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AN EXISTENCE THEOREM OF HARMONIC FUNCTIONS
WITH POLYNOMIAL GROWTH

YU DING

(Communicated by Richard A. Wentworth)

Abstract. We prove the existence of nonconstant harmonic functions with
polynomial growth on manifolds with nonnegative Ricci curvature, Euclidean
volume growth and unique tangent cone at infinity.

Introduction

For a noncompact, complete Riemannian manifold (Mn, p) with nonnegative
Ricci curvature,

(0.1) RicMn ≥ 0,

we have the notion of tangent cone at infinity, which is any pointed Gromov-
Hausdorff limit of some sequence Mi = (Mn, R−2

i dx2) with Ri →∞.
The almost rigidity theorem of Cheeger and Colding [4] implies that if Mn has

Euclidean volume growth, i.e., there is some V∞ > 0 such that for all R > 0,

(0.2) Vol(BR(p)) ≥ V∞Rn,
then every tangent cone at infinity is a metric cone, i.e., R+ ×X with the metric
dr2 + r2dx2; here (X, dx2) is a metric space with diameter no more than π.

In this paper we will prove

Theorem 0.1. Assume that Mn is a complete Riemannian manifold satisfying
(0.1) and (0.2). Assume that M has a unique tangent cone C(X) at infinity. Then
the dimension of the space of harmonic functions on Mn with

(0.3) |u(y)| ≤ C(1 + d(p, y)N )

is at least C(V∞)Nn−1; here C(V∞) > 0.

For each N > 0, the space of harmonic functions u with (0.3) on manifolds with
(0.1) is finite dimensional; this was conjectured by Yau and proved by Colding and
Minicozzi in [11]. See, for example, [12], [16] for further developments.

The tangent cone at infinity may not be unique; see [19], [5]. However, it is
unique if we assume that the sectional curvature is nonnegative. Moreover, the
example of Menguy [18] shows that even if Mn has unique tangent cone, Mn can
have infinite topological type.
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By inspecting the proof of Theorem 0.1, we have, when the tangent cones are
not unique,

Theorem 0.2. Assume that Mn is a complete Riemannian manifold satisfying
(0.1) and (0.2). Assume there exists λ > 0, such that for all tangent cones C(X),
λ is greater than λ1(X), the first eigenvalue of the Laplacian on X, and λ is not an
eigenvalue of any X. Then there exists a nonconstant polynomial growth harmonic
function on Mn.

It seems the example in [5] satisfies the assumption above and so admits a non-
constant polynomial growth harmonic function.

There are manifolds that do not admit nonconstant harmonic functions with
polynomial growth. For example, the manifold obtained by rounding off the end of
R+×Sn−1; one can check this directly or by [20]. Note this example satisfies (0.1)
but not (0.2).

In [13], the author showed that there is a separation of variables formula for
the Laplacian on C(X). In particular, there exist many harmonic functions on
C(X). We will transplant these harmonic functions back to balls on Mn; we then
construct the desired harmonic functions by the Arzela-Ascoli theorem. In order
to control the growth of these functions, we use a monotonicity Lemma 1.2, which
is a generalization of the monotonicity of frequency for harmonic functions on Rn

(see [1], [10], [9]).
Suppose that (Mn

i ,Voli)
dGH−→ (M∞, µ∞) in the measured Gromov-Hausdorff

sense, i.e., the sequence {Mn
i } converges in the Gromov-Hausdorff sense to M∞,

and for any xi → x∞ (xi ∈Mn
i ) and R > 0, we have Voli(BR(xi))→ µ∞(BR(x∞)).

In fact, for any sequences of manifolds with Ricci curvature bounded from below,
after possible renormalization of the measures when {Mn

i } is collapsing, there is
a subsequence that converges in the measured Gromov-Hausdorff sense; moreover,
under assumption (0.2), µ∞ is just the n-Hausdorff measure on M∞. See [5].

