SOLUTION TO A PROBLEM OF S. PAYNE

XIANG-DONG HOU

(Communicated by David E. Rohrlich)

ABSTRACT. A problem posed by S. Payne calls for determination of all linearized polynomials $f(x) \in \mathbb{F}_{2^n}[x]$ such that f(x) and f(x)/x are permutations of \mathbb{F}_{2^n} and $\mathbb{F}_{2^n}^*$ respectively. We show that such polynomials are exactly of the form $f(x) = ax^{2^k}$ with $a \in \mathbb{F}_{2^n}^*$ and (k,n) = 1. In fact, we solve a q-ary version of Payne's problem.

1. Introduction

Let \mathbb{F}_{2^n} be the finite field with 2^n elements. In 1971, S. Payne posed the following problem [6]:

Problem 1.1. Determine all linearized polynomials

$$f(x) = a_0 x + a_1 x^2 + \dots + a_{n-1} x^{2^{n-1}} \in \mathbb{F}_{2^n}[x]$$

such that f(x) is a permutation polynomial of \mathbb{F}_{2^n} and

$$\frac{f(x)}{x} = a_0 + a_1 x^{2-1} + \dots + a_{n-1} x^{2^{n-1} - 1}$$

is a permutation of $\mathbb{F}_{2^n}^*$.

Problem 1.1 originated from projective geometry. In fact, the polynomials in Problem 1.1 give rise to ovoids in the projective plane $\operatorname{PG}(2,2^n)$. (Cf. [2], p. 50 and [5].) Obviously, if $a \in \mathbb{F}_{2^n}^*$ and k is a positive integer such that (k,n)=1, then $f(x)=ax^{2^k}$ satisfies the requirements in Problem 1.1. However, as noted in [6], no other linearized polynomials with the same properties are known. In this paper, we will show that $f(x)=ax^{2^k}$ $(a \in \mathbb{F}_{2^n}^*, (k,n)=1)$ are the only polynomials in Problem 1.1. In general, for any \mathbb{F}_q -linear map $f:\mathbb{F}_{q^n}\to\mathbb{F}_{q^n}$, we say that f(x)/x is a permutation of $\mathbb{F}_{q^n}^*/\mathbb{F}_q^*$ if given any $\alpha\in\mathbb{F}_{q^n}^*$, there exists $\beta\in\mathbb{F}_{q^n}^*$ such that $f(\beta)/\beta=a\alpha$ for some $a\in\mathbb{F}_q^*$. In fact, we will solve the following q-ary version of Problem 1.1:

Problem 1.2. Determine all linearized polynomials $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i} \in \mathbb{F}_{q^n}[x]$ such that f(x) is a permutation of \mathbb{F}_{q^n} and f(x)/x is a permutation of $\mathbb{F}_{q^n}^*/\mathbb{F}_q^*$.

Received by the editors July 29, 2002.

²⁰⁰⁰ Mathematics Subject Classification. Primary 11T06; Secondary 51E20.

Key words and phrases. Finite field, linearized polynomial, permutation polynomial.

This research was supported by NSA grant MDA 904-02-1-0080.

We briefly review linearized polynomials over finite fields in Section 2. In particular, we prove a proposition that slightly generalizes Dickson's criterion for a linearized polynomial to be nonsingular. The proof of our solution to Problem 1.2 is in Section 3. In Section 4, we solve another problem about linearized polynomials over \mathbb{F}_{2^n} which is similar and related to Problem 1.1.

2. Linearized polynomials

Let \mathbb{F}_q and \mathbb{F}_{q^n} be finite fields with q and q^n elements respectively. The \mathbb{F}_q -linear maps from \mathbb{F}_{q^n} to \mathbb{F}_{q^n} are precisely linearized polynomials

$$f(x) = a_0 x + a_1 x^q + \dots + a_{n-1} x^{q^{n-1}} \in \mathbb{F}_{q^n}[x].$$

Define

$$A(f) = \begin{bmatrix} a_0 & a_1 & \cdots & a_{n-1} \\ a_{n-1}^q & a_0^q & \cdots & a_{n-2}^q \\ \vdots & \vdots & \ddots & \vdots \\ a_1^{q^{n-1}} & a_2^{q^{n-1}} & \cdots & a_0^{q^{n-1}} \end{bmatrix}.$$

It is well known that $f: \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$ is a permutation polynomial if and only if $\det A(f) \neq 0$ ([3], p. 66 or [4], p. 361). The following proposition slightly generalizes this criterion.

