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ON THE HARMONIC HOPF CONSTRUCTION

ANDREAS GASTEL

(Communicated by Bennett Chow)

Abstract. The harmonic Hopf construction is an equivariant ansatz for har-
monic maps between Euclidean spheres. We prove existence of solutions in the
case that has been open. Moreover, we show that the harmonic Hopf construc-
tion on every bi-eigenmap with at least one large eigenvalue has a countable
family of solutions (if it has one).

1. Introduction

The harmonic Hopf construction is an equivariant ansatz for harmonic maps
between Euclidean spheres. It was invented by Smith in his thesis [S1]. The data
to start with are harmonic bi-eigenmaps. Given a compact Riemannian manifold
M , a map f : M → Sk is called harmonic if it is a smooth critical point of
the energy E(f) := 1

2

∫
M |Df |2 dvolM or equivalently if it solves the system of

differential equations
∆f + |Df |2f = 0.

A harmonic map f : Sm−1 → Sn−1 (m,n ≥ 2) is called an eigenmap if |Df |2 ≡ λ
is constant. It is well-known that f is a harmonic eigenmap if and only if its
components are harmonic polynomials of common degree µ, in which case λ =
µ(m+ µ− 2). The integer λ is called the eigenvalue of f .

Finally, for m1,m2, n ≥ 2, a harmonic map f : Sm1−1×Sm2−1 → Sn−1 is called
a bi-eigenmap if each of the restrictions f( · , x2) for every x2 ∈ Sm2−1 and f(x1, · )
for every x1 ∈ Sm1−1 is a harmonic eigenmap. The corresponding eigenvalues
λ1 and λ2 are also called the eigenvalues of f . For example, every orthogonal
multiplication Rm1 × Rm2 → Rn, restricted to the unit spheres, gives a harmonic
bi-eigenmap with eigenvalues m1−1 and m2−1. See [ER, ch. VIII] for a detailed
exposition of (bi-)eigenmaps.

Topologically, the Hopf construction on a map f : Sm1−1 × Sm2−1 → Sn−1 is
the map hf : Sm1+m2−1 → Sn given by

hf (x1 sin s, x2 cos s) := (f(x1, x2) sin 2s, cos 2s)

where we write x ∈ Sm1+m2−1 uniquely (apart from a null set) as (x1 sin s, x2 cos s)
with x1 ∈ Sm1−1, x2 ∈ Sm2−1, s ∈ [0, π/2]. This Hopf construction is a tool for
constructing homotopically nontrivial maps between spheres of large dimensions.
The aim now is to modify the construction in such a way that it produces a harmonic
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representative of the homotopy class of the Hopf map. It was proved by Smith [S2]
that the ansatz

h(x1 sin s, x2 cos s) = (f(x1, x2) sinα(s), cosα(s))

with some function α : [0, π/2]→ [0, π] produces a harmonic map homotopic to hf
if f is a harmonic bi-eigenmap with eigenvalues λ1, λ2 and α satisfies the ordinary
differential equation

(1.1) α′′ +
(

(m1 − 1) cot s− (m2 − 1) tan s
)
α′ −

( λ1

sin2 s
+

λ2

cos2 s

)
sinα cosα = 0

with the boundary values α(0) = 0, α(π/2) = π. Therefore, the natural question
arises, for which harmonic bi-eigenmap f this degenerate boundary value problem
has a solution. Here we collect the results that have been achieved so far:

• Smith [S2] proved that in the case m1 = m2 = 2 a harmonic Hopf construc-
tion exists if and only if λ1 = λ2.
• Ratto [R2] proved that in the case m1 ≥ 3, m2 = 2, no harmonic Hopf

construction can exist if λ1 ≤ (m1 − 1)λ2.
• For the case m1,m2 ≥ 3 Ratto proved [R1] that there is a harmonic Hopf

construction if 4λ1 < (m1 − 2)2 and 4λ2 < (m2 − 2)2, or if m1 = m2 and
λ1 = λ2.
• The latter result was improved by Ding [D] who proved that there is always

a harmonic Hopf construction in the case m1,m2 ≥ 3, without restriction
on the eigenvalues.
• A different (somewhat simpler) proof of Ding’s theorem was given by the

author in [G].
Thus, the only case that remains open is m1 ≥ 3, m2 = 2, and λ1 > (m1−1)λ2. One
objective of this note is to fill this gap by proving that for a harmonic bi-eigenmap
with dimensions and eigenvalues in this range a harmonic Hopf construction always
exists. This is the statement of Theorem 3.1.