Definition 0.3. Suppose Ki ⊂ Mn
i

dGH−→ K∞ ⊂ M∞ in the measured Gromov-
Hausdorff sense. fi is a function on Mn

i , i = 1, 2, ... ; f∞ is a continuous function
on M∞. Assume that Φi : K∞ → Ki are εi-Gromov-Hausdorff approximations,
εi → 0. If fi ◦ Φi converge to f∞ uniformly, we say that fi → f∞ uniformly over
Ki

dGH−→ K∞.

For a Lipschitz function f on M∞, one can define a norm

(0.4) ‖f‖2H1,2
= ‖f‖2L2 +

∫
M∞

|Lip f |2,

where Lip f is the pointwise Lipschitz constant

(0.5) Lip f(x) = lim sup
y→x

|f(y)− f(x)|
d(y, x)

.

In [3], a Sobolev space H1,2 is constructed by taking the closure of the norm (0.4).
Moreover, one can define the differential df for H1,2 functions f . In [6] it is proved
that M∞ is µ∞-rectifiable, and, as a corollary, (0.4) comes from an inner product
〈·, ·〉. Thus H1,2 transforms to a Hilbert space. Now by the standard theory of
Dirichlet forms, one gets a positive self-adjoint Laplacian ∆ on M∞,

(0.6)
∫
M∞

〈df, dg〉 =
∫
M∞

(∆f)g;
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see Theorem 6.25 of [6].
The general philosophy is that the Laplacian ∆i over Mi “converge” to the

operator ∆ on M∞. We have the persistence of Poisson’s equation [3], [6], [14]:

Lemma 0.4. Assume that ∆ui = fi on (a subset of) Mi, Lipui,Lipfi ≤ L for
some L > 0. Assume that ui → u∞, fi → f∞ uniformly. Then on M∞ we have
∆u∞ = f∞.

We use some standard notation. Write

(0.7) −
∫
W

f =
1

Vol(W )

∫
W

f.

Denote by A(p, R1, R2) the metric annulus {x|R1 ≤ d(p, x) ≤ R2}. For any func-
tion ui we denote by ui,p,R the average of ui over A(p, R/2, R):

(0.8) ui,p,R = −
∫
A(p,R/2, R)

ui.

The Laplacian operators are assumed to be positive.
After finishing this manuscript, Professor Colding pointed out to the author a

paper of Zhang [22], in which nonconstant harmonic functions of polynomial growth
can be constructed in the case when C(X) is a smooth cone. Our construction turns
out to be a generalization of [22] and applies to the case when C(X) is not a smooth
cone (so there are no coordinate systems available).

1. Analysis on metric cones

It is easy to see ([13]) that the (n− 1)-Hausdorff measure on the cross section X
satisfies a doubling condition and the Poincare inequality. Moreover, the rectifia-
bility as in [6] holds on X as well; so one can define a Laplacian ∆X on X . We have
an eigenfunction expansion {φi} with ∆Xφi = λiφi on X . By the standard Moser
iteration, the φi are Hölder continuous; later we will see that they are Lipschitz.

On a metric cone C(X), there is a separation of variable formula [13]:

(1.1) ∆u = −∂
2u

∂r2
− n− 1

r

∂u

∂r
+

1
r2

∆Xu.

Therefore, if φi is the i-th eigenfunction of ∆X on X with eigenvalue λi, then
rαiφi(x) is harmonic; here αi is the unique positive number with

(1.2) λi = αi(n+ αi − 2).

We normalize so that ‖φi‖L2(X) = 1. Assume u is harmonic on B2(p) ⊂ C(X).
Then we can write (see [2], [8])

(1.3) u =
∞∑
i=0

cir
αiφi.

Define

(1.4) I(r) =
1

Vol(∂Br(p∞))

∫
∂Br(p∞)

u2;

here Vol is the (n− 1)-Hausdorff measure; see [5]. p∞ is the pole of C(X). Then

(1.5) I(r) =
∞∑
i=0

c2i r
2αi .
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Similarly to the Euclidean case ([14]), we have

Lemma 1.1. There is a k > 1 that depends only on X such that for ε > 0 suffi-
ciently small, if u is harmonic, then

(1.6) I(r) ≤ (2α1+ε)2I(r/2)

implies

(1.7) I(r/2) < (2α1+ ε
k )2I(r/4).

