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Abstract. Dynamical systems f in Rd are studied. Let Ω ⊂ Rd be a bounded
open set. We will be interested in those periodic orbits such that at least one of
its points lies inside Ω and at least one of its points lies outside Ω; the orbits
with this property are called Ω-broken. Information about the structure of
the set of Ω-broken orbits is suggested; results are formulated in terms of
topological degree theory.

1. Introduction

Consider a continuous mapping f : Rd → Rd. The pth iteration of f for a positive
integer p is denoted by fp. A point x is p-periodic if fp(x) = x. The least positive
integer p = p(x) for which fp(x) = x is the minimal period of x. For a periodic
point x with minimal period p the set of points O = O(x) = {x, f(x), . . . , fp−1(x)}
is the orbit of x.

Let Ω ⊂ Rd be a bounded open set. We are interested in periodic orbits such
that at least one of its points lies inside Ω and at least one of its points lies outside
of the closure Ω of Ω. We will call such orbits Ω-broken, or simply broken if there
can be no ambiguity. By definition, broken orbits have minimal periods greater
than one.

We discuss how topological degree theory can be used in analysis of these broken
orbits. If f : Rd 7→ Rd is a continuous mapping, Ω ⊂ Rd is a bounded open set,
and y ∈ Rd does not belong to the image f(∂Ω) of the boundary ∂Ω of Ω, then the
symbol deg(f,Ω, y) denotes the topological degree [2] of f at y with respect to Ω. If
0 6∈ f(∂Ω), then the number γ(f,Ω) = deg(f,Ω, 0) is well defined and it is called
the rotation of the vector field f at ∂Ω. The properties of the number γ(f,Ω) are
described in detail in [8].

We denote by id the identity mapping: id (x) ≡ x. Consider the sequence

α = α(f,Ω) = (α1, α2, α3, . . .) where αm = γ(id − fm,Ω).

A particular element αm of this sequence is well defined if and only if the mapping
f has no m-periodic points in ∂Ω.

Received by the editors July 28, 2002.
2000 Mathematics Subject Classification. Primary 58C30; Secondary 47H11.
Key words and phrases. Index sequence, topological degree, periodic orbits.
This research was partially supported by the Enterprise Ireland, Grant SC/2000/138.

c©2003 American Mathematical Society

567



568 A. V. POKROVSKII AND O. A. RASSKAZOV

We introduce a reduced version of the sequence α which is more suited to the
purposes of this article. For each n ≥ 1, let Jn denote the infinite sequence of
numbers (j1, j2, . . .) where jm = 1 if m is a multiple of n, and jm = 0 otherwise. For
example, J3 = (0, 0, 1, 0, 0, 1, . . .). We will use the same notation Jn for an initial
fragment of the sequence Jn when there could be no ambiguity. We can define
the sequences α(n), n = 1, 2, . . . , recurrently by setting α1 = α and α(n+1) =
α(n) − α(n)

n Jn for n = 1, 2, . . . . Here α(n)
m denotes the mth element of the sequence

α(n). Finally, we introduce the “diagonal” sequence β = β(f,Ω) defined by β1 = 0
and

(1.1) βm = α(m)
m mod m, m = 2, 3, . . . .

We note in passing that by construction a particular element βm is well defined
providing that the element αm is well defined.

For example, for α = α(1) = (1, 3, 9, 27, . . .), we have

α(2) = (1, 3, 9, 27, . . .)− (1, 1, 1, 1, . . .) = (0, 2, 8, 26, . . .),

α(3) = (0, 2, 8, 26, . . .)− (0, 2, 0, 2, . . .) = (0, 0, 8, 24, . . .),

α(4) = (0, 0, 8, 24, . . .)− (0, 0, 8, 0, . . .) = (0, 0, 0, 24, . . .).

