PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 132, Number 2, Pages 381–384 S 0002-9939(03)07052-7 Article electronically published on June 11, 2003

WEAKLY SEQUENTIAL COMPLETENESS OF THE PROJECTIVE TENSOR PRODUCT

$$L^p[0,1] \hat{\otimes} X, \quad 1$$

QINGYING BU

(Communicated by N. Tomczak-Jaegermann)

ABSTRACT. D. R. Lewis (1977) proved that for a Banach space X and 1 ∞ , $L^p[0,1] \hat{\otimes} X$, the projective tensor product of $L^p[0,1]$ and X, is weakly sequentially complete whenever X is weakly sequentially complete. In this note, we give a short proof of Lewis's result, based on our sequential representation (2001) of $L^p[0,1] \hat{\otimes} X$.

For any Banach space X, we will denote its topological dual by X^* and its closed unit ball by B_X . From [4, page 3] and [5, page 155], we know that the Haar system $\{\chi_i\}_{i=1}^{\infty}$ is an unconditional basis of $L^p[0,1], 1 . Let us use <math>K_p$ to denote the unconditional basis constant of the basis $\{\chi_i\}_{i=1}^{\infty}$. Now renorm $L^p[0,1]$ by

$$||f||_p^{new} = \sup \left\{ \left\| \sum_{i=1}^{\infty} \theta_i a_i \chi_i \right\|_p : \theta_i = \pm 1, i = 1, 2, \dots \right\}, \quad f = \sum_{i=1}^{\infty} a_i \chi_i \in L^p[0, 1].$$

Then

$$\|\cdot\|_p \le \|\cdot\|_p^{new} \le K_p \cdot \|\cdot\|_p.$$

With this new norm, $L^p[0,1]$ is also a Banach space. Furthermore, $\{\chi_i\}_{i=1}^{\infty}$ is a monotone, unconditional basis with respect to this new norm. Now let

$$e_i = \frac{\chi_i}{\|\chi_i\|_p^{new}}, \qquad i = 1, 2, \cdots.$$

Then $\{e_i\}_{i=1}^{\infty}$ is a normalized, unconditional basis of $(L^p[0,1], \|\cdot\|_p^{new})$ whose unconditional basis constant is 1. From [4, pp. 18–19] we have the following

Proposition 1. Let $u = \sum_{i=1}^{\infty} \alpha_i e_i \in L^p[0,1], 1 . Then$

- $\begin{array}{ll} \text{(i)} \ \ \textit{For each subset} \ \sigma \ \ \textit{of} \ \mathbb{N}, \ \| \sum_{i \in \sigma} \alpha_i e_i \|_p^{new} \leq \| u \|_p^{new}. \\ \text{(ii)} \ \ \textit{For each choice of signs} \ \theta = \{ \theta_i \}_1^{\infty}, \ \| \sum_{i=1}^{\infty} \theta_i \alpha_i e_i \|_p^{new} \leq \| u \|_p^{new}. \\ \text{(iii)} \ \ \textit{For each} \ \lambda = (\lambda_i)_i \in \ell_{\infty}, \ \| \sum_{i=1}^{\infty} \lambda_i \alpha_i e_i \|_p^{new} \leq 2 \cdot \| \lambda \|_{\ell_{\infty}} \cdot \| u \|_p^{new}. \end{array}$

Received by the editors May 7, 2002 and, in revised form, September 12, 2002.

²⁰⁰⁰ Mathematics Subject Classification. Primary 46M05, 46B28, 46E40.

Key words and phrases. Projective tensor product, function space, weakly sequential completeness.

For any Banach space X and 1 with <math>1/p + 1/p' = 1, define

$$L^p_{weak}(X) = \left\{ \bar{x} = (x_i)_i \in X^{\mathbb{N}} : \sum_i x^*(x_i)e_i \text{ converges in } L^p[0,1] \text{ for } \forall x^* \in X^* \right\},$$

$$L^p\langle X \rangle = \left\{ \bar{x} = (x_i)_i \in X^{\mathbb{N}} : \sum_{i=1}^{\infty} |x_i^*(x_i)| < \infty \ \forall \ (x_i^*)_i \in L^{p'}_{weak}(X^*) \right\},$$

and define norms on $L^p_{weak}(X)$ and $L^p\langle X \rangle$, respectively, to be

$$\|\bar{x}\|_{weak} = \sup \left\{ \left\| \sum_{i=1}^{\infty} x^*(x_i) e_i \right\|_p^{new} : x^* \in B_{X^*} \right\}, \quad \bar{x} \in L^p_{weak}(X),$$

$$\|\bar{x}\|_{L^p\langle X \rangle} = \sup \left\{ \sum_{i=1}^{\infty} |x_i^*(x_i)| : (x_i^*)_i \in B_{L^{p'}_{weak}(X^*)} \right\}, \quad \bar{x} \in L^p\langle X \rangle.$$