Proof. By (1.5), (1.6) is equivalent to

(1.8)
∑
αi 6=α1

c2i r
2αi(1 − 22α1+2ε

22αi
) ≤

∑
αi=α1

c2i r
2α1(22ε − 1).

On the other hand, (1.7) is equivalent to

(1.9)
∑
αi 6=α1

1
22αi

c2i r
2αi(1 − 22α1+ 2

k ε

22αi
) ≤

∑
αi=α1

1
22α1

c2i r
2α1(2

2
k ε − 1).

Thus, it suffices to show for αi 6= α1,

(1.10)
1

22αi
(22αi − 22α1+ 2

k ε)/(22αi − 22α1+2ε) <
1

22α1
(2

2
k ε − 1)/(22ε − 1).

Since there is a definite gap (that depends on X) between α1 and those αi 6= α1,
the above holds when k > 1 is sufficiently close to 1 and ε sufficiently small. �
Corollary 1.11. Assume u is harmonic. If

(1.12) −
∫
A(p∞, r/2, r)

u2 ≤ (2α1+ε)2 −
∫
A(p∞, r/4, r/2)

u2,

then

(1.13) −
∫
A(p∞, r/4, r/2)

u2 < (2α1+ ε
k )2 −

∫
A(p∞, r/8, r/4)

u2.

Lemma 1.2. For ε small enough (as in Corollary 1.11), there exist δ,H > 0, k > 1
depending only on ε such that if a manifold (M,p) satisfies (0.1),

(1.14) dGH(B4(p), B4(p∞)) < δ

(B2(p∞) ⊂ C(X)), then for any harmonic function u over B2(p), the inequality

(1.15) −
∫
A(p, 1/2, 1)

|u− up,1|2 ≤ (2α1+ε)2 −
∫
A(p, 1/4, 1/2)

|u− up, 1/2|2

implies

(1.16) −
∫
A(p, 1/4, 1/2)

|u− up, 1/2|2 < (2α1+ ε
k )2 −

∫
A(p, 1/8, 1/4)

|u− up, 1/4|2.

Proof. The proof is similar to the arguments in [14]. Assume the lemma is not
true; then for δj → 0, we can find a sequence of harmonic functions ui that satisfies
(1.15) but not (1.16). After suitable renormalization, by the Cheng-Yau gradient
estimate, a subsequence of ui will converge to a function u∞ on C(X) satisfying
(1.15) but not (1.16). Now by Lemma 0.4, u∞ is harmonic, so we get a contradiction
to Corollary 1.11. �
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Lemma 1.3. For all ε small enough, there exists δ such that if a manifold (M,p)
satisfies (0.1) and (0.2), and

(1.17) dGH(B2(p), B2(p∞)) < δ

(B2(p∞) ⊂ C(X)), then for any nonconstant harmonic function u over B2(p),

(1.18) −
∫
A(p, 1/2, 1)

|u− up,1|2 ≥ (2α1−ε)2 −
∫
A(p, 1/4, 1/2)

|u− up, 1/2|2.

Proof. This is clearly true for harmonic functions on the metric cone C(X). The
proof follows from a compactness argument like the previous lemma. �

Similarly, we have

Lemma 1.4. For ε < 1, there exist δ > 0, k > 1 such that if a manifold (M,p)
satisfies (0.1) and (0.2), and

(1.19) dGH(B4(p), B4(p∞)) < δ

(B2(p∞) ⊂ C(X)), then for any harmonic function u over B2(p), the inequality

(1.20)
∣∣∣−∫

A(p, 1, 2)

u
∣∣∣ ≤ ε(−∫

A(p, 1, 2)

|u|2
) 1

2

implies

(1.21)
∣∣∣−∫

A(p, 2, 4)

u
∣∣∣ ≤ ε

k

(
−
∫
A(p, 2, 4)

|u|2
) 1

2
.