By a similar proof, we can also show that, in the case m1,m2 ≥ 3, there are actu-
ally countably many solutions to the harmonic Hopf construction on any eigenmap
for which 4λ1 > (m1−2)2 or 4λ2 > (m2−2)2 holds. This is stated in Theorem 4.1.
The phenomenon of having many solutions resembles very much the the situation
for rotationally symmetric harmonic maps Bm → Sm [JK], respectively Sm → Sm

[BC], where in dimensions 3 ≤ m ≤ 6 one has infinitely many solutions. Our proof
uses some ideas from [BC], which have to be modified, however, because here the
situation is less symmetric.

In using a shooting method, our proof here is closer to Ratto’s existence proof
than to Ding’s, who argued by minimizing certain energies. However, while Ratto
(and also the author in [G]) uses some kind of “two-sided shooting”, in the current
paper we shoot from one of the degenerate ends of the interval. This results in a less
technical proof and could also be used to again re-prove Ding’s existence theorem
in the cases not covered here.

After submitting this paper, I received the preprint [DFL] where Theorem 3.1 is
proved independently by different methods.

2. Preliminaries

We will use the notation ϕ(∞) for limt→∞ ϕ(t) and ϕ(−∞) for limt→−∞ ϕ(t).
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It is convenient to make the transformation ϕ(t) = α(arctan et) − π/2, which
transforms (1.1) into the equation

(2.1) ϕ′′(t) +
(m1 − 2)e−t − (m2 − 2)et

e−t + et
ϕ′(t) +

λ1e
−t + λ2e

t

e−t + et
sinϕ(t) cosϕ(t) = 0,

while the above-mentioned boundary value problem becomes

(2.2) (2.1) with ϕ(−∞) = −π
2

and ϕ(∞) =
π

2
.

Writing

I(t) :=
∫ t

0

(m1 − 2)e−τ − (m2 − 2)eτ

e−τ + eτ
dτ − m1 − 2

2
log 2,

we have the divergence form of (2.1):

(2.3)
d

dt
[eI(t)ϕ′(t)] + eI(t)

λ1e
−t + λ2e

t

e−t + et
sinϕ(t) cosϕ(t) = 0.

Multiplying by eI(t)ϕ′(t) and abbreviating

a(t) := e2I(t) λ1e
−t + λ2e

t

e−t + et
,

W (ϕ, t) := e2I(t)ϕ′(t)2 + a(t) sin2 ϕ(t),

we get a reformulation of (2.1) which will turn out to be the key for its understand-
ing:

(2.4) W ′(ϕ, t) = a′(t) sin2 ϕ(t).

If m1 ≥ 3, every solution ϕ of the boundary value problem (2.2) satisfies

(2.5) W (ϕ,−∞) = a(−∞) = 0, W (ϕ,∞) = a(∞),

where the latter equals 0 if m2 ≥ 3, and λ2 if m2 = 2.
The following lemma defines “well-posed” initial value problems. We let

µ :=
1
2

[
− (m1 − 2) +

√
(m1 − 2)2 + 4λ1

]
,

which is in N because λ1 is of the form λ1 = µ(m1 + µ− 2).

Lemma 2.1. Assume m1 ≥ 3. For every b ≥ 0 there is a unique solution ϕb : R→
R of (2.1) that satisfies ϕb(t) ' −π/2 + beµt for t → −∞. The functions ϕb and
ϕ′b (and therefore all derivatives of ϕb) depend continuously on b.