Thus β = (0, 0, 2, 0, . . .). The elements of the sequence β can also be written as

(1.2) βm =
∑

µ(m/p)γ(id − fp,Ω) ( mod m)

where the sum is taken over all divisors p of m and µ is the Möbius function.
Recall that µ(n) is defined to be +1 for a positive integer that is a product of

an even number of distinct primes, to be −1 if n is a product of an odd number
of distinct primes, and to be 0 if n has a multiple prime factor. The conversion of
(1.2) to (1.1) is a simple application of the Möbius Inversion Formula (see p. 151,
[7]).

Proposition 1.1. Let f : Rd → Rd be a map with no m-periodic points in ∂Ω, and
let β = β(f,Ω). If βm 6= 0, then there exists an Ω-broken orbit whose minimal
period is a divisor of m.

This proposition follows from results of Section 31 of [8]. It is also an immediate
corollary of Theorem 2.1.

The sequence β(f,Ω) contains plenty of additional information about structure
of the set of broken orbits. To explain it is the intention of this paper.

2. Polynomial systems

2.1. The result. Let F = F(k1, . . . , kd) be the set of all polynomial mappings
f : Rd → Rd given by

(f(x))i = fi(x)

where for each i the component fi has degree no higher than ki > 0. The list
of all coefficients of a particular mapping f ∈ F(k1, . . . , kd) can be aggregated
into a single vector a(f) that belongs to the Euclidean space of the appropriate
dimension K. Conversely, we can consider the polynomial mapping fa for a given
vector a ∈ RK . The choice of k1, . . . , kd (and conversely K) and the method of
passing from F to Rk and back again is fixed for the remainder of this section.
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Recall that a subset S ⊂ RK is algebraic if it can be represented as the totality
of roots of a polynomial system of equations. Any algebraic set is a closed set with
empty interior, has zero Lebesgue measure, and so on.

Theorem 2.1. For each n there exists an algebraic subset A ⊂ RK such that the
following holds: if f = fa for some a ∈ RK \ A and m ≤ n such that f has no
m-periodic points in ∂Ω and βm(fa,Ω) 6= 0, then

(a) f has at least one Ω-broken orbit of minimal period m if m or βm is odd;
(b) f has an Ω-broken orbit of minimal period m or m/2 if βm and m are both

even.

Since the set of polynomials is dense in many function spaces, the statements (a)
and (b) also hold for generic dynamical systems f with respect to many standard
(e.g., Ck) and some less standard topologies. The theorem above is also interest-
ing in its own right, because polynomial approximations of dynamical systems are
very common, and many important dynamical systems (for instance, the Hénon
mapping) are polynomial mappings.

2.2. Proof of the Theorem. Let f be a differential mapping. A periodic point
y of f with minimal period p is k-simple if

det
(
id − (f `p)′(y)

)
6= 0, ` = 1, . . . , k.

(We note that this inequality does not follow from det
(
id − (fkp)′(y)

)
6= 0; indeed,

for f(x) ≡ −x and odd m we have det (id − (fm)′(0)) 6= 0. However, for even m,
det (id − (fm)′(0)) = 0). This k-simple periodic point y is an isolated fixed point
of the mappings f `p, ` = 1, . . . , k and we can consider the numbers

(2.1) α`(y) = ind (y, id − f `p)

where ind (·, ·) is the Kronecker index [8]. Thus we can consider the finite sequence

(2.2) α(y) = (α1(y), . . . , αk(y)).

Lemma 2.2. Let y be a k-simple point of a differentiable mapping f . Then the
index sequence (2.2) takes one of four possible forms, namely

(2.3) ±(1, 1, 1, 1, . . . , 1)

or

(2.4) ±(1,−1, 1,−1, . . . , (−1)k−1).

Moreover, periodic points belonging to the same orbit generate identical sequences.

Proof. This assertion is essentially well known; see [1] or Section 26 of [8]. We will
supply a short proof for the reader’s convenience.

Denote B = (fp)′(y) and denote by σ+(B) (correspondingly σ−(B)) the number
of real eigenvalues of B that are greater than 1 (less than −1). By formula (6.8) of
[8],

ind (y, id − f `p) = (−1)σ+(B`) = (−1)σ+(B)(−1)σ−(B)(`−1), ` = 1, . . . , k.