2. The Barrier and applications

Theorem 2.1. Assume u∞ is harmonic on the closed ball BR(p) ⊂ C(X). Then
u∞ is the uniform limit of a sequence of harmonic functions ui on BR(pi) ⊂Mi.

Proof. We approximate u∞|∂BR(p∞) by Lipschitz functions, then by the transplan-
tation theorem of Cheeger (Lemma 10.7 of [3]) we transplant it back to Mi to a
Lipschitz function βi on ∂BR(pi) ⊂Mi,

(2.1) βi → u∞|∂BR(p∞).

Solve the Dirichlet problem

(2.2)
{

∆ui = 0,
ui = βi on ∂BR(pi).

Since Mi
dGH−→ C(X), when i is getting bigger we see the ball BR(pi) almost

satisfies an exterior sphere condition; see [15].
Fix X∞ ∈ ∂BR(p∞). Pick xi ∈ ∂BR(pi) with xi → x∞. On the cone C(X)

there is a unique ray starting from the pole p∞, passing through x∞. Pick a point
q∞ on this ray with d(p∞, q∞) > d(p∞, x∞). Pick qi ∈Mi with qi → q∞.

Consider bi(x) = d(qi, xi)2−n − d(qi, x)2−n. By the Laplacian comparison theo-
rem,

(2.3) ∆bi ≤ 0.
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Thus exactly as in Chapter 2 of [15] we get two side bounds of ui near the
boundary. Precisely, for all ε > 0 there exists δ such that for xi ∈ ∂BR(pi),
d(x, xi) ≤ δ implies |ui(x) − ui(xi)| ≤ ε, when i is sufficiently large.

Now by the Arzela-Ascoli theorem, (a subsequence of) ui converges to some
limit function v∞ on C(X). By our estimate near the boundary and the maximum
principle on C(X), [3], v∞ = u∞. �

Note our argument does not imply that ui is continuous at the boundary.
By the Cheng-Yau gradient estimate we have

Corollary 2.4. Harmonic functions on C(X) are Lipschitz. The eigenfunctions
φi on X are Lipschitz.

Corollary 2.5. The first eigenvalue λ1 of ∆X on X satisfies λ1 ≥ n− 1.

Proof. The first eigenvalue λ gives a harmonic function rα1φi(x) on C(X). Since
it is Lipschitz, α1 ≥ 1. By (1.2) we have λ1 ≥ n− 1. �

This is a generalization of the Lichnerowicz theorem. However, the Obata theo-
rem does not hold: any X such that C(X) splits off some R satisfies λ1 = n− 1.

3. Proof of Theorem 0.1

We now prove Theorem 0.1. Pick any sequence Ri →∞.
By the almost rigidity theorem of Cheeger-Colding [4], there exists a criti-

cal radius Rc for α1 such that for all r > Rc, the assumptions of Lemma 1.2,
Lemma 1.3 and Lemma 1.4, i.e., (0.1), (0.2), (1.14), hold on the rescaled manifold
(Mn, r−2dx2).

As in the previous section we transplant u∞ = rα1 φ1(x) back to harmonic func-
tions ui on B2(pi) ⊂Mi = (Mn, R−2

i dx2) so that ui → u∞ uniformly.
We scale back and view ui as functions on Mn. By Theorem 2.1, for Ri

sufficiently large, at scale Ri the harmonic function ui is close to some function
u∞ = crα1 φ1(x). Here and below, close means L∞-close, after an obvious rescale.

So, in particular, we can apply the monotonicity Lemma 1.2; in fact, we iterate
it until the scale of critical radius Rc when (the rescaled version of) (1.14) fails. So
for all R with Rc ≤ R ≤ Ri,

(3.1) −
∫
A(p,R/2, R)

|ui − ui,p,R|2 ≤ (2α1+ε)2 −
∫
A(p,R/4, R/2)

|ui − ui,p, R/2|2;

here recall ui,p,R is the average of ui on A(p, R/2, R).
Clearly ui is not a constant. We first subtract a constant and then multiply by

a constant so that we can assume

(3.2) −
∫
A(p,Rc/2,Rc)

ui = 0, −
∫
A(p,Rc/2,Rc)

u2
i = 1.