Proof. We consider b > 0 fixed and rewrite (2.1) as Lϕ = 0. For t � −1 we
compute

L(−π2 + beµt ± e(µ+1)t) = ±(2µ+m1 − 1)e(µ+1)t +O(e(µ+2)t),

which implies existence of q < 0 (depending continuously on b) such that

Lϕ+ > 0 in (−∞, q) for ϕ+ := −π2 + beµt + e(µ+1)t,(2.6)

Lϕ− < 0 in (−∞, q) for ϕ− := −π2 + beµt − e(µ+1)t.(2.7)

For k ∈ N with k > |q| we define pk : (−∞, q)→ R by

pk(t) := −π2 + beµt for t ≤ −k,
Lpk = 0 in (−k, q) with pk(−k) = −π2 + be−µk and p′k(−k) = µbe−µk.
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For h+ := ϕ+ − pk we have h+(−k) > 0 and h′+(−k) > 0, and as long as h+ ≥ 0,
(2.6) implies that h′′+(t) + D(t)h′+(t) > 0, hence h+ cannot have a local maximum
there. The same applies to h− := pk−ϕ−. Therefore h+ and h− are monotonically
increasing, and we have shown

ϕ−(t) ≤ pk(t) ≤ ϕ+(t),(2.8)
ϕ′−(t) ≤ p′k(t) ≤ ϕ′+(t)(2.9)

for all t < q and all k > |q|. This means that the pk are uniformly bounded in
C1((−∞, q)), hence in C∞((−∞, q)), and converge to a solution ϕb of (2.1) on
(−∞, q) as k → ∞. This solution can be continued to all of R, which shows the
existence part of the lemma.

To prove uniqueness, we consider ϕb as constructed above and define ηs for s ∈ R
by

ηs(t) := ϕb(t) + s(eµt + e(µ+1)t).
For t� −1 we have

Lηs(t) = s(2µ+m1 − 1)e(µ+1)t + sO(e(µ+2)t).

Therefore there exists r < 0 such that for t ≤ r
(2.10) Lηs(t) < 0 for all s ∈ (−1, 0), Lηs(t) > 0 for all s ∈ (0, 1).

The argument from the proof of (2.8) and (2.9) is now valid with ϕ− and ϕ+

replaced by η−s and ηs for arbitrarily small s > 0. This implies that every solution
ϕ of (2.1) with the same asymptotics at −∞ as ϕb lies between η−s and ηs for
arbitrarily small s > 0, which means ϕ = ϕb on (−∞, r) and therefore on all of R.

Continuous dependence on b is shown the same way: on (−∞, r) we have for
ε > 0 small that η−ε < ϕb+β < ηε and η′−ε < ϕ′b+β < η′ε for all |β| < ε. This
completes the proof of Lemma 2.1, up to the case b = 0 which is even simpler. �

3. The case m2 = 2

We consider the harmonic Hopf construction with m2 = 2, m1 > 2. Ratto [R2]
proved that there is no solution if λ1 ≤ (m1 − 1)λ2. We will show that otherwise
a solution exists. Doing so, at the same time we get a simple proof of Ratto’s
nonexistence result.

Theorem 3.1. Assume m1 ≥ 3 and m2 = 2. The boundary value problem (2.2)
(and hence the harmonic Hopf construction) has a solution if and only if λ1 >
(m1 − 1)λ2.

Proof. If m2 = 2, a is easily integrated:

a(t) =
λ2 + λ1e

−2t

(1 + e−2t)m1−1
.

We compute

(3.1) a′(t) =
2e−2t

(1 + e−2t)m1
[(m1 − 1)λ2 − λ1 + (m1 − 2)λ1e

−2t].

If λ1 ≤ (m1 − 1)λ2, we have a′ > 0 on R. Integrating (2.4), we see that (2.5) can
only be valid if sin2 ϕ ≡ 1; hence there is no solution of (2.2).

