

m+ j + 5/2

[ √
j + 2√
m+ 1/2

−
√

1√
m+ j + 3/2

]

=
m(m+ j + 3/2)3/2

m+ j + 5/2

× (j + 2)(m+ j + 3/2)− (m+ 1/2)√
m+ 1/2

√
m+ j + 3/2

(√
(j + 2)(m+ j + 3/2) +

√
m+ 1/2

)
=

m(m+ j + 3/2)(j + 1)√
(m+ 1/2)(j + 2)(m+ j + 3/2) + (m+ 1/2)

.
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By computation, for m > 2 and j > 0, we have

[m(m+ j + 3/2)−m− 1/2]2 − (m+ 1/2)(j + 2)(m+ j + 3/2)

= [m(m− 1)− 1/2]j2 + [m(2m2 − 5)− 7/4]j

+m(m+ 1)(m2 − 4) +
5
4
m(m− 1) +

3
4

(m− 5
3

) > 0.

Consequently, we have

m(m+ j+ 3/2) >
√

(m+ 1/2)(j + 2)(m+ j + 3/2)+ (m+ 1/2) ∀m > 2, j > 0.

Hence, gm,j + (j + 1) > j + 1 for all m > 2 and j > 0. That is,

gm,j > 0 ∀ m > 2 and j > 0,

which implies that f ′m(x) > 0 for all x ∈ (0, 1) and m > 2.
So, for m > 2, fm is an increasing function on the interval [0, 1] and

fm(x) > fm(0) ∀ x ∈ [0, 1].

Note that 1− 1
2k = 2k−1

2k >
√

k−1
k for all k ∈ N. We deduce that

cj =
1

2j + 1

j∏
k=1

(
1− 1

2k

)
> 1

2(2j + 1)

j∏
k=2

√
k − 1
k

=
1

(2j + 1)
√

4j
> 1

2
√
j
− 1

2
√
j + 1

(2.7)

for all j ∈ N. When m > 4, by (2.7), we have

fm(0) = 4m
∞∑
j=m

cj > 4m
∞∑
j=m

( 1
2
√
j
− 1

2
√
j + 1

)
= 2
√
m > π

1− 21/2−m

since h(t) := 2
√
t(1−21/2−t), t > 1 is an increasing function and h(4) = 4−2−3/2 >

π.
Note that c0 = 1, c1 = 1/6 and c2 = 3/40. When m = 3, by (2.3), we have

f3(0) = 12
∞∑
j=0

c3+j = 12
(π

2
− c0 − c1 − c2

)
= 6π − 149

10
> π

1− 21/2−3
,

which completes the proof. �
Now the main result in this section, which plays a critical role in our proof of

Theorem 1, is as follows:

Theorem 4. For any positive integer m,

(2.8)

∑m−1
j=0 cj sin2j ξ

2∑m−1
j=0 cj sin2j ξ

>
(

cos2m ξ

2
+ sin2m ξ

2

) 1
2m ∀ ξ ∈ R,

where the numbers cj (j ∈ N ∪ {0}) are defined in (2.1).

Proof. It is easy to see that in order to show the inequality (2.8), it suffices to
prove it for ξ ∈ [0, π/2] since sin2 π−ξ

2 = cos2 ξ
2 > sin2 ξ

2 for all ξ ∈ [0, π/2]. Let
x = cos(ξ). By Lemma 3, for m > 3, we have the following estimate:

(2.9) 4m
(

2 cos2 ξ

2

)2m ∞∑
j=0

cm+j sin2j ξ > π

1− 21/2−m ∀ ξ ∈ [0, π/2].
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Define

A(ξ) :=
m−1∑
j=0

cj sin2j ξ

2
and B(ξ) :=

ξ/2
sin(ξ/2)

−A(ξ).