Proposition 2.1. In the above notation, we have

$$\operatorname{rank} A(f) = \dim_{\mathbb{F}_q} f(\mathbb{F}_{q^n}).$$

Proof. Let

$$V = \left\{ \begin{bmatrix} z \\ z^q \\ \vdots \\ z^{q^{n-1}} \end{bmatrix} : z \in \mathbb{F}_{q^n} \right\} \subset \mathbb{F}_{q^n}^n$$

and define an \mathbb{F}_q -isomorphism

$$\iota: \ \mathbb{F}_{q^n} \longrightarrow V$$

$$z \longmapsto \begin{bmatrix} z \\ z^q \\ \vdots \\ z^{q^{n-1}} \end{bmatrix}.$$

Note that the \mathbb{F}_{q^n} -linear map $A(f): \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$ satisfies $A(f)(V) \subset V$. Furthermore, we have the following commutative diagram:

$$\mathbb{F}_{q^n} \otimes_{\mathbb{F}_q} \mathbb{F}_{q^n} \xrightarrow{f \otimes 1} \mathbb{F}_{q^n} \otimes_{\mathbb{F}_q} \mathbb{F}_{q^n}$$

$$\downarrow \iota \otimes 1 \qquad \qquad \downarrow \iota \otimes 1$$

$$V \otimes_{\mathbb{F}_q} \mathbb{F}_{q^n} \xrightarrow{[A(f)|_V] \otimes 1} V \otimes_{\mathbb{F}_q} \mathbb{F}_{q^n}$$

$$\approx \downarrow \qquad \qquad \downarrow \approx$$

$$\mathbb{F}_{q^n}^n \xrightarrow{A(f)} \mathbb{F}_{q^n}^n$$

Therefore.

$$\begin{aligned} \operatorname{rank}\left(A(f)\right) &= \dim_{\mathbb{F}_{q^n}}\left(A(f)(\mathbb{F}_{q^n}^n)\right) \\ &= \dim_{\mathbb{F}_{q^n}}\left[(\iota \otimes 1) \circ (f \otimes 1)(\mathbb{F}_{q^n} \otimes_{\mathbb{F}_q} \mathbb{F}_{q^n})\right] \\ &= \dim_{\mathbb{F}_{q^n}}\left[f(\mathbb{F}_{q^n}) \otimes_{\mathbb{F}_q} \mathbb{F}_{q^n}\right) \\ &= \dim_{\mathbb{F}_q} f(\mathbb{F}_{q^n}). \end{aligned}$$

3. Solution to Problem 1.2

Let q be a prime power and n a positive integer.

Lemma 3.1. Let $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i} \in \mathbb{F}_{q^n}[x]$ be a polynomial in Problem 1.2. Then the determinants of the principal submatrices of

$$A(f) = \begin{bmatrix} a_0 & a_1 & \cdots & a_{n-1} \\ a_{n-1}^q & a_0^q & \cdots & a_{n-2}^q \\ \vdots & \vdots & \ddots & \vdots \\ a_1^{q^{n-1}} & a_2^{q^{n-1}} & \cdots & a_0^{q^{n-1}} \end{bmatrix}$$

of size $m \times m$ $(1 \le m \le n-1)$ are all 0.