In the case λ1 > (m1 − 1)λ2 we need the following two lemmas. In Lemma 3.2,
we also include the case m2 ≥ 3 for later use.
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Lemma 3.2. Assume m2 = 2 and λ1 > (m1 − 1)λ2, or m2 ≥ 3. If b � 1, the
solution ϕb increases monotonically up to Tb with ϕb(Tb) = π/2.

Proof. In the m2 = 2 case, we see from (3.1) that a′(t0) = 0 for exactly one t0 ∈ R,
and a′ < 0 on (t0,∞). If m2 ≥ 3, since a is positive and not oscillating with
a(∞) = 0, we also find t0 ∈ R such that a′ < 0 on (t0,∞). We will prove the
following assertion: For every b� 1 there exists t1 > t0 such that

(3.2) ϕ′b > 0 on (−∞, t1) and
∫ t1

−∞
a′(t) cos2 ϕb(t) dt < 0.

Integrating (2.4) and using (2.5), we see that the latter inequality implies

(3.3) W (ϕb, t1) = a(t1)−
∫ t1

−∞
a′(t) cos2 ϕb(t) dt > a(t1),

from which we infer by (2.4) that W (ϕb, t) ≥ a(t) + ε for some ε > 0 and all t > t1.
From this we have a positive lower bound for ϕ′b on (t1,∞), which implies the
lemma. Therefore it is sufficient to prove (3.2).

For b > 0, we consider the functions ηb : R→ R given by

ηb(t) :=
1
b

(
ϕb(t) +

π

2

)
.

Note that ηb ' eµt as t→ −∞, and ηb solves the differential equation
(3.4)

η′′(t) +
(m1−2)e−t − (m2−2)et

e−t + et
η′(t)− λ1e

−t + λ2e
t

e−t + et
1
b

sin(bη(t)) cos(bη(t)) = 0.

The functions ηb for b ∈ (0, 1] are uniformly bounded in C1 (hence also in C∞ by the
differential equation) on every interval (−∞, T ), therefore (using also uniqueness
similar to Lemma 2.1) we find that η(t) := limb↘0 ηb(t) is well-defined for all t ∈ R,
it satisfies

(3.5) η(t) ' eµt as t→ −∞
and

(3.6) η′′(t) +
(m1−2)e−t − (m2−2)et

e−t + et
η′(t)− λ1e

−t + λ2e
t

e−t + et
η(t) = 0,

which is the limit of the differential equation (3.4) for b ↘ 0. Furthermore, since
the ϕb are convex on increasing intervals as b↘ 0, we have

(3.7) η′(t) > 0 for all t ∈ R.
The differential equation (3.6) is linear and has a fundamental system consisting of
two solutions with the asymptotics ' eν−t and ' eν+t for t→∞ where

ν± :=
1
2

[
m2 − 2±

√
(m2 − 2)2 + 4λ2

]
∈ Z.

Because of (3.7), it follows that

(3.8) η(t) ' ceν+t as t→∞
for some constant c > 0. By (3.5), (3.8), a′(t) ' ce2(m1−2)t for t → −∞, and
a′(t) ' ce−2(m2−2)t for t→∞ (and a′(t) ' ce−2t if m2 = 2), we have

(3.9) lim
t1→∞

∫ t1

−∞
a′(t)η(t)2 dt = −∞.
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Using this and (3.7), we find t1 > t0 for which (3.2) holds, and hence the assertion
of the lemma. �

Lemma 3.3. Assume m2 = 2 and λ1 > (m1 − 1)λ2. If b � 1, we have ϕb(R) ⊆
(−π/2, π/2).

Proof. Integrating (2.4) from −∞ to s ≤ t0, using a′ > 0 there, we observe that
W (ϕb, s) < a(s) and therefore

(3.10) ϕb((−∞, t0]) ⊆ (−π/2, π/2).

