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ABSTRACT. Bounds for non-commutative versions of two classical strong mix-
ing coefficients for g-Gaussian processes are found in terms of the angle between
the underlying Hilbert spaces. As a consequence, we construct a Y-mixing g-
Gaussian stationary sequence with growth conditions on variances of partial
sums. If classical processes with analogous properties were to exist, they would
provide a counter-example to the Ibragimov conjecture.

1. INTRODUCTION

The long-standing Ibragimov conjecture in (classical) probability ([13], [I2], and
[9, Section 13.1]) involves the validity of the Central Limit Theorem for a stationary
sequence of random variables X which are ¢-mixing, i.e., such that there is a
sequence ¢y — 0 such that for every N,m,n € N|

lcov(V1, Vo)l < on [[Vall1][Valloo

for all bounded random variables Vi, V5 such that V4 is o(X7, ..., X, )-measurable
and V2 i8 0(Xp4 N, - - - s Xm+n+n )-measurable. Related to the Ibragimov conjecture
are Bradley’s conjecture [8] page 226], Iosifescu’s conjecture [14], and works by
M. Peligrad [I8], and Berkes and Philipp [1].

Here we investigate the same notions in the non-commutative setting introduced
by Voiculescu [19] for the free probability case (¢ = 0), and by Bozejko and Speicher
[6] in the —1 < ¢ < 1 case. Many classical (i.e., commutative) probability results
have already been extended to these settings. In this paper we obtain a result,
Theorem @, which does not yet have a classical precursor. If a classical version of
this theorem were to hold, it would settle in the negative Ibragimov’s conjecture
and all the other mentioned conjectures ([7]).

Non-commutative g-Gaussian random variables

(1) Xy = a, +aj,

are defined in terms of a bounded real-linear mapping a : H — B(H,) from a real
Hilbert space H into the algebra of all bounded operators on a complex separable
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Hilbert space ‘H, that satisfies the g-commutation relations
(2) agay, — qajay = (hlg)l
which were introduced in [11].
The von Neumann algebra A generated by these variables X, (i.e., the weak-

operator limits of non-commutative polynomials in the variables X},) has a tracial
state E. For 1 < p < oo, this trace permits us to define the L,-norms

Q X1, = (B (xxp2))

and the non-commutative L, space L,(A,E) is the closure of the von Neumann
algebra A in this norm; see [I7), Section 3]. We also use the standard conventions:
Lo(A,E) is A with the operator norm and Ly(A,E) is a Hilbert space with the
scalar product (Y|X) := E(X*Y).

The main results we obtain are as follows. We first extend to the non-commuta-
tive setting a theorem of Kolmogorov and Rozanov [16] stating that for classical
Gaussian sequences the “linear dependence coefficients” coincide with the “maximal
correlation coefficients”. In our setting, the linear dependence coefficient r of two
subspaces Hj, Hs C H is defined as

cov(X . X,)|
X pll2l1 X2
compare [9, Section 8.7]. Here,

cov(X,Y) = EX*Y) - E(X")E(Y).

If A; and Ay are the von Neumann algebras generated by {Xy : f € H;} and
{Xy : g € Ha} respectively, then the maximal correlation coefficient is

(4) r=r(H,Hy) :zsup{ Xf#O,Xg#O,fEHl,gEHQ};

cov(X,Y
p(Hl,HQ) = SUP{W : X # O,Y # O,X S LQ(Al,E),Y € LQ(AQ,]E)} .
Theorem 1.
(5) p(Hi, Ha) = r(Hy, Ha).

We then obtain an upper bound for the non-commutative analog of the ¢-mixing
coefficient
o |cov(X,Y)|
oo, )= s { o
(cf. [9, Theorem 3.10]). This result is somewhat unexpected since for the classical
Gaussian random variables the 1-mixing coefficient can only be zero (independent
case) or infinity.

Theorem 2. Ifr = r(H;,Hs) < 1, then

X #0,Y#0,X € La(A,E), Y € LQ(AQ,E)}

2
9 T4 —=3r+4
(6) (H;, Hy) < Cy TW,

where Cq =7 (1 — lq|™)~3/2.