Proof. Let

$$D(x) = \begin{vmatrix} a_0 + x & a_1 & \cdots & a_{n-1} \\ a_{n-1}^q & (a_0 + x)^q & \cdots & a_{n-2}^q \\ \vdots & \vdots & \ddots & \vdots \\ a_1^{q^{n-1}} & a_2^{q^{n-1}} & \cdots & (a_0 + x)^{q^{n-1}} \end{vmatrix} \in \mathbb{F}_{q^n}[x].$$

For each $b \in \mathbb{F}_{q^n}^*$, since f(x)/x is a permutation of $\mathbb{F}_{q^n}^*/\mathbb{F}_q^*$, there exist $z \in \mathbb{F}_{q^n}^*$ and $\epsilon \in \mathbb{F}_q^*$ such that $\frac{f(z)}{z} = -\epsilon b$. Thus z is a root of

$$(3.1) (a_0 + \epsilon b)x + a_1 x^q + \dots + a_{n-1} x^{q^{n-1}};$$

hence the polynomial in (3.1) is not a permutation polynomial of \mathbb{F}_{q^n} . It follows from Proposition 2.1 that $D(\epsilon b)=0$. Therefore, for every $b\in\mathbb{F}_{q^n}^*$, $\prod_{\epsilon\in\mathbb{F}_q^*}D(\epsilon b)=0$, which implies that

(3.2)
$$\prod_{\epsilon \in \mathbb{F}_q^*} D(\epsilon x) = \delta(x^{q^n - 1} - 1)$$

for some $\delta \in \mathbb{F}_{q^n}^*$. (In fact, $\delta = -1$, although this fact is not needed in the proof. This is because D(0) is invariant under the Frobenius map of $\mathbb{F}_{q^n}/\mathbb{F}_q$ and $-\delta = (D(0))^{q-1} = 1$).

Let $0 \le i_1 < i_2 < \dots < i_m \le n-1$ with $1 \le m \le n-1$. Write $\{0, \dots, n-1\} \setminus \{i_1, \dots, i_m\} = \{j_1, \dots, j_s\}$ with $0 \le j_1 < \dots < j_s \le n-1$. Consider the coefficient of $x^{(q-1)q^{j_1}+\dots+(q-1)q^{j_s}}$ in

(3.3)
$$\prod_{\epsilon \in \mathbb{F}_q^*} D(\epsilon x) = \prod_{\epsilon \in \mathbb{F}_q^*} \begin{vmatrix} a_0 + \epsilon x & a_1 & \cdots & a_{n-1} \\ a_{n-1}^q & a_0^q + \epsilon x^q & \cdots & a_{n-2}^q \\ \vdots & \vdots & \ddots & \vdots \\ a_1^{q^{n-1}} & a_2^{q^{n-1}} & \cdots & a_0^{q^{n-1}} + \epsilon x^{q^{n-1}} \end{vmatrix}.$$

By the uniqueness of the q-adic expansion of $(q-1)q^{j_1} + \cdots + (q-1)q^{j_s}$, we see that this coefficient equals

$$\left[\det\left(A(f)(i_1,\cdots,i_m)\right)\right]^{q-1}\prod_{\epsilon\in\mathbb{F}_q^*}\epsilon^s=\left[\det\left(A(f)(i_1,\cdots,i_m)\right)\right]^{q-1}(-1)^s,$$

where $A(f)(i_1, \dots, i_m)$ is the principal submatrix of A(f) with row and column indices i_1, \dots, i_m , namely, the submatrix of A(f) obtained by deleting rows and columns with indices other than i_1, \dots, i_m . Comparing the coefficients of $x^{(q-1)q^{j_1}+\dots+(q-1)q^{j_s}}$ in the two sides of (3.2), we have $\det(A(f)(i_1, \dots, i_m)) = 0$.

Theorem 3.2. The polynomials in Problem 1.2 are exactly the ones of the form $f(x) = ax^{q^k}$ where $a \in \mathbb{F}_{q^n}^*$ and k is a positive integer such that (k, n) = 1.

Proof. Let $f(x) = a_0x + a_1x^q + \cdots + a_{n-1}x^{q^{n-1}} \in \mathbb{F}_{q^n}[x]$ be a polynomial in Problem 1.2. It suffices to show that f(x) has exactly one nonzero coefficient. By Lemma 3.1, the determinants of principal submatrices of

$$A(f) = \begin{bmatrix} a_0 & a_1 & \cdots & a_{n-1} \\ a_{n-1}^q & a_0^q & \cdots & a_{n-2}^q \\ \vdots & \vdots & \ddots & \vdots \\ a_1^{q^{n-1}} & a_2^{q^{n-1}} & \cdots & a_0^{q^{n-1}} \end{bmatrix}$$

of sizes 1×1 , 2×2 , \cdots , $(n-1) \times (n-1)$ are all 0. Observe that

$$A(f) = [b_{ij}]_{0 \le i, j \le n-1}$$

where

(3.4)
$$b_{ij} = 0$$
 if and only if $a_{j-i} = 0$,

where the subscript is taken modulo n.