With their own norm respectively, $L_{weak}^p(X)$ and $L^p\langle X \rangle$ are Banach spaces [1], [2]. Moreover, from [1] we have the following

Proposition 2. (i) For each $\bar{x} = (x_i)_i \in L^p \langle X \rangle$,

$$\lim_{n} \|(0, \cdots, 0, x_n, x_{n+1}, \cdots)\|_{L^p(X)} = 0.$$

(ii) $L^p[0,1] \hat{\otimes} X$ is isomorphic to $(L^p[0,1], \|\cdot\|_p^{new}) \hat{\otimes} X$ which is isometrically isomorphic to $L^p(X)$.

Proposition 3. $(L^p\langle X\rangle)^* = L^{p'}_{weak}(X^*)$, where the dual operation is defined by

$$\langle \bar{x}, \bar{x}^* \rangle = \sum_{i=1}^{\infty} x_i^*(x_i),$$

for each $\bar{x} = (x_i)_i \in L^p\langle X \rangle$ and each $\bar{x}^* = (x_i^*)_i \in L^{p'}_{weak}(X^*)$.

Proof. Let $F \in (L^p\langle X \rangle)^*$. For each $i \in \mathbb{N}$, define an $x_i^* \in X^*$ by

$$x_i^*(x) = \langle (0, \dots, 0, x^{(i)}, 0, 0, \dots), F \rangle.$$

Then one can associate a linear operator $\tilde{F}:(L^p[0,1],\|\cdot\|_p^{new})\longrightarrow X^*$ by

$$\tilde{F}(f)(x) = \langle (e_i^*(f)x)_i, F \rangle,$$

for each $f \in (L^p[0,1], \|\cdot\|_p^{new})$ and $x \in X$, i.e.,

$$\tilde{F}(f)(x) = \sum_{i=1}^{\infty} e_i^*(f) x_i^*(x).$$

The operator \tilde{F} is bounded, in fact

$$\|\tilde{F}\| \le \|F\|,$$

and it is easy to check that

$$\|(x_i^*)_i\|_{L^{p'}_{weak}(X^*)} = \|\tilde{F}\|.$$

This shows that $F = (x_i^*)_i \in L_{weak}^{p'}(X^*)$. The other inclusion is obvious.

Lemma 4. For each $\bar{x}^* \in (L^p\langle X \rangle)^* = L^{p'}_{weak}(X^*)$, define

$$I_{\bar{x}^*}: L^p\langle X\rangle \longrightarrow \ell_1$$

 $\bar{x} \longmapsto (x_i^*x_i)_i.$

Then $I_{\bar{x}^*}$ is a continuous linear map.

Proof. For each $(s_i)_i \in \ell_{\infty}$, by Proposition 1,

$$|\sum_{i=1}^{\infty} s_{i} x_{i}^{*} x_{i}| = |\langle (s_{i} x_{i})_{i}, \bar{x}^{*} \rangle \leq ||(s_{i} x_{i})_{i}||_{L^{p} \langle X \rangle} \cdot ||\bar{x}^{*}||_{(L^{p} \langle X \rangle)^{*}}$$

$$\leq 2 \cdot ||(s_{i})_{i}||_{\ell_{\infty}} \cdot ||\bar{x}||_{L^{p} \langle X \rangle} \cdot ||\bar{x}^{*}||_{(L^{p} \langle X \rangle)^{*}}.$$

So

$$\|(x_i^*x_i)_i\|_{\ell_1} \le 2 \cdot \|\bar{x}\|_{L^p(X)} \cdot \|\bar{x}^*\|_{(L^p(X))^*}.$$

Therefore, $I_{\bar{x}^*}$ is continuous. The proof is complete.

Theorem 5. $L^p[0,1] \hat{\otimes} X$ is weakly sequentially complete if X is weakly sequentially complete.

Proof. By Proposition 2, it is enough to show that $L^p\langle X\rangle$ is weakly sequentially complete if X is weakly sequentially complete. Let $\{\bar{x}^{(n)}\}_1^\infty$ be a weakly Cauchy sequence in $L^p\langle X\rangle$. It is easy to see that $\{x_i^{(n)}\}_{n=1}^\infty$ are weakly Cauchy sequences in X for each $i\in\mathbb{N}$. Therefore there are $x_i\in X$ such that