This upper bound is sharp in the free probability case, i.e., if ¢ = 0; for a related
result, see also [2, Corollary 3].

Theorem 3. If ¢ =0 and r = r(H;,Hy) < 1, then ¢ (H;, Hp) = r"?f_?’:;g‘i,
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As a consequence of Theorem[2 we can adapt a classical probability construction
of Bradley [7] to obtain the following non-commutative result.

Theorem 4. For every € > 0 and —1 < q < 1 there exists a q-Gaussian sequence
{X}\} such that the following statements hold true:
(i) E(X;) =0, [ X1+ 4+Xpll2 = 00 asn — o0, and 2| X1+ +X,[3 =0
as n — oo.
(il) {Xx} is strictly stationary, i.e.,

(7) E (X1 - Xitm)) = E (Xt - Xigm)+1)

for all t,m € N, and all sequences of integers i(1),i(2),...,i(m) € N.
(i) {Xk} is Yp-mizing, i.e., there is a monotone sequence of numbers Yy — 0
such that 0 < 1 < €, and for all m,n, N € N,

lcov(V1, V)| < ¢n|[Vall1[ V2l

for all random wvariables V1 in the von Neumann algebra generated by
X4,...,X,, and Vs in the wvon Neumann algebra generated by

Xn+N7 s aXm+n+N-

Our proof of Theorem [2]is based on the proof of Theorem [l and, via a duality
argument, on the main theorem in Bozejko [4]. In the free case which corresponds
to ¢ = 0, a more self-contained proof along the lines of [3] is given in Section
where we also present the proof of Theorem 3.

2. PROOFS

We will be working with the g-Fock space representation of ¢-Gaussian processes,
adapted from [5]; see also [19] Section 1.5] for the ¢ = 0 (free) case. For a real
Hilbert space H with complexification H,. := H & iHl, the associated ¢-Fock space
H, is the closure of @, HE™ with respect to the scalar product obtained as the
sesquilinear extension of

EG’ES,L q“’\ H;‘l:1<gj|h0(j)> if m=n,
0 if m, £ n.

Here, H® := C1, where 1 is called the vacuum vector, S, is the set of all the
permutations of {1,...,n} and |o| := card{(¢, ) : ¢ < j,0(i) > o(j)} is the number
of inversions of o € .S,,.

We denote by ||-[|,, the corresponding norm. We denote by H®" the [ll¢,-

closure of the algebraic tensor product H®™ so that H, = €,-,H®". In this
setting, for h € H, the annihilation operator a; : Hy; — H, and its adjoint, the
creation operator aj : Hy — H,, are the bounded linear extensions of

apl =0,

®) <91®---®gn|h1®---®hm>q={

n
9 ag @ @gai=» ¢ g ® 09 1@ @B g,
j=1

and
apl=nh,
(10) 3291®"'®9n1=h®91®"'®9n
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for g1,92,...,9n € He, and satisfy relations () (see [6], [B]; cf. also [I9, Example
1.5.8] for ¢ = 0).

Let A be the von Neumann algebra generated by the variables {X;, : h € H}
given by (). It is known that the vacuum expectation state E : A — C defined by

E(X) = (X1[1)x,

is a faithful normal finite trace on A; see [5l, Proposition 2.3], or [19, Theorem 2.6.2
(ii)] when ¢ = 0.

For g1, 92,...,gn € H, the Wick product ¥(g; ® -+ ® g,) € A is defined recur-
sively by ¥(1) :=1, ¥(h) := X}, and

UVhRg® - Qgn) = Xp¥(91® - @ gn)

n
(11) = @ Hhlg) V(1 @ ® gj1 ® gjp1 @+ D gn).
j=1

By definition, X1 = h, so

(12) E(X)) = 0
and
(13) [Xnll2 = [IR]
for all h € H.