By (2.2), B(ξ) =
∑∞
j=m cj sin2j ξ

2 . It follows from (2.9) that for ξ ∈ [0, π/2],

B(2ξ) =
∞∑
j=m

cj sin2j ξ = (sin ξ)2m
∞∑
j=0

cm+j sin2j ξ

=
1

4m
· sin2m(ξ/2)

cos2m(ξ/2)
· 4m

(
2 cos2 ξ

2

)2m ∞∑
j=0

cm+j sin2j ξ

>
π
2 ·

1
2m ·

sin2m(ξ/2)
cos2m(ξ/2)

1− 21/2−m

> ξ

sin ξ
·

1
2m ·

sin2m(ξ/2)
cos2m(ξ/2)

1− 1
[4 cos2(ξ/2)]m ·

1
cos(ξ/2)

,

where we have used the fact that cos(ξ/2) > 2−1/2 for all ξ ∈ [0, π/2]. Observe that
(1 + x)

1
2m − 1 6 x

2m for all x > 0 and m ∈ N. It follows that(
1 +

sin2m(ξ/2)
cos2m(ξ/2)

) 1
2m − 1 6 1

2m
· sin2m(ξ/2)

cos2m(ξ/2)
, ξ ∈ [0, π/2].

Since A(2ξ) +B(2ξ) = ξ
sin ξ , ξ ∈ [0, π/2], from the above two inequalities we have

B(2ξ)
A(2ξ) +B(2ξ)

=
B(2ξ)

ξ
sin ξ

>

(
1 + sin2m(ξ/2)

cos2m(ξ/2)

) 1
2m − 1(

1 + sin2m(ξ/2)
cos2m(ξ/2)

) 1
2m − 1

[4 cos2(ξ/2)]m ·
1

cos(ξ/2)

=

(
cos2m(ξ/2) + sin2m(ξ/2)

) 1
2m − cos(ξ/2)(

cos2m(ξ/2) + sin2m(ξ/2)
) 1

2m − 1
[4 cos2(ξ/2)]m

.

The above inequality is equivalent to

(2.10)
cos ξ2 −

B(2ξ)
A(2ξ)+B(2ξ) ·

1
[4 cos2(ξ/2)]m

1− B(2ξ)
A(2ξ)+B(2ξ)

>
(

cos2m(ξ/2) + sin2m(ξ/2)
) 1

2m
.

Since 2 cos(ξ/2) > 1 for all ξ ∈ [0, π/2] and

cj sin2j ξ
2

cj sin2j ξ
=

1(
2 cos ξ2

)2j >
1(

2 cos ξ2
)2j+2 =

cj+1 sin2j+2 ξ
2

cj+1 sin2j+2 ξ
, ξ ∈ [0, π/2],

by Lemma 2 we have

B(ξ)
B(2ξ)

=

∑∞
j=m cj sin2j ξ

2∑∞
j=m cj sin2j ξ

6
sin2m ξ

2

sin2m ξ
=

1[
4 cos2(ξ/2)

]m , ξ ∈ [0, π/2].
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Hence, B(ξ) 6 B(2ξ)
[4 cos2(ξ/2)]m for all ξ ∈ [0, π/2] and

A(ξ)
A(2ξ)

=
[A(ξ) +B(ξ)] −B(ξ)

[A(2ξ) +B(2ξ)]−B(2ξ)
>

[A(ξ) +B(ξ)]− B(2ξ)
[4 cos2(ξ/2)]m

[A(2ξ) +B(2ξ)]−B(2ξ)

=
A(ξ)+B(ξ)
A(2ξ)+B(2ξ) −

B(2ξ)
A(2ξ)+B(2ξ) ·

1
[4 cos2(ξ/2)]m

1− B(2ξ)
A(2ξ)+B(2ξ)

=
cos ξ2 −

B(2ξ)
A(2ξ)+B(2ξ) ·

1
[4 cos2(ξ/2)]m

1− B(2ξ)
A(2ξ)+B(2ξ)

,

since A(ξ) + B(ξ) = ξ/2
sin(ξ/2) for ξ ∈ [−π, π]. It follows from the above inequality

and (2.10) that for ξ ∈ [0, π/2],

A(ξ)
A(2ξ)

>
cos ξ2 −

B(2ξ)
A(2ξ)+B(2ξ) ·

1
[4 cos2(ξ/2)]m

1− B(2ξ)
A(2ξ)+B(2ξ)

>
(

cos2m(ξ/2) + sin2m(ξ/2)
) 1

2m
.