Let us denote by ψ : R→ R the solution of

(3.11) ψ′′(t) + (m1 − 2)ψ′(t) + λ1 sinψ(t) cosψ(t) = 0

satisfying ψ(t) ' −π/2 + eµt as t→ −∞. It exists uniquely, which is proved as in
Lemma 2.1. Defining

U(ψ, t) := ψ′(t)2 + λ1 sin2 ψ(t),

we infer from (3.11) that

(3.12) U ′(ψ, t) = −2(m1 − 2)ψ′(t)2.

Hence U(ψ, · ) is monotonically decreasing. Since it is also bounded from below by
0, its limit for t→∞ exists, which can be only 0 by (3.11) and (3.12):

(3.13) U(ψ,∞) = 0.

The functions ψb(t) := ϕb(t− µ−1 log b) satisfy ψb(t) ' −π/2 + eµt as t→ −∞ for
all b > 0. All ψb with b > 1 are uniformly bounded with all their derivatives on
compact intervals, hence sequences ψbn converge on compact intervals. Uniqueness
of ψ with the given behavior at −∞ then implies that actually limb→∞ ψb(t) = ψ(t)
for all t ∈ R. Now we consider

V (ϕ, t) := ϕ′(t)2 +
λ1e
−t + λ2e

t

e−t + et
sin2 ϕ(t)

and calculate, using the differential equation,

(3.14) V ′(ϕb, t) = −2(m1 − 2)
1 + e2t

ϕ′b(t)
2 +

(λ1e
−t + λ2e

t

e−t + et

)′
sin2 ϕb(t),

which means V ′(ϕb, t) < 0 on R because λ1 > λ2. From (3.13) and ψb → ψ, we
find b0 such that for every b ≥ b0 we have some τb ≤ t0 for which V (ϕb, τb) < λ2,
hence W (ϕb, t0) < λ2. Therefore, for b ≥ b0 we have W (ϕb, t) < a(t) for all t > t0,
and the lemma follows. �

Now the proof of Theorem 3.1 is quite straightforward: Let b0 be the supremum of
all b > 0 for which ϕb is monotonically increasing up to some Tb with ϕb(Tb) = π/2.
This supremum is in (0,∞) because of Lemma 3.2 and Lemma 3.3. From Lemma
2.1 we know that ϕb and ϕ′b depend continuously on b, which implies that ϕb0
is nondecreasing and bounded from above by π/2 (which is easily seen by the
supremum property of b0). Hence ϕb0(∞) exists. But π/2 is the only value that
ϕb0(∞) can achieve, which is seen by simple inspection of (2.1). Therefore ϕb0 is
the solution we had to find to prove Theorem 3.1. �
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4. Multiple solutions

Now we consider m1,m2 ≥ 3, the case for which existence of harmonic Hopf
constructions has already been shown by Ratto [R1] and Ding [D]. We will show
that for each bi-eigenmap with one sufficiently large eigenvalue, there are actually
countably many solutions of the harmonic Hopf construction.

Theorem 4.1. Assume m1,m2 ≥ 3 and 4λ1 > (m1 − 2)2 or 4λ2 > (m2 − 2)2.
Then for each odd number k ∈ N there is a solution φk of (2.2) which has exactly
k zeroes.

W.l.o.g. we can assume 4λ1 > (m1 − 2)2. Besides Lemma 3.2 from the previous
section, we need the following lemma.

Lemma 4.2. Assume m1,m2 ≥ 3 and 4λ1 > (m1 − 2)2. For each k ∈ N there is
c(k) > 0 such that ϕb has at least k zeroes whenever b > c(k). Moreover, ϕb can
reach ±π2 only after those zeroes.

Proof. The solution ψ of (3.11) which was constructed in Lemma 3.3 converges to
0 as t→∞, and so does ψ′, because of (3.13). It is standard to infer

(4.1) ψ(t) ' C1e
(1−m1/2)t sin(ωt− C2) as t→∞

from this, with constants C1, C2 ∈ R and ω := 1
2

√
4λ1 − (m1 − 2)2, because

asymptotically ψ solves ψ′′ + (m1 − 2)ψ′ + λ1ψ = 0. As b → ∞, the functions
ϕb(t − µ−1 log b) converge to ψ in C1(R), which is proved as in Lemma 3.3. The
claim now follows from the asymptotics stated in (4.1), and from the fact that ψ
never reaches ±π2 because of (3.12) and U(ψ,−∞) = λ1. �
Proof of Theorem 4.1. We define

tb := inf{t ∈ R : ϕb(t) = −π/2},
Tb := inf{t ∈ R : ϕb(t) = π/2},
nb := card{t < inf{tb, Tb} : ϕb(t) = 0}.