(1) weak-
$$\lim_{n} x_i^{(n)} = x_i$$
, $i = 1, 2, \dots$

Denote $M = \sup_n \|\bar{x}^{(n)}\|_{L^p\langle X\rangle} < \infty$. For each $\bar{x}^* = (x_i^*)_i \in L^{p'}_{weak}(X^*) = (L^p\langle X\rangle)^*$ and each fixed $m \in \mathbb{N}$, from (1) there exists an $n_0 \in \mathbb{N}$ such that

$$|x_i^*(x_i^{(n_0)} - x_i)| \le 1/m, \qquad i = 1, 2, \dots, m.$$

Thus,

$$\sum_{i=1}^{m} |x_i^*(x_i)| \leq \sum_{i=1}^{m} |x_i^*(x_i^{(n_0)} - x_i)| + \sum_{i=1}^{m} |x_i^*(x_i^{(n_0)})|
\leq 1 + \sum_{i=1}^{\infty} |x_i^*(x_i^{(n_0)})|
\leq 1 + ||\bar{x}^*||_{(L^p\langle X\rangle)^*} \cdot ||\bar{x}^{(n_0)}||_{L^p\langle X\rangle}
\leq 1 + M||\bar{x}^*||_{(L^p\langle X\rangle)^*}.$$

Letting $m \longrightarrow \infty$,

$$\sum_{i=1}^{\infty} |x_i^*(x_i)| \le 1 + M \|\bar{x}^*\|_{(L^p(X))^*} < \infty.$$

Therefore $\bar{x} = (x_i)_i \in L^p\langle X \rangle$. Next, we want to show that $\bar{x}^{(n)}$ converges to \bar{x} weakly in $L^p\langle X \rangle$.

Fix $\bar{x}^* \in (L^p\langle X \rangle)^*$. By Lemma 4, $I_{\bar{x}^*}$ is continuous and hence, weakly – weakly continuous. Since $\{\bar{x}^{(n)}\}_1^{\infty}$ is a weakly Cauchy sequence in $L^p\langle X \rangle$, $\{I_{\bar{x}^*}(\bar{x}^{(n)})\}_1^{\infty}$ is a weakly Cauchy sequence in ℓ_1 , and hence, relatively weakly sequentially compact.

By the Schur property, $\{I_{\bar{x}^*}(\bar{x}^{(n)})_1^{\infty} \text{ is a relatively sequentially compact subset of } \ell_1$. Thus, for each $\varepsilon > 0$, there exists an $m_1 \in \mathbb{N}$ such that

(2)
$$\sum_{i=m,+1}^{\infty} |x_i^*(x_i^{(n)})| \le \varepsilon/3, \qquad n = 1, 2, \cdots.$$

By Proposition 3, there exists an $m_2 > m_1$ such that

(3)
$$\sum_{i=m_2+1}^{\infty} |x_i^*(x_i)| \le \varepsilon/3.$$

Now, from (1), there exists an $n_0 \in \mathbb{N}$ such that for each $n > n_0$,

(4)
$$|x_i^*(x_i^{(n)} - x_i)| < \varepsilon/3, \quad i = 1, 2, \dots, m_2.$$

Thus, from (2), (3), and (4), for each $n > n_0$,

$$|\langle \bar{x}^{(n)} - \bar{x}, \bar{x}^* \rangle| = |\sum_{i=1}^{\infty} x_i^* (x_i^{(n)} - x_i)|$$

$$\leq \sum_{i=1}^{m_2} |x_i^* (x_i^{(n)} - x_i)|$$

$$+ \sum_{i=m_2+1}^{\infty} |x_i^* (x_i^{(n)})| + \sum_{i=m_2+1}^{\infty} |x_i^* (x_i)|$$

$$< \varepsilon.$$

Hence, $\bar{x}^{(n)}$ converges to \bar{x} weakly in $L^p\langle X\rangle$. Therefore, $L^p\langle X\rangle$ is weakly sequentially complete. The proof is complete.

ACKNOWLEDGEMENT

The author thanks Professor Joe Diestel for his many useful suggestions concerning this paper. The author also thanks the referee of this paper for a good suggestion for Proposition 3 and its proof.

REFERENCES

- 1. Q. Bu, Observations about the projective tensor product of Banach spaces, $II L^p[0,1] \hat{\otimes} X$, 1 , Questiones Math.**25**(2002), 209–227. MR**2003e**:46025
- 2. Q. Bu and J. Diestel, Observations about the projective tensor product of Banach spaces, $I \ell_p \hat{\otimes} X$, 1 , Quaestiones Math.**24**(2001), 519-533. MR**2002k**:46049
- D. R. Lewis, Duals of Tensor Products, Lecture Notes in Math. 604, Springer-Verlag, Berlin, 1977, pp. 57–66. MR 57:13525
- J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Sequence Spaces, Springer-Verlag, Berlin, 1977. MR 58:17766
- J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Function Spaces, Springer-Verlag, Berlin, 1979. MR 81c:46001

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSISSIPPI, UNIVERSITY, MISSISSIPPI 38677 E-mail address: qbu@olemiss.edu