Therefore, (2.8) holds for m > 3. It is obvious that (2.8) holds for m = 1. In the
following, let us check the case m = 2. Let x = sin2 ξ

2 . Then sin2 ξ = 4x(1 − x).
When m = 2, to prove (2.8) it suffices to prove

(2.11)
1 + x

6

1 + 2
3x(1− x)

> [1− 2x(1− x)]1/4 ∀x ∈ [0, 1].

By computation, for x ∈ [0, 1], we have[
1 +

2
3
x(1− x)

]
[1− 2x(1− x)]1/4 6

[
1 +

2
3
x(1 − x)

][
1− 1

4
2x(1− x)

]
= 1 +

(2
3
− 1

2

)
x(1− x)− 1

3
x2(1− x)2

6 1 +
1
6
x(1− x)

6 1 +
1
6
x,

which verifies (2.11). Therefore, the proof is completed. �

3. Proof of the main result

In this section, using the auxiliary results in Section 2, we shall prove Theorem 1.
In particular, we shall give a step-by-step procedure for constructing the sequences
b1, b2, b3 in Theorem 1.

The symbol of a sequence a on Z is defined to be

(3.1) â(ξ) :=
∑
k∈Z

a(k)e−ikξ, ξ ∈ R.

Proof of Theorem 1: Let Bm be the B-spline function of order m and let â(ξ) :=(
1+e−iξ

2

)m
. Then it is known that B̂m(2ξ) = â(ξ)B̂m(ξ). Let cj (j ∈ N∪{0}) be the

numbers that are defined in (2.1). We define the numbers dm,j (m ∈ N, j ∈ N∪{0}),
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which are uniquely determined by the following identity:

(3.2)

m−1∑
j=0

cjx
j

m

=
∞∑
j=0

dm,jx
j , x ∈ R.

Clearly, dm,0 = [c0]m = 1 and dm,j = 0 for all j > m(m−1). Define two 2π-periodic
trigonometric polynomials θ1 and θ as follows:

(3.3) θ1(ξ) := 1 +
m−1∑
j=1

dm,j sin2j ξ

2
and θ(ξ) := |θ1(ξ)|2 = [θ1(ξ)]2.

Since sin2(ξ/2)
sin2 ξ

= 1
4 cos2(ξ/2) 6

1
2 for ξ ∈ [0, π/2], we have

(
sin2(ξ/2)

sin2 ξ

)j−1

>
(

sin2(ξ/2)
sin2 ξ

)j
for all j ∈ N and for all ξ ∈ [0, π/2]. By Lemma 2, for ξ ∈ [0, π/2], we have

θ1(ξ)
θ1(2ξ)

=

∑m−1
j=0 dm,j sin2j(ξ/2)∑m−1
j=0 dm,j sin2j ξ

>
∑m(m−1)

j=0 dm,j sin2j(ξ/2)∑m(m−1)
j=0 dm,j sin2j ξ

=

(∑m−1
j=0 cj sin2j(ξ/2)∑m−1
j=0 cj sin2j ξ

)m
.

By Theorem 4 in Section 2, for ξ ∈ [0, π/2] we have

θ1(ξ)
θ1(2ξ)

>
(∑m−1

j=0 cj sin2j(ξ/2)∑m−1
j=0 cj sin2j ξ

)m
>
(

cos2m(ξ/2) + sin2m(ξ/2)
)1/2

=
√
|â(ξ)|2 + |â(ξ + π)|2.

In other words, θ(ξ) − θ(2ξ)(|â(ξ)|2 + |â(ξ + π)|2) > 0 for all ξ ∈ [0, π/2]. By the
definition of θ, we have θ(−ξ) = θ(ξ) and θ(ξ) 6 θ(π − ξ) for all ξ ∈ [0, π/2] since
dm,j > 0 and sin2 π−ξ

2 = cos2 ξ
2 >

1
2 > sin2 ξ

2 for all ξ ∈ [0, π/2]. Consequently, we
have

(3.4) θ(ξ) − θ(2ξ)(|â(ξ)|2 + |â(ξ + π)|2) > 0 ∀ ξ ∈ [−π, π].