First we construct φ1. Let

S1 := {b > 0 : nb = 1, Tb <∞}.
S1 is not empty because of Lemma 3.2 and bounded from above because of Lemma
4.2. Therefore a1 := supS1 ∈ (0,∞) exists. Since all of the ϕb for b ∈ S1 are
increasing, ϕa1 is nondecreasing, but Ta1 <∞ cannot hold because the same would
be true for b > a1 close to a1. Thus ϕa1 is bounded from above by π/2, and
ϕa1(∞) exists. Again, π/2 is the only value that (2.1) allows for ϕa1 , so ϕa1 is
a nondecreasing solution of (2.2) with one zero. The solution ϕa1 might not be
uniquely determined by these properties, so we define b1 to be the supremum of all
parameters for which the same properties hold. Then φ1 := ϕb1 fulfills the claim of
the theorem.

Now let
S2 := {b > 0 : nb = 2, tb <∞}.

We want to show that S2 is not empty. To this end we assume that b > b1 is
sufficiently close to b1, and we will show b ∈ S2. The choice of b1 implies nb ≥ 2,
because if we had nb = 1, then ϕb would have to fulfill ϕb(∞) ∈ [0+, π2 ) or have
some positive local minimum, both of which are easily seen not to be possible from
the differential equation (2.1). Now we can perform the argument of Lemma 3.2
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again to infer that, for b close enough to b1, ϕb is decreasing on (sb, tb] for some
tb ∈ R. To do this, we do some obvious sign changes in the proof of Lemma 3.2
and replace the definition of ηb by

ηb(t) :=
ϕb(t)− ϕb1(t)

b− b1
.

This changes the last term in (3.6) to

+
λ1e
−t + λ2e

t

e−t + et
sin{ϕb1(t) + (b−b1)η(t)} cos{ϕb1(t) + (b−b1)η(t)}

b− b1
,

which does, however, not change any of the asymptotics, because ϕb1(∞) = π
2 . The

proof goes through, therefore nb = 2, and S2 is not empty.
Now that we know that S2 is not empty, we can repeat what we did in the

construction of φ1 to find a function φ2 with exactly two zeroes solving the boundary
value problem

(4.2) (2.1) with ϕ(−∞) = ϕ(∞) = −π
2
.

Analogously we construct bk and φk for all k ∈ N by induction. For odd k, φk will
solve (2.2), while for even k it solves (4.2). This completes the proof of Theorem
4.1. �

Remark 4.3. In the case m2 = 2, m1 ≥ 3, there are also countably many solutions
if λ1 > (m1 − 2)λ2 and 4λ1 > (m1 − 2)2. This can be proved by a combination of
the arguments used in the proofs of the Theorems 3.1 and 4.1.

Remark 4.4. In the case m1 = m2 = 2, Smith [S2] proved that (2.2) is solvable iff
λ1 = λ2, in which case the bi-eigenmap is fµ : S1 × S1 → S1, fµ(z1, z2) = zµ1 z

µ
2 ,

µ ∈ N. We would like to point out that in this case one can actually write down a
continuous family of explicit solutions for the harmonic Hopf construction, due to
the conformal invariance of energy in two dimensions: Denote by Σ : S2 → C the
stereographic projection and by H : S3 → S2 the Hopf fibration. Since u ◦ H is
harmonic for every harmonic u : S2 → S2 (see [S2, Lemma 1.7]),

hµ,a(x) := Σ−1(aΣ(H(x))µ)

is a harmonic Hopf construction on fµ for every a > 0.
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