So by iterating Lemma 1.4, for all R with Rc ≤ R ≤ Ri,

(3.3) |ui,p,R| =
∣∣∣−∫

A(p,R,R)

ui

∣∣∣ ≤ ε(−∫
A(p,R/2,R)

u2
i

)1/2

.
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We have

(
−
∫
A(p,Rc,2Rc)

u2
i

)1/2

≤
(
−
∫
A(p,Rc,2Rc)

|ui − ui,2Rc |2
)1/2

+ |ui,2Rc |

≤ 2α1+ε
(
−
∫
A(p,Rc/2,Rc)

u2
i

)1/2

+ ε2α1+ε
(
−
∫
A(p,Rc/2,Rc)

u2
i

)1/2

≤ 2α1+2ε
(
−
∫
A(p,Rc/2,Rc)

u2
i

)1/2

.

(3.4)

Iterating this, we have

(3.5)
(
−
∫
A(p,2j−1Rc,2jRc)

u2
i

)1/2

≤ 2(α1+2ε)j
(
−
∫
A(p,Rc/2,Rc)

u2
i

)1/2

.

So ui (defined on BRi(p), with Ri � Rc) is of polynomial growth,

(3.6) |ui| ≤ Crα1+2ε.

Combining with the Cheng-Yau gradient and the Arzela-Ascoli theorem, ui con-
verges to a nonconstant polynomial growth harmonic function u(1) on M .

Next, we indicate how to construct a second harmonic function when there is
another eigenfunction for λ1. By construction, u(1) satisfies (3.1) and (3.3) at every
scale R > Rc. So by Lemma 0.4 on any sufficiently large scale, u(1) is close to a
function of the form

(3.7)
∑
αi=α1

cir
α1φi(x)

on C(X). Note that we have no control over the constants ci. By assumption, λ1

has more than one multiple; so there is a function of the form

(3.8)
∑
αi=α1

bir
α1φi(x)

that is perpendicular to (3.7) on C(X). Like the construction of u(1), we transplant
(3.8) back to Mi, solve the Dirichlet problem as in (2.2), and get a sequence of
harmonic functions w(2)

i . Now adjust w(2)
i by a tiny constant, then subtract cu(1),

a multiple of our first harmonic function u(1), so that

(3.9) u
(2)
i := (w(2)

i − cu(1)) ⊥ u(1) on A(p,Rc, 2Rc).

Note that we have no control over the constant c, but this is not important since all
we need is that on scale Ri we have the inequality (3.1), and u(2)

i is not a constant.
Then as before we construct our second function u(2). It is independent of u(1)

since it is perpendicular to u(1) on u(1) A(p,Rc, 2Rc).
The constructions of all the other harmonic functions follow the same pattern.

Note then we need a revised version of Lemma 1.2 in which α1 is substituted by
αi. The generalization is straightforward.

Clearly, if we have N eigenvalues of X with λ ≤ Λ = N(N + n − 2), then we
have at least N independent nonconstant harmonic functions u(j) with

(3.10) |u(j)(y)| ≤ C(j, ε)(1 + d(p, y)N+ε).
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Now we can count them. By a well-known argument in estimating upper bounds
of eigenvalues (similar to p. 105 of [21]), we have

(3.11) λj ≤ C(n)
( j

Hn−1(X)

) 2
n−1

;

here Hn−1(X) is the (n− 1)-Hausdorff measure of X . Actually, we can take V∞ in
(0.2) for it; see [5]. So there are at least C(V∞)Λ

n−1
2 many eigenvalues less than Λ,

and the dimension of harmonic functions with

(3.12) |u(y)| ≤ C(1 + d(p, y)N )

is at least C(V∞)Nn−1. �
Finally, we remark that the technical assumption in Theorem 0.2 is needed to

guarantee that Lemma 1.2 works when C(X) is not unique.
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