By ), V(M1 ® -+ @ hy) = Xp, Xpy .. Xp,, + -+, where the dots represent
a polynomial in Xy, ,..., X}y, of degree lower than n. Thus it is clear that every
non-commutative polynomial in the variables Xj,,..., X}, can be expressed as a

linear combination of Wick products. We will need to make this relation more
precise in Lemma [

Denote by i the multi-index i := (i(1),...,i(N)) € NV and denote by [i| the
length N of the multi-index i. Let (i,j) denote the concatenation of the multi-
indices i, j:

(i,§) = (i(1),i(2),...,i(L), 4 (1), (§(2), ..., j(M))).
Thus |(i,j)| = |i] + |j|. Denote by ifa...b] the subindex (i(a),i(a + 1),...,i(b)).

For a sequence of vectors g1, go, - - € H write

g% = 9i(1) @ Gi2) @ =+ @ Gi(m)
so that g®(d) = ¢®i @ ¢®i

Lemma 1. For every m € N and all multi-indices i of length 0 < |i| < m there are
polynomials P™ in m? variables {x; ; : i,7 < m} such that for any g1, g2, ..,gm €
H

)

(14) Xy Xgp o Xgy = > PM(wey: 5,6 <m)T(g%),

li|<m
where x4 = (gslg:), and if |i| = 0, then g®? = 1.

Proof. We proceed by induction with respect to m > 1. If m = 1, then X,, = ¥(g1)
proving (I4) with Pj =0,P! =1,P! =0 fori > 1.
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Suppose that formula (I4) holds true for some m € N. Then from (II)) we get

Xgm+1xgm - X—gl = Z p{n(ms,t 15,1t < m)Xgm+1‘I/(g®i)
li|<m
= Z P (zgy 08, < m)\I/(g®(m+1,i))

lij<m
li

+ > PM(@ar st <m) Y @ gma|giry) U (gB U0 FTIRLED),
li|[<m k=1

Notice that in the last sum the same multi-index can be obtained from more
than one concatenation (i[0...k —1],i[k+1...[i|]). Grouping all of them together
and noticing that (gm+1|gs) = Tm—+1,s; We get the polynomials in the right-hand
side of (I4)). O

From (1) and (@),
V(1@ @hn)l=h1 @ @ hn,

and thus [|¥(h1 ® -+ @ hy)||2 = [|h1 @ - -+ ® hn ||, , which extends ([3). Therefore,
the mapping

Y iichi @ @ hi = Y Yy ® @ hyy)

is an isometry in the Lo-norm (@) from a dense subset of H, onto all the polynomials
in {X}, : h € H} and hence it extends to a unitary mapping ¥ of H, onto the Hilbert
space Lo(A,E). Thus ¥ induces the orthogonal decomposition

(oo}
(15) Ly(AE) =PV <H®") :
n=0
Furthermore,

(16) V(1 =¢
for all £ € H,.

Proof of Theorem [1l First, we give a Hilbert space theoretic characterization of the
linear dependence coefficient r = r(Hj, Hy) refined by ). By (I2))

cov(X s, X,) = E(XjXy) = (X,[Xp) = (L(9)|T(f)) = (flg), = (fl9)-
Hence taking into account (3] we obtain

(17) r=sup{(flg): f € Hi,g € Ha, || fllg = llgllg = 1}-

Now let P; : H. — H. denote the orthogonal projection onto H; C H,, j=1,2. It
is easy to verify that |[PyPa|| = r.

The n-fold tensor product PJ®" of the projection P; with itself is clearly a lin-
ear idempotent operator on HZ™. Tt is also selfadjoint with respect to the scalar
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product (). Indeed, if g1 ® g2 ® - ® g, and h1 @ ha ® - -+ ® hy, are in H?", then
(PPrg1 @ ®gnlhi ® @ hm) = (Pig1 ® @ Pignlh1 @ - ® hm),

-y '“'H Pigilhoy) = > ¢V [ (9P o)
k=1

oceS, cES,
= <91 ®'~®gn|Pj®"h1 ® - ® hm), -

Moreover, it is easy to see that p]®"7 and hence (P, P)®" = PY" P2", commute
with the unitary operations of permuting the components of H®™. Therefore, by
[5, Lemma 1.4], the norm |[(P,P1)®"|| of (P2P)®™ with respect to the norm ||-[|,_
coincides with the norm with respect to the Hilbert space tensor norm. Therefore,
by [15] Section 2.6.12 Eqn. (16)] |[(P2Py)®"| = ||PLP2||", where || Py P2 is the usual
operator norm in B(H,.) which, as we observed above, coincides with 7.