Thus the index sequence (2.2) is reduced to the form (2.3) if σ−(B) is even, and to
the form (2.4) if σ−(B) is odd.
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It remains to prove the last part of the lemma. Let p = p(y) be the minimal
period of y and let z ∈ O(y) with z 6= y. So z = f qy for some 1 < q < p. Then
ind (y, id − f `p) = (−1)σy and ind (z, id − f `p) = (−1)σz where

σy = σ+

`p−1∏
j=0

f ′(f j(y))

 = σ+(B1B2),

σz = σ+

`p−1∏
j=0

f ′(f j+q(y))

 = σ+(B2B1),

and

B1 =
`p−1∏
j=q

f ′(f j(y)), B2 =
q−1∏
j=0

f ′(f j(y)).

Here by
∏

we denoted “left-hand side” multiplication, i.e.,
q∏
j=0

mj = mqmq−1 . . .m1m0.

However, the sets of eigenvalues together with their multiplicities for the operators
B1B2 and B2B1 coincide and, in particular, σ+(B1B2) = σ+(B2B1). The lemma
is thus proved. �

The mapping f is said to be n-simple if for each p = 1, . . . , n it has only a finite
number of periodic points with the minimal period p, and each of these points is
bn/pc-simple where b·c is the floor function (that is, bac is the largest integer i
satisfying i ≤ a).

Lemma 2.3. There exists a proper algebraic subset A of RK such that for any
a ∈ RK \ A the polynomial mapping f = fa is n-simple.

Proof. First we formulate an auxiliary lemma. Let κ be a positive integer and let
Fι(x; a), ι = 1, . . . , κ be nonzero polynomials, both with respect to x ∈ Rd and
a ∈ RK .

Lemma 2.4. Let A be the set of those a for which the simultaneous system

(2.5) Fι(x; a) = 0, ι = 1, . . . , κ

has at least one complex solution. Then either A = RK or it is contained in a
proper algebraic subset of RK .

A short proof of this lemma is relegated to the appendix.
We will come back to the proof of Lemma 2.3. It is sufficient to prove that

for a given pair of positive integers p and ` there exists a proper algebraic subset
A(`, p) of RK such that for any vector a ∈ RK \A(`, p) the simultaneous system of
equations

(2.6) f `pa (x) − x = 0, det(id − (f `pa )′(x)) = 0

has no complex solutions. By Lemma 2.4 it suffices to construct an open set U of
points a for which the system (2.6) is incompatible. Consider the point a∗ ∈ RK
that generates the polynomial fa∗,i(x) = xkii , i = 1, . . . , d, if ki > 1, and the
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polynomial fa∗,i(x) = 2xi, if ki = 1. The (complex) solutions of the truncated
system

(2.7) f `pa∗,i(x) − xi = 0, i = 1, . . . , d

are exactly the points y for which the component yi is zero if ki = 1, and, in the
case ki > 1, yi is either zero or a (k`pi − 1)-root of unity. For each such solution y
the second equation of (2.6) does not hold:

det(id − (f `pa∗)
′(y)) =

d∏
i=1

(
1− (f `pa∗,i)

′(yi)
)
6= 0.

Indeed,

1−
(
f `pa∗,i

)′
(yi) =


1− 2`p if ki = 1,

1 if ki > 1 and yi = 0,
1− k`pi otherwise.

Therefore (because the degree of each polynomial fa∗,i equals ki, and roots of a
perturbed system cannot “come from infinity”); for a small neighbourhood of a∗
the corresponding system (2.6) has no complex solutions. The lemma is proved. �

Lemma 2.3 is in line with Theorem β (on p. 177) of [11]. We note that per-
turbation of a particular coefficient, say constant perturbation in line with the
Sard Lemma, is not enough here. Consider, for example, the system f(x) = −x.
It has a unique simple fixed point (zero). However, any constant perturbation
fu(x) = f(x) + u of this system satisfies (fu)2(x) ≡ x and thus every point is
2-periodic for any constant perturbation of f .

