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WEAKLY SEQUENTIAL COMPLETENESS
OF THE PROJECTIVE TENSOR PRODUCT

Lp[0, 1]⊗̂X, 1 < p <∞

QINGYING BU

(Communicated by N. Tomczak-Jaegermann)

Abstract. D. R. Lewis (1977) proved that for a Banach space X and 1 < p <
∞, Lp[0, 1]⊗̂X, the projective tensor product of Lp[0, 1] and X, is weakly se-
quentially complete whenever X is weakly sequentially complete. In this note,
we give a short proof of Lewis’s result, based on our sequential representation
(2001) of Lp[0, 1]⊗̂X.

For any Banach space X , we will denote its topological dual by X∗ and its closed
unit ball by BX . From [4, page 3] and [5, page 155], we know that the Haar system
{χi}∞i=1 is an unconditional basis of Lp[0, 1], 1 < p < ∞. Let us use Kp to denote
the unconditional basis constant of the basis {χi}∞i=1. Now renorm Lp[0, 1] by

‖f‖newp = sup


∥∥∥∥∥
∞∑
i=1

θiaiχi

∥∥∥∥∥
p

: θi = ±1, i = 1, 2, · · ·

 , f =
∞∑
i=1

aiχi ∈ Lp[0, 1].

Then

‖ · ‖p ≤ ‖ · ‖newp ≤ Kp · ‖ · ‖p.

With this new norm, Lp[0, 1] is also a Banach space. Furthermore, {χi}∞i=1 is a
monotone, unconditional basis with respect to this new norm. Now let

ei =
χi

‖χi‖newp

, i = 1, 2, · · · .

Then {ei}∞i=1 is a normalized, unconditional basis of (Lp[0, 1], ‖ · ‖newp ) whose un-
conditional basis constant is 1. From [4, pp. 18–19] we have the following

Proposition 1. Let u =
∑∞

i=1 αiei ∈ Lp[0, 1], 1 < p <∞. Then

(i) For each subset σ of N, ‖
∑
i∈σ αiei‖newp ≤ ‖u‖newp .

(ii) For each choice of signs θ = {θi}∞1 , ‖
∑∞
i=1 θiαiei‖newp ≤ ‖u‖newp .

(iii) For each λ = (λi)i ∈ `∞, ‖
∑∞
i=1 λiαiei‖newp ≤ 2 · ‖λ‖`∞ · ‖u‖newp .
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For any Banach space X and 1 < p <∞ with 1/p+ 1/p′ = 1, define

Lpweak(X) =

{
x̄ = (xi)i ∈ XN :

∑
i

x∗(xi)ei converges in Lp[0, 1] for ∀x∗ ∈ X∗
}
,

Lp〈X〉 =

{
x̄ = (xi)i ∈ XN :

∞∑
i=1

|x∗i (xi)| <∞ ∀ (x∗i )i ∈ L
p′
weak(X∗)

}
,

and define norms on Lpweak(X) and Lp〈X〉, respectively, to be

‖x̄‖weak = sup


∥∥∥∥∥
∞∑
i=1

x∗(xi)ei

∥∥∥∥∥
new

p

: x∗ ∈ BX∗

 , x̄ ∈ Lpweak(X),

‖x̄‖Lp〈X〉 = sup

{ ∞∑
i=1

|x∗i (xi)| : (x∗i )i ∈ BLp′weak(X∗)

}
, x̄ ∈ Lp〈X〉.

With their own norm respectively, Lpweak(X) and Lp〈X〉 are Banach spaces [1], [2].
Moreover, from [1] we have the following

Proposition 2. (i) For each x̄ = (xi)i ∈ Lp〈X〉,
lim
n
‖(0, · · · , 0, xn, xn+1, · · · )‖Lp〈X〉 = 0.

(ii) Lp[0, 1]⊗̂X is isomorphic to (Lp[0, 1], ‖ · ‖newp )⊗̂X which is isometrically iso-
morphic to Lp〈X〉.

Proposition 3. (Lp〈X〉)∗ = Lp′weak(X∗), where the dual operation is defined by

〈x̄, x̄∗〉 =
∞∑
i=1

x∗i (xi) ,

for each x̄ = (xi)i ∈ Lp〈X〉 and each x̄∗ = (x∗i )i ∈ L
p′
weak(X∗).

Proof. Let F ∈ (Lp〈X〉)∗. For each i ∈ N, define an x∗i ∈ X∗ by

x∗i (x) = 〈(0, · · · , 0,
(i)
x , 0, 0, · · · ), F 〉.

Then one can associate a linear operator F̃ : (Lp[0, 1], ‖ · ‖newp ) −→ X∗ by

F̃ (f)(x) = 〈(e∗i (f)x)i, F 〉,
for each f ∈ (Lp[0, 1], ‖ · ‖newp ) and x ∈ X , i.e.,

F̃ (f)(x) =
∞∑
i=1

e∗i (f)x∗i (x).