By the Fejér-Riesz lemma, there exists a 2π-periodic trigonometric polynomial θ2

such that

(3.5) |θ2(ξ)|2 = θ(ξ)− θ(2ξ)(|â(ξ)|2 + |â(ξ + π)|2).

Now define

b̂1(ξ) := â(ξ + π)e−iξθ1(2ξ) =
(1− eiξ

2

)m
e−iξθ1(2ξ),

b̂2(ξ) := â(ξ)[θ2(2ξ) + θ2(2ξ)]/2 =
(1 + e−iξ

2

)m
[θ2(2ξ) + θ2(2ξ)]/2,

b̂3(ξ) := â(ξ)[θ2(2ξ)− θ2(2ξ)]/2 =
(1 + e−iξ

2

)m
[θ2(2ξ)− θ2(2ξ)]/2.

(3.6)

It is evident that b1, b2, and b3 are real-valued finitely supported sequences on Z
such that

(3.7) b̂1(ξ) = (−1)mei(2−m)ξ b̂1(ξ), b̂2(ξ) = eimξ b̂2(ξ), b̂3(ξ) = −eimξ b̂3(ξ).

Let

(3.8) Θ(ξ) := θ(2ξ)(|â(ξ)|2 + |â(ξ + π)|2).
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Note that |θ2(ξ) + θ2(ξ)|2 + |θ2(ξ)− θ2(ξ)|2 = 4|θ2(ξ)|2. By calculation, we have

|â(ξ)|2Θ(2ξ) + |̂b1(ξ)|2 + |̂b2(ξ)|2 + |̂b3(ξ)|2

= |â(ξ)|2Θ(2ξ) + |â(ξ + π)|2|θ1(2ξ)|2 + |â(ξ)|2|θ2(2ξ)|2

= |â(ξ)|2θ(4ξ)(|â(2ξ)|2 + |â(2ξ + π)|2) + |â(ξ + π)|2θ(2ξ)
+ |â(ξ)|2[θ(2ξ)− θ(4ξ)(|â(2ξ)|2 + |â(2ξ + π)|2)]

= θ(2ξ)(|â(ξ)|2 + |â(ξ + π)|2)

= Θ(ξ)

and

â(ξ)â(ξ + π)Θ(2ξ) + b̂1(ξ)̂b1(ξ + π) + b̂2(ξ)̂b2(ξ + π) + b̂3(ξ)̂b3(ξ + π)

= â(ξ)â(ξ + π)Θ(2ξ)− â(ξ)a(ξ + π)|θ1(2ξ)|2 + â(ξ)â(ξ + π)|θ2(2ξ)|2

= â(ξ)â(ξ + π)
[
Θ(2ξ)− θ(2ξ) + [θ(2ξ)− θ(4ξ)(|â(2ξ)|2 + |â(2ξ + π)|2)]

]
= 0.

Define ψ̂`(2·) = b̂`B̂m, ` = 1, 2, 3. Since Θ(0) = 1, by [4, Proposition 1.11] or [2],
{ψ1, ψ2, ψ3} generates a tight wavelet frame in L2(R).

It follows from (2.2) that θ(ξ) − θ(2ξ)|â(ξ)|2 = O(|ξ|2m), ξ → 0 (also see [4]).
Thus, we deduce that Θ(ξ) − Θ(2ξ)|â(ξ)|2 = O(|ξ|2m), ξ → 0. Consequently, each
wavelet function ψ`, ` = 1, 2, 3 has the vanishing moments of order m. The sym-
metry of the wavelet functions ψ1, ψ2, ψ3 follows directly from (3.7). �

References

[1] C. K. Chui and W. He, Compactly supported tight frames associated with refinable functions,
Appl. Comp. Harmonic Anal., 8 (2000), 293–319. MR 2001h:42049
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