For an n-simple mapping f and for an orbit O of this mapping with minimal
period p ≤ n, we define b(O) to be

b(O) =
∑

x∈O∩Ω
ind (x, id − fp).

We denote by BOp(f) the totality of all Ω-broken orbits of minimal period p. Also,
we denote by BO∗p(f) the subset of BOp(f) consisting of those orbits for which the
index sequences generated through (2.2) by any point y in the orbit have the form
(2.4).

Lemma 2.5. Let f be an n-simple mapping and 1 ≤ m ≤ n.
(i) If m is odd, then

(2.8) βm =
∑

O∈BOm(f)

b(O) (mod m).

(ii) If m is even, then

(2.9) βm =
∑

O∈BOm(f)

b(O)− 2
∑

O∈BO∗m/2(f)

b(O) (mod m).

Proof. Let us denote by α(f,Ω, n) the finite sequence of the first n integers of the
sequence α(f,Ω). To avoid cumbersome notation we consider only the case when
all elements of the sequence α(f,Ω, n) are well defined.

The sequence α(f,Ω, n) can be represented as the sum

(2.10) α(f,Ω, n) =
n∑

m=1

ξmJm
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where ξm are uniquely defined numbers; it suffices to note that the matrix of the
corresponding linear system is a triangular one with 1s along the main diagonal.

We will calculate the numbers ξm in two different ways.
On the one hand, by construction

(2.11) α(f,Ω, n) =
n∑

m=1

α(m)
m Jm, m = 1, . . . , n.

Indeed, the recurrent procedure given in the introduction is just a description of
finding the unknown ξm by using Gauss’s elimination method ([4], p. 23).

On the other hand, by the Kronecker formula (Theorem 4.3, [8]) αm is the sum
of indices of all fixed points of fm that belong to Ω. According to Lemma 2.2, one
can write

(2.12) α(f,Ω, n) =
n∑

m=1

 ∑
O∈O(1)

m (f)

b(O)Jm +
∑

O∈O(2)
m (f)

b(O)(Jm − 2J2m)

 .

Here O(1)
p (f) (correspondingly O(2)

p (f)) denotes the set of orbits of minimal period
p whose elements generate sequences (2.3) (the sequences (2.4)).

Comparing (2.11) and (2.12) we obtain

(2.13) α(m)
m =

∑
O∈Om(f)

b(O)

for odd m and

(2.14) α(m)
m =

∑
O∈Om(f)

b(O)− 2
∑

O∈O(2)
m/2(f)

b(O)

for even m. Here we have denoted by Op(f) the totality of all orbits of minimal
period p.

If a whole orbit of minimal period m is contained in Ω, then its contribution
to the right-hand side of (2.13) and (2.14) equals 0 (mod m) due to the last part
of Lemma 2.2. In the case of an even m, the same fact holds for m/2-periodic
orbits belonging to Ω, since their contributions to the right-hand side of (2.14) are
doubled. Thus (2.13) and (2.14) are equivalent to (2.8) and (2.9) correspondingly.
The lemma is proved. �

Now we can give the proof of the theorem. Let A be an algebraic set that satisfies
Lemma 2.3 and let us choose a polynomial mapping f = fa such that a 6∈ A. The
assertion (a) of the theorem follows from the assertion (i) of Lemma 2.5 for the case
of odd m. It also follows from the assertion (ii) of Lemma 2.5 for the case where m
is even and βm is odd. The assertion (b) of the theorem follows from the assertion
(ii), Lemma 2.5. �

3. Base period sets

Let m and b be positive integers. A nonempty set P of positive divisors of m is
called the base period set for the pair (m, b) if the greatest common divisor of the
set S = {m/p : p ∈ P} divides b and the greatest common divisor of any proper
subset of S does not divide b. It is convenient also to consider any set P of positive
divisors of m as a base period set for the pair (m, 0).
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For instance, the pair (12, 1) has the base sets {12}, {3, 4}, {4, 6}, whereas the
pair (12, 2) generates the base period sets {12}, {6}, {2, 3}, {3, 4}.