The operator F̃ is bounded, in fact

‖F̃‖ ≤ ‖F‖,
and it is easy to check that

‖(x∗i )i‖Lp′weak(X∗) = ‖F̃‖.

This shows that F = (x∗i )i ∈ L
p′
weak(X∗). The other inclusion is obvious. �
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Lemma 4. For each x̄∗ ∈ (Lp〈X〉)∗ = Lp′weak(X∗), define

Ix̄∗ : Lp〈X〉 −→ `1
x̄ 7−→ (x∗i xi)i .

Then Ix̄∗ is a continuous linear map.

Proof. For each (si)i ∈ `∞, by Proposition 1,

|
∞∑
i=1

six
∗
i xi| = |〈(sixi)i, x̄∗〉 ≤ ‖(sixi)i‖Lp〈X〉 · ‖x̄∗‖(Lp〈X〉)∗

≤ 2 · ‖(si)i‖`∞ · ‖x̄‖Lp〈X〉 · ‖x̄∗‖(Lp〈X〉)∗ .

So
‖(x∗i xi)i‖`1 ≤ 2 · ‖x̄‖Lp〈X〉 · ‖x̄∗‖(Lp〈X〉)∗ .

Therefore, Ix̄∗ is continuous. The proof is complete. �

Theorem 5. Lp[0, 1]⊗̂X is weakly sequentially complete if X is weakly sequentially
complete.

Proof. By Proposition 2, it is enough to show that Lp〈X〉 is weakly sequentially
complete if X is weakly sequentially complete. Let {x̄(n)}∞1 be a weakly Cauchy
sequence in Lp〈X〉. It is easy to see that {x(n)

i }∞n=1 are weakly Cauchy sequences
in X for each i ∈ N. Therefore there are xi ∈ X such that

(1) weak- lim
n
x

(n)
i = xi , i = 1, 2, · · · .

Denote M = supn ‖x̄(n)‖Lp〈X〉 <∞. For each x̄∗ = (x∗i )i ∈ L
p′
weak(X∗) = (Lp〈X〉)∗

and each fixed m ∈ N, from (1) there exists an n0 ∈ N such that

|x∗i (x
(n0)
i − xi)| ≤ 1/m , i = 1, 2, · · · ,m.

Thus,
m∑
i=1

|x∗i (xi)| ≤
m∑
i=1

|x∗i (x
(n0)
i − xi)|+

m∑
i=1

|x∗i (x
(n0)
i )|

≤ 1 +
∞∑
i=1

|x∗i (x
(n0)
i )|

≤ 1 + ‖x̄∗‖(Lp〈X〉)∗ · ‖x̄(n0)‖Lp〈X〉
≤ 1 +M‖x̄∗‖(Lp〈X〉)∗ .

Letting m −→∞,
∞∑
i=1

|x∗i (xi)| ≤ 1 +M‖x̄∗‖(Lp〈X〉)∗ <∞.

Therefore x̄ = (xi)i ∈ Lp〈X〉. Next, we want to show that x̄(n) converges to x̄
weakly in Lp〈X〉.

Fix x̄∗ ∈ (Lp〈X〉)∗. By Lemma 4, Ix̄∗ is continuous and hence, weakly – weakly
continuous. Since {x̄(n)}∞1 is a weakly Cauchy sequence in Lp〈X〉, {Ix̄∗(x̄(n)}∞1 is a
weakly Cauchy sequence in `1, and hence, relatively weakly sequentially compact.



384 QINGYING BU

By the Schur property, {Ix̄∗(x̄(n)}∞1 is a relatively sequentially compact subset of
`1. Thus, for each ε > 0, there exists an m1 ∈ N such that

(2)
∞∑

i=m1+1

|x∗i (x
(n)
i )| ≤ ε/3 , n = 1, 2, · · · .

By Proposition 3, there exists an m2 > m1 such that

(3)
∞∑

i=m2+1

|x∗i (xi)| ≤ ε/3.

Now, from (1), there exists an n0 ∈ N such that for each n > n0,

(4) |x∗i (x
(n)
i − xi)| < ε/3, i = 1, 2, · · · ,m2 .

Thus, from (2), (3), and (4), for each n > n0,

|〈x̄(n) − x̄, x̄∗〉| = |
∞∑
i=1

x∗i (x
(n)
i − xi)|

≤
m2∑
i=1

|x∗i (x
(n)
i − xi)|

+
∞∑

i=m2+1

|x∗i (x
(n)
i )|+

∞∑
i=m2+1

|x∗i (xi)|

≤ ε.

Hence, x̄(n) converges to x̄ weakly in Lp〈X〉. Therefore, Lp〈X〉 is weakly sequen-
tially complete. The proof is complete. �
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