We claim that if $i_1 + \cdots + i_m \equiv 0 \pmod{n}$ $(1 \leq m \leq n-1)$, then

$$(3.5) a_{i_1} \cdots a_{i_m} = 0.$$

To prove (3.5), we use induction on m. The case m=1 is obvious. Assume to the contrary that $i_1+\cdots+i_m\equiv 0\pmod n$ but $a_{i_1}\cdots a_{i_m}\neq 0$. We may assume that $0,i_1,i_1+i_2,\cdots,i_1+\cdots+i_{m-1}$ are all distinct modulo n. (Otherwise, $i_s+\cdots+i_t\equiv 0\pmod n$ for some $1\leq s< t\leq m-1$. By the induction hypothesis, $a_{i_s}\cdots a_{i_t}=0$, which is a contradiction.) Consider the principal submatrix of A(f) with row and column indices $j_0=0,j_1=i_1,j_2=i_1+i_2,\cdots,j_{m-1}=i_1+\cdots+i_{m-1}$:

$$B = \begin{bmatrix} 0 & b_{0j_1} & b_{0j_2} & \cdots & b_{0j_{m-1}} \\ b_{j_10} & 0 & b_{j_1j_2} & \cdots & b_{j_1j_{m-1}} \\ b_{j_20} & b_{j_2j_1} & 0 & \cdots & b_{j_2j_{m-1}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_{j_{m-1}0} & b_{j_{m-1}j_1} & b_{j_{m-1}j_2} & \cdots & 0 \end{bmatrix}.$$

Since a_{i_1}, \dots, a_{i_m} are all nonzero, by (3.4), $b_{0j_1}, b_{j_1j_2}, \dots, b_{j_{m-2}j_{m-1}}, b_{j_{m-1}0}$ are all nonzero. Since all 2×2 principal submatrices of B have determinant $0, b_{j_10} = 0$

 $b_{j_2j_1}=\cdots=b_{j_{m-1}j_{m-2}}=0$. Since all 3×3 principal submatrices of B have determinant 0, it follows that $b_{j_20}=b_{j_3j_1}=\cdots=b_{j_{m-1}j_{m-3}}=0$. (For example,

$$0 = \begin{vmatrix} 0 & b_{0j_1} & b_{0j_2} \\ 0 & 0 & b_{j_1j_2} \\ b_{j_20} & 0 & 0 \end{vmatrix} = b_{0j_1}b_{j_1j_2}b_{j_20}$$

implies that $b_{j_20} = 0$.) In the same way, by considering principal submatrices of B up to size $(m-1) \times (m-1)$, we conclude that

$$B = \begin{bmatrix} 0 & b_{0j_1} & * & \cdots & * & * \\ 0 & 0 & b_{j_1j_2} & \cdots & * & * \\ 0 & 0 & 0 & \cdots & * & * \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & b_{j_{m-2}j_{m-1}} \\ b_{j_{m-1}0} & 0 & 0 & \cdots & 0 & 0 \end{bmatrix}.$$

It follows that $b_{0j_1}b_{j_1j_2}\cdots b_{j_{m-2}j_{m-1}}b_{j_{m-1}0} = \det B = 0$, which is a contradiction. Thus (3.5) is proved.

Assume that $a_k \neq 0$ for some $1 \leq k \leq n-1$. We claim that (k, n) = 1. Otherwise, there is an integer $1 \leq l \leq n-1$ such that $lk \equiv 0 \pmod{n}$. By (3.5), we have

$$\underbrace{a_k \cdots a_k}_{l} = 0,$$

which is a contradiction. For any $1 \le i \le n-1$ with $i \ne k$, we can write $i \equiv -jk \pmod{n}$ with $1 \le j \le n-2$. By (3.5) again, we have

$$a_i \underbrace{a_k \cdots a_k}_{j} = 0,$$

which implies that $a_i = 0$. Thus a_k is the only nonzero coefficient of f and the proof of the theorem is complete.