Proposition 3.1. Let f have no m-periodic points in ∂Ω and βm 6= 0.
(a) If m is odd, then the set of minimal periods for Ω-broken orbits must contain a

base period set for the pair (m,βm). (b) If m is even, then there exists a nonnegative
integer λ ≤ m/2 such that the set of minimal periods for Ω-broken orbits contains a
base period set for the pair (m/2, 2λ) and a base period set for the pair (m,m−2λ).

Proof. (a) Let P(f) be the set of those minimal periods for Ω-broken orbits for f
that divide m. Denote S(f) = {m/p : p ∈ P(f)}. Consider a sequence of m-simple
polynomial mappings gi converging to f . Such a sequence exists by Lemma 2.3.
Then for large i any Ω-broken m-periodic orbit O of gi is close to a Ω-broken orbit
of f whose period divides m. This implies that

b(O) =
∑

x∈O∩Ω
ind (x, id − gpi ) = ηs

where η is an integer and s ∈ S(f). Thus, by assertion (i) of Lemma 2.5, the
following equation holds:

βm =
∑

O∈BOm(gi)

b(O) =
∑

O∈BOm(gi)

η(O)s(O)(mod m)

where s(O) ∈ S(f) and η(O) are some integer coefficients. This equation has an
integer solution with respect to η(O) only if the greatest common divisor of the set
S(f) divides βm. This fact immediately implies that the set P(f) contains a base
period set. The assertion (a) is thus proved.

(b) The proof of the case when m is even resembles the proof given above and
so is omitted. �

4. Conclusion and example

We considered continuous dynamical systems f in Rd and investigated periodic
orbits, such that at least one of its points lies inside a given open bounded set
Ω and at least one of its points lies outside Ω. Orbits with this property are
called Ω-broken. Interest in Ω-broken orbits arises in many applications, such as
models of economy-cycles (where elements of an orbit belonging to the exterior of
Ω represents a “crisis”), models of population dynamics with similar interpretation,
power dropout problems of nonlinear optics, etc.

The suggested approach to broken orbit analysis can be useful in many situa-
tions. It provides reliable information that is robust with respect to nonsmooth
perturbations, including small delays and small hysteresis terms; the corresponding
quantitative estimate can also be provided. If the “main part of the model” is
“low-dimensional”, say not more than 4-dimensional, then it is easy to calculate
numerically reasonably long fragments of the corresponding sequences β and our
method of broken orbits investigation becomes practical for understanding subtle
features of the system dynamics. Taking into account the reliability of our ap-
proach, it could be combined to a good effect with fast (but often slightly heuristic)
algorithms that locate long periodic orbits numerically. In a sequel paper we will
consider in detail applications of the methods of this paper to rigorous analysis of
unstable periodic orbits in some low-dimensional models in optoelectronics [6], [9].
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Table 1. Experimental results for the Hénon mapping

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14
αm 1 -1 1 -1 1 -1 1 -1 2 -1 0 0 1 -1
βm 0 0 0 0 0 0 0 0 1 0 -1 1 0 0
m 15 16 17 18 19 20 21 22 23 24 25 26 27 –
αm 1 -1 0 -2 1 1 0 0 0 1 -1 0 -2 –
βm 0 0 -1 -2 0 2 -1 2 -1 1 -2 1 -4 –

Table 2. More experimental results for the Hénon mapping

m 1-7 8 9 10 11 12 13 14 15 16 17
βm for R = 0.05 0 1 -2 1 -1 1 -1 1 -1 0 0
βm for R = 0.01 0 0 0 0 -1 1 -1 1 -2 3 -2
βm for R = 0.005 0 0 0 0 0 0 1 0 -1 0 1
βm for R = 0.002 0 0 0 0 0 0 0 0 -1 1 -1
βm for R = 0.00175 0 0 0 0 0 0 0 0 0 -1 -1
βm for R = 0.0017 0 0 0 0 0 0 0 0 0 0 0

As an illustrative example, we consider the vectors β(H,Ω) for the two-dimen-
sional Hénon mapping [5]. Consider a Hénon mapping Ha,b(x(1), x(2)) = (1+x(2)−
ax(1)2