Thus for n > 1, £ € HP™, n € HY™, we have

(18) IE(T (1) W(€))| < 7™ [T(E) |21 ¥ ()2

Indeed,
(6 506D = | BT | €|
:|P1®n|P£®n = (PEPE ), | = [(PaPL)®™E ), |

< (PP €N, 1llye, = 7 UEllye, nlly, = r" T 21T ()2,

where the last equality follows because ¥ is an isometry.
Now denote by X, Y (™) the components of X,Y in the direct sum decompo-

sition ([5). Since X € Ly(Ay,E), then X is in the closed subspace ¥ (H‘f}") of

v (H®">, and similarly Y™ € ¥ (H?") for all n. So from (I8) we get for n > 1
that

(19) EXO Y )] <[ X2 Y.

From (I6) we see that X1 € HY" and hence E(X™) = 0 for n > 1. Tt
is easy to verify that E(X) = E(X©),E(Y) = E(Y©), and E(X© Y©) =
E(XOME(Y®) = E(X)E(Y). Keeping in mind that E(X*Y) is the scalar product
of Y and X in Ly(A,E) we have

(20) E(X*Y) = i E(XM™*y ™),

n=0

Therefore

lcov(X,Y)| = [E(X*Y) — E(X*)E(Y)| < i E(XM*y ™)),

n=1

and inequality (T9) gives

o)
(21) Jeov(X, V)| < D [ X2 Y.

n=1
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As r™ < r, by the Cauchy-Schwarz inequality we have

00 1/2 00 1/2
|cov(X, Y)[ <7 (Z IIX(”’I§> (Z IIY(”’I§> < rlIXl2l1Y 2,
n=1

n=1

which proves the theorem. ([

Proof of Theorem[2 Let X € Lo(A,E). As in the proof of Theorem [T denote by
X (™) the n-th term in the expansion (I5) of X. Since Lo(A, E) is a Hilbert space,

IX™]l2 = sup{|E(Z*X™)| : Z € La(A,E), |Zl|2 < 1}.

By @0), E(Z*X™) = E(Z(™*X(™)) = E(Z(™M*X), where Z(™ is the component of
Zin ¥ (H@m). As A is dense in La(A,E), we get

IX||; = sup{[E(Z*X)| : Z € AN T (HE") ,|1Z]2 < 1}.

For Zec AN (H®") and ||Z||2 < 1, by Holder’s inequality ([17] (23)]) we get
IE(Z"X)| < 1 Z7loo [ Xlx = [1Z]loo [ X]l1-

By [ Proposition 2.1(b)],

(22) 1Z]|cc < Cy(n+ 1| Z]l2 < Cq(n +1).

Hence
XMz < Cyln+ 1)X])1.

The same inequality holds for any Y € Ly(A,E).
Applying these inequalities to each term on the right-hand side of 2II) we get

9 = 2 n 9 r? —3r4+4
cov(X, V)] < CF D (n+ D> IXW Y Il = Cfr =7 =55~ IXI Y.
n=1
which completes the proof. ([l

Proof of Theorem |4} To prove this theorem, we need to construct an appropriate

sequence of vectors hy in a real Hilbert space H. The construction relies on [7] (and

hence, indirectly, on results of Helson and Sarason on Toeplitz forms); according

to [Z, Lemma 3], for every e > 0 there is a sequence hj, of (real) classical Gaussian

random variables on a probability space (€2, F, P) with the following properties:
(1) 1+ 4 halla = 00 and LAy +--+ by} 0.

(il") (hi)higm) = (holhm) for all m,t € N.