4. A RELATED PROBLEM

We consider another problem similar to Problem 1.1:

Problem 4.1. Determine all linearized polynomials $f(x) = \sum_{i=0}^{n-1} a_i x^{2^i} \in \mathbb{F}_{2^n}[x]$ such that for any $c \in \mathbb{F}_{2^n}$, the range of f(x) + cx has dimension $\geq n-1$ over \mathbb{F}_2 .

We mention that Problem 4.1 is related to a construction of partial difference sets in $\mathbb{Z}_4^n \times \mathbb{Z}_2^n$ ([1]). The solution of Problem 4.1 is similar to that of Problem 1.1.

Theorem 4.2. The polynomials in Problem 4.1 are exactly the ones of the form $f(x) = ax^{2^k} + bx$ where $a \in \mathbb{F}_{2^n}^*$, $b \in \mathbb{F}_{2^n}$ and (k, n) = 1.

Proof. First assume that $f(x) = ax^{2^k} + bx$ with $a \in \mathbb{F}_{2^n}^*$, $b \in \mathbb{F}_{2^n}$ and (k, n) = 1. Then for any $c \in \mathbb{F}_{2^n}$, $f(x) + cx = ax(x^{2^k-1} + \frac{b+c}{a})$ has at most two roots in \mathbb{F}_{2^n} . Thus the range of f(x) + cx has dimension $\geq n - 1$ over \mathbb{F}_2 .

Now assume that $f(x) = \sum_{i=0}^{n-1} a_i x^{2^i} \in \mathbb{F}_{2^n}[x]$ is a polynomial in Problem 4.1.

Now assume that $f(x) = \sum_{i=0}^{n-1} a_i x^{2^i} \in \mathbb{F}_{2^n}[x]$ is a polynomial in Problem 4.1. For each $c \in \mathbb{F}_{2^n}$, f(x) + cx has at most one zero in $\mathbb{F}_{2^n}^*$, i.e., $\frac{f(x)}{x} = c$ has at most one solution in $\mathbb{F}_{2^n}^*$. Thus the map

$$\begin{array}{cccc} \psi : & \mathbb{F}_{2^n}^* & \longrightarrow & \mathbb{F}_{2^n} \\ & x & \longmapsto & \frac{f(x)}{x} \end{array}$$

is one-to-one. Let $\mathbb{F}_{2^n} \setminus \psi(\mathbb{F}_{2^n}^*) = \{b\}$. Then f(x) + bx has no root in $\mathbb{F}_{2^n}^*$, hence is a permutation polynomial of \mathbb{F}_{2^n} . Furthermore, $\frac{f(x) + bx}{x} = \frac{f(x)}{x} + b$ is a permutation of $\mathbb{F}_{2^n}^*$. By Theorem 3.2, $f(x) + bx = ax^{2^k}$ where $a \in \mathbb{F}_{2^n}^*$ and (k, n) = 1.

Finally, we remark that we have not found a q-ary version of Theorem 4.2.

References

- [1] J. Davis and Q. Xiang, A family of partial difference sets with Denniston parameters in nonelementary abelian 2-groups, European J. Combin. 21 (2000), 981 988. MR 2002a:05043
- [2] P. Dembowski, *Finite Geometries*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44, Springer-Verlag, New York, 1968. MR **38**:1597
- [3] L. E. Dickson, Linear Groups: With an Exposition of the Galois Field Theory, Dover, New York, 1958. MR 21:3488
- [4] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, MA, 1983. MR 86c:11106
- [5] S. E. Payne, Affine representations of generalized quadrangles, J. Algebra 16 (1970), 473 485. MR 42:8381
- [6] S. E. Payne, Linear transformations of a finite field, Amer. Math. Monthly 78 (1971), 659 –

Department of Mathematics and Statistics, Wright State University, Dayton, Ohio 45435

E-mail address: xhou@euler.math.wright.edu

Current address: Department of Mathematics, University of South Florida, Tampa, Florida 33620