, bx(2)) with a = a∗ = 1.3924, b = b∗ = 0.3.We were interested in the Hénon
mapping with these particular values of parameters by the following considerations.
For some values of the parameters a, b, satisfying |a − a∗|, |b − b∗| < 0.00005, the
fixed point

(x(1)
a,b, x

(2)
a,b) =

(
(b− 1)/2a−

√
((b− 1)/2a)2 + 1/a

)
(1, b)

of this mapping generates stable and unstable manifolds that are tangent at some
point (i.e., there is a homoclinic tangency). By the classical results of Mora and
Viana [10] this implies an abundance of strange attractors for generic diffeomor-
phisms sufficiently close to Ha∗,b∗ . Note that the Hénon mapping with the classical
parameters was investigated using Zgliczyński’s method in [3].

In the first experiment we chose the circle of radius 0.1 centered at the point
(0.64, 0.19) (the center point was chosen to be reasonably close to the fixed point

(x(1)
∗ , x

(2)
∗ ) =

(
(b∗ − 1)/2a∗ +

√
((b∗ − 1)/2a∗)2 + 4

)
(1, b∗)

of the Hénon mapping Ha∗,b∗). Due to precision restrictions of the hardware used,
we decided to calculate only the first 27 members of the rotation vector. The results
are presented in Table 1.

We considered also some other circles with the same center point and different
radii, the results of which are presented in Table 2. Since the Hénon mapping is
a polynomial, we can interpret results of the experiments using both Theorem 2.1
and Proposition 3.1. For instance, the results show the existence of different broken
orbits of the same period located very close to each other. For example, the column
for β13 shows that there exist at least two different broken orbits of length 13 in the
open ball of the radius 0.1 centred at (0.64, 0.19). We also used a slightly modified
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Table 3. Elements (x(1)
i , x

(2)
i ) of a period 15 orbit

i 1 2 3 4 5 6 7 8

x
(1)
i 0.6303 0.6365 0.6250 0.6471 0.6045 0.6853 0.5273 0.8184
x

(2)
i 0.1897 0.1891 0.1910 0.1875 0.1941 0.1813 0.2056 0.1582

i 9 10 11 12 13 14 15 –

x
(1)
i 0.2256 1.1747 -0.8537 0.3376 0.5852 0.62452 0.6325 –
x

(2)
i 0.2455 0.0677 0.3524 -0.2561 0.1013 0.1755 0.1874 –

program to the find orbit of minimal period 15. Points of this orbit are presented
in Table 3.

Technically we used a computer program that calculates the numbers γ(id −
Hm,Ω) according to the algorithm presented below.

Consider a mapping f : R2 7→ R2 and consider a disc Ω with boundary ∂Ω. The
topological degree on R2 coincides with the winding number; thus we can calculate
the number γ(id − f,Ω) as follows:

(i) We move from the starting point anti-clockwise until we cross for the first
time a coordinate axis. If we do not cross an axis, then the rotation is 0; otherwise,
we remember which axis we cross.

(ii) We move until we cross the other coordinate axis. Then we observe in which
direction we were moving according to the stored values, and add either +1/4 or
−1/4 to the rotation value. After that, we store new information about the axis
we have crossed and continue to move.

(iii) If we encounter the zero vector, the algorithm stops.
The script of the program that we have used to calculate rotation is presented

at the website: http://www.ins.ucc.ie/preprints.html. It is based on the algorithm
explained above together with adaptive change of the step along ∂Ω. We would
like to mention that such an adaptation technique as well as careful “online error
control” were essential in our experiments: the Hénon mapping itself looks nice, but
its 28th iteration is a polynomial mapping whose degree is of the magnitude 109,
and the eigenvalues of the linearization of the Hénon mapping at the aforementioned
fixed point (x(1)

∗ , x
(2)
∗ ) are of the magnitudes 109 and 10−20.