(iii") There exists a monotone sequence ey — 0 such that €; < min(1,€) and for
every (real) linear combination v1 = 377 ajhj, vo = E;l:é\:;vm bjh; we
have

[(v1|v2)] < enllorflzllvz]l2,
where (g|h) is the scalar product in Ls(Q2, F, P).
We define H as the closure of the real span of hy in Lo(92, F, P). For any —1 <
g < 1, let H, be the g-Fock space based on H, with the creation and annihilation
operators aj,aj defined by (@), (IU) and the ¢-Gaussian random variables X,
defined in (). We now verify that the ¢-Gaussian sequence Xy, := Xp, has the
properties (i)-(iii).
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Statement (i) follows from (i') by (IZ), and
IXa 4 4 Xl = E(X + -+ X ) = E(Xn, 4,

where the second equality follows from the linearity of a : H — B(H,)) and the
third one holds true by (L3).
Statement (i) follows from (ii’) as follows. Since E(¥(h®1)) = 0 for |i| > 0, by

(@

2
)=+ 4 bl

E (Xi()4t - - - Xigm)1t) = P (s i 7,5 < m)
is a polynomial in the m? variables z, s = (hi(ry+t|Pi(s)+¢)- Since (ii’) implies that
(hitry+¢|Pics)+¢) = (i@l his)), 755 € N, therefore (@) follows.

Statement (iii) is a consequence of Theorem Pl and (iii’). In this context, fix
n,m,N € N and let H; be spanned by vectors {hi,...,h,} and Hs be spanned
by vectors {hn+nN,- -, hmint+n}. Thus by (1), we have r(Hy,Hs) < en. By (@)
and the monotonicity in r of the right-hand side of (f) we get (iii) with ¢y =
C? Aen O

g (1—en)3"

3. FREE PROCESSES

Proof of Theorem [3 By Theorem 2] «(H;, Hs) < r'“(;?’:)t‘* Since ¢(Hy, Hy) > 0,

we can assume without loss of generality that 0 < r < 1. Fix € € (0,r). Then there
are unit vectors f € Hy, g € Hy such that r¢ := (f|g) > r — € > 0. Then

cov(v(Xy), w(Xy))
loX )l llwXg)ll1”

where the supremum is taken over all real continuous functions v,w. The joint
distribution of X, X, is known, and has the density

1—172 Va4 — 22./4 —y?
W - 7%)2 ol e + T )
ie., E(v(Xy)w f_ f_ Yp(z,y) dedy; see [5, Theorem 1.10]. The

one—dimensmnal dlstrlbutlons of X s Xg have the same density p(x) = %\/4 — x2,
Thus the right-hand side of (]23]) becomes

(23) ¢ (Hy, Ha) > sup

p(z,y) =

NG p(z,y) — p(x)p(y))dady|
fw (@)dz [ |w(y)lp(y)dy
which is equal to
sp |1 - (x,y)‘
|z, ly| <2 p(z)p(y)
1-— 7"8 7"8 —3rg+4
= sup |l-— 22 2 2,2 1 2y 0 3
|2,y <2 (L—=7r8)? —ro(1 +rg)zy +r5(2* +y?) (1 —70)
Since r — e < rg < r and € > 0 is arbitrary, this concludes the proof. O

In the remaining part of this section we present the simplifications in the proofs
of Theorem [Mland Theorem [2 which occur in the free case ¢ = 0. Here (@) simplifies
to

(24) a1 Q- Qgn = (hg1)g2®@ - gn
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and the commutation relation (2) reduces to
(25) aza; = (h|g)L.

The scalar product in formula () becomes the regular symmetric scalar product
in the tensor product of the Hilbert spaces

[T (g;lh;) ifm=n,

Definition (1)) of the Wick product simplifies to
(26) W(h®@gi®---@gn) :=Xp¥(gr @ - @ gn) = (hlg1)¥(g2 @ @ gn)-

From (25) follows the so-called normal ordered representation of Wick products

n
(27) V(g1 @ ®gn) = Z a*(g1) .- a"(gn-m)a(gn-m+1) - - - algn);
m=0

compare [4, Proposition 1.1]. For example ¥(g) = a; + a;, V(f ® g) = aya; +
aja; +aja,.