The CPU time to calculate Table 1 was about 1 minute. Taking into account
the amount and reliability of the information obtained gives, in our view, credit to
the use of topological degree theory in broken orbit investigation.
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5. Appendix

5.1. Proof of Lemma 2.4. Let us rewrite the system (2.6) in the coordinate form
as

(5.1) F (0)
ι (x1, . . . , xd; a) = 0, ι = 1, . . . , κ0
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and denote by F (0) the set of polynomials F (0)
ι . We added the index 0 to initiate

the inductive process, where using a modification of the elimination method ([12]),
we will construct for each j = 1, . . . , d an algebraic set Aj , a nonnegative integer
κj, and a (possibly empty) set F (j) of nonzero polynomials

(5.2) F (j)
ι (xj+1, . . . , xd; a), ι = 1, . . . , κj .

In particular, polynomials from the last set F (d) will depend only on a. First, we
denote by A(j) some square (d − j) × (d − j) matrices such that all the entries of
all the matrices are algebraically independent.

Let 0 ≤ j < d and suppose that the required integers κj and polynomials F (j)

have been constructed. If F (j) = ∅, then define Aj+1 = ∅, F (j+1) = ∅, κj+1 = 0.
Otherwise, for a given a ∈ RK , the polynomials F (j)

ι have a certain degree k(j)
ι (a)

(as polynomials in the d−j variables xj , . . . , xd) and set k(j)
ι = maxa k

(j)
ι (a). Denote

by A(1)
j the set of those coefficients a for which at least one of the polynomials (5.2)

has a degree strictly less than k(j)
ι . The set Aj is a proper algebraic subset of RK .

Define

(5.3) G(j)
ι (x(j); a) = F (j)

ι (A(j)x(j); a).

Each polynomial (5.3) has as a polynomial in xj the leading term

(5.4) g(j)
ι (a)xk

(j)
ι

j , ι = 1, . . . , κj

where g(j)
ι is some polynomial of a. Denote now by A(2)

j the set of those a that

nullify at least one of the polynomials (5.4). We finally denote Aj = A(1)
j

⋃
A(2)
j .

Below we will use the resultant theory ([12]). Let F (j+1) =
(
F

(j+1)
1 , . . . , F

(j+1)
κj+1

)
be the set of nonzero elements of the system of (k(j)

1 , . . . , k
(j)
κj )-resultants for the

polynomial (5.3) (as polynomials in xj with coefficients in the ring of polynomials
of xj+1, . . . , xd).

Recall that A is the set of those a for which the simultaneous system

(5.5) Fι(x; a) = 0, ι = 1, . . . , κ

has at least one complex solution.

Lemma 5.1. (a) The sets Aj , j = 1, . . . , d, are algebraic subsets of RK and do not
coincide with RK .

(b) Let a 6∈
⋃d
j=1Aj. Then a ∈ A if and only if a satisfies the simultaneous

equations

(5.6) F (a) = 0, F ∈ F (d).

Proof. (a) We need only establish that the polynomials (5.4) are nonzero; this
follows inductively from the algebraic independence of the elements of the matrices
A(j).

(b) For a given a 6∈ Aj+1, compatibility of the simultaneous system

(5.7) F
(j+1)
i (xj+1, . . . , xd; a) = 0, ι = 1, . . . , κj+1,

is a necessary and sufficient condition for compatibility of the system [12]

G(j)
ι (xj , . . . , xd; a) = 0, ι = 1, . . . , κj.
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Also, compatibility of the last system is equivalent to compatibility of the sys-
tem F

(j)
ι (xj , . . . , xd; a) = 0, ι = 1, . . . , κj , since the matrices A(j) are invertible.

Therefore, the assertion (b) follows by induction. �
We now define A0 to be the set of (real) solutions of the system (5.6) and denote

A =
⋃d
j=0Aj . The set A0 is algebraic and, by the “if” part of assertion (b) of

Lemma 5.1, A ⊂ A. The sets Aι, ι = 1, . . . , d, are proper algebraic subsets of RK .
If A0 does not coincide with RK , then A is the proper algebraic subset of RK ;
otherwise A coincides with RK by the “only if” part of assertion (b). The lemma
is proved. �
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