In the proof of Theorem [[lwe no longer need to invoke [5, Lemma 1.4] to obtain
a bound for the norm of P®", as that is a standard tensor product result [15]
Section 2.6.12 Eqn. (16)]. With these simplifications, the proof of Theorem [I] is
now self-contained and more transparent.

A key step in the proof of Theorem [ i.e., (22]), can be obtained more directly
in the case of free processes. This result can also be derived from Bozejko [3]. We
add for completeness the proof in our notation and setting.

Direct proof of 22). Let {e; : j = 1,2,...} be an orthonormal basis of H. Then
{e®i :]j| = 0,1,...} forms an orthonormal basis of H,. Since Z € AN v (W),
we have the expansion Z =} ; _, a; U (e®1). Then
1/2
1Z))2 = 121y, = || D cse®|| = { D lasf?
lil=n H, lil=n

Take £ € H, of norm 1 and expand it into the orthonormal basis
£=D B,
J
Using the normal ordered expansion (7)) we have

n
— E E E . 3:a* * ®j
ZE - alﬁ-]aei(l)aei(nfm)aei("*’"ﬂ’l) e By €77

lil=n j m=0

The expression

* * ®j
ei(l)aei(nf'm)aei("—m/"'l) o8, €

is zero, except when the first m components of j coincide with the last m components

of i in reverse order. Therefore, we keep only the multi-indices in the sum that have
the form i = (i, k), j = (k,j’), where j’ is arbitrary, i’ is an arbitrary multi-index
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of length [i'| = n —m, k is arbitrary multi-index of length [k| = m, and k is the
reverse of k, i.e., k(s) = k(m — s + 1). Dropping the primes, we get

28 = Z Z Z Z a0 B e @ ™.
m=0 |i|l=n—m j |k|=m

By the Cauchy-Schwarz inequality for a,,, € C,m =0,1,...,n, we have

(z |am|) CrD) S ol
m=0 m=0

which together with the triangle inequality gives

2
n

1Zely, <+ D31 S 30N ap by e @ e

m=0||[il=n—m j [|kl=m ”
q

Notice that for a fixed m € N, different pairs of multi-indices i,j of lengths |i| =
n — m,|j| > 0 generate different concatenations (i,j). Thus the corresponding
vectors e®! ® e® are orthogonal, and we get

1Zell7, < +1 Y0 > DD awwbay

m=0 [i|l=n—m j |lk|=m

2

By the Cauchy-Schwarz inequality, this gives

n
1Z& )5, < (n+1) Y Yo laawl® Y Byl < (a+DYIZIB €N,

m=0_[i|=n—m,|k|=m 3ulk=m

Therefore 22) follows with constant Cy = 1. The rest of the proof of Theorem [
then follows unchanged. O

4. OPEN QUESTIONS

(1) A classical version of a non-commutative process is defined as a classical
process that has the same sequence of mixed moments of all orders as the non-
commutative process. It would be interesting to clarify if this concept could link
Theorem ] with the Ibragimov conjecture.

(1) Does the g-Gaussian sequence in Theorem M have a classical version?
(2) If a ¢-Gaussian process is ¥-mixing, and has a classical version, does the
classical version satisfy the classical ¥-mixing condition?

A sufficient condition for the existence of a classical version is given in [5, Section
4]; for a necessary condition, see [I0, Theorem 3]. Definitions and properties of the
classical (commutative) mixing conditions can be found in [9].

(2) Bradley [8] shows that commutative (not necessarily stationary) Markov
chains X}, with small values of the ¥-mixing coefficient 1)1 satisfy a mixing condition
which implies that there are positive constants ¢, C' which depend only on %, and
such that

(28) ¢ E(Xi) < E()_Xil?) <O E(Xi).
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Since the Markov property is well-defined in the non-commutative context, it would
be interesting to know if Bradley’s result, or its implication (28), has a non-
commutative version. Theorem H] shows that without the Markov property the
non-commutative version of the left-hand side of (28) fails.
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