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MINIMAL 2-COMPLEXES AND THE D(2)-PROBLEM

F. E. A. JOHNSON

(Communicated by Ronald A. Fintushel)

ABSTRACT. We show that when n > 5 there is a minimal algebraic 2-complex
over the quaternion group Q(2™) which is not homotopy equivalent to the Cay-
ley complex of the standard minimal presentation. This raises the possibility
that Wall’s D(2)-property might fail for Q(2%).

INTRODUCTION

Let G be a group with a finite presentation G = (z1,...,z4 | Wi,...,W,), and
let X = Xg be the associated Cayley complex of G. We interpret the cellular chain
complex of the universal cover X |

C.(G) = (0 — my(X) = Co(X) B C1(X) 2 Co(X) 5 Z - 0),

as an exact sequence of right Z[G]-modules, the second homotopy group ma(X)
being identified by the Hurewicz Theorem with Ker(d; : Co(X) — C1(X)). More
generally, by an algebraic 2-complex over G we mean an exact sequence of Z[G]-
modules of the form

E:(O—> J— Ey— FE— Ey— Z-— O)

where E, is finitely generated free over Z[G] for 0 < r < 2. The question which
concerns us may be posed conveniently in the following form:

Realization Problem. Let G be a finitely presented group. Is every algebraic
2-complex over G realized up to chain homotopy in the form C,(G) for some finite
presentation G of G7

In the algebraic 2-complex E = (0 — J — Ey — E; — Ey — Z — 0) the module
J plays the role of an ‘algebraic mo’. In this paper we consider only the case where
G is finite; then there is a well-defined stable module Q3(Z) which contains all
such possible algebraic homotopy groups J. E is minimal when rkz(J) attains the
minimum possible value within Q3(Z). Browning’s Theorem ([I]) essentially shows
that the Realization Problem is equivalent to the problem of realizing minimal 2-
complexes ([1], [4]; see also [6]). Let Q(4m) denote the quaternion group of order
4m, given in the following standard presentation:

2. _
Qdm) = (x,y 2™ =y~ ; ayz =y ).
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The Cayley complex of the presentation Q(4m) determines a minimal 2-complex.
We show:

Theorem A. For each n > 5 there exists a minimal algebraic 2-complex X, (n)
over Q(2"™) such that X.(n) is not chain homotopy equivalent to C.(Q(2")), the
Cayley complex of the standard presentation.

In his study of the homotopy properties of finite complexes [I0], Wall encountered
the following fundamental problem which relates dimensions 2 and 3:

D(2)-problem. Let X®) be a finite 3-complex which is cohomologically two-
dimensional in the sense that H3(X®);B) = 0 for all local coefficient systems
B; is it true that X®) is homotopy equivalent to a finite 2-dimensional complex?

In [6], we showed that, for finite fundamental groups G, the D(2)-problem is
equivalent to the Realization Problem. The question of whether X, (n) is realizable
up to homotopy as the Cayley complex of some finite presentation is an intrigu-
ing one. Any such presentation would necessarily be balanced, but homotopically
distinct from the standard presentation. Indeed, its Cayley complex could not be
equivalent to the wedge of the standard Cayley complex with that of any ‘exotic’
presentation of the trivial groupd However, if no such presentation exists, then the
status of the complexes X, (n) is perhaps even more interesting.

Theorem B. For eachn > 5, either Q(2™) possesses a balanced presentation which
is homotopically distinct from the standard presentation or else the D(2)-property

fails for Q(2™).
1. STABLE MODULES AND TREE STRUCTURES

G will denote a finite group, and F(Z[G]) the category of right Z[G]-lattices;
that is, right Z[G]-modules which are finitely generated and free as modules over
Z. We denote by ‘~’ the stability relation on F(Z[G]):

My ~ My <= M, @ Z|G|™ = My @ Z[G]™* for some ni,ns > 0.

If M € F(Z[G])-lattice, its associated stable module [M] is the class of Z[G]-1attices
equivalent to M under ~. ‘Schanuel’s Lemma’ [7] shows that, for each module
M € F(Z]G)), there is a well-defined stable module Q,, (M) consisting of modules
stably equivalent to a module J which occurs in an exact sequence of the form

0O—-J—-F,1—..—oF—>M-=—0

where each F; is finitely generated free. Clearly 91(Z) is the stable class of the
augmentation ideal I(G) of G.

Any stable module [M] has a representation as an infinite tree in which the ver-
tices are the modules N € [M], with an arrow N — N & Z[G] for each isomorphism
type N. By the Swan-Jacobinski Theorem (see (2.1) of [8]), Q25,+1(Z) has the form
of a fork; that is, a locally finite tree with only one vertex at each positive integral
height, and a finite set of vertices at height zero (Figure 1). The height function
is obtained by an appropriate normalisation of Z-rank. Modules at level zero, the
so-called root modules My, have the property that any module N € [M] takes the
form N = My®Z[G]™. A stable module is said to be straight when it is isomorphic,
as a tree, to the natural numbers N; that is, when there is only one isomorphism
type at level 0. The notion behaves well under duality. Let M € F(Z[G]); then:

IThis formulation was suggested to the author by Raymond Lickorish.
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FIiGURE 1.

Proposition 1.1. [M] is straight <= [M?*] is straight.

G is said to be n-straight when the stable module Q,,(Z) over Z[G] is straight.
The finite group G has the cancellation property for free modules when finitely
generated stably free modules over Z[G] are free; that is, when an isomorphism of
the form B @ Z[G])? = Z[G]* implies that B = Z[G]*~#. In [5] (Prop. 2.7) we
showed:

Proposition 1.2. If the finite group G has the cancellation property for free mod-
ules, then G is 1-straight.

We will show that under certain conditions the converse is also true.

2. ROOT MODULES AND THE WEAK CANCELLATION PROPERTY

We are concerned with stably free Z[G] modules of Z]|G]-rank = 1; that is,
Z|G]-lattices S with the property that S @ Z[G]| = Z[G] & Z]|G]. The consequences
of this are explored in §4. By Wedderburn’s Theorem, for such a module S there
is an isomorphism of Q[G]-modules ¢ : S ® Q = Q[G]. Let € : Q[G] — Q be the
augmentation map, and let £ : S — Q be the mapping

§(x) =eop(x®1).
Put A = Im(§) C Q. Since A is a nontrivial finitely generated subgroup of Q,
there is a group isomorphism 1 : A = Z. On taking 1n = 1 o & we obtain:
Proposition 2.1. Let S be a stably free Z|G]-module of Z|G]-rank = 1; then there
exists a surjective Z|G|-homomorphism n: S — Z.

We observed in §1 that 1(Z) = [I(G)]; it follows that J € F(Z[G]) is a root
module of Q;(Z) precisely when J @ Z[G] =2 I(G) @ Z[G]. Less obviously, we have:

Proposition 2.2. A Z[G]-lattice J is a root module of Q1 (Z) precisely when there
exists an exact sequence 0 — J — S — Z — 0 where S is a stably free Z|G] module
of Z|G]-rank = 1.
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Proof. An easy argument using double dualisation and the universal property of
free modules shows that if F is a finitely generated free module over Z[G]), then F
is injective relative to F(Z[G]). Since J is assumed to be a root module for £;(Z),
then J @ Z[G] = I(G) ® Z[G]. However I(G) & Z[G] occurs in an exact sequence

0—-1I(G)®Z[G] - ZIG]|® Z|G] — Z — 0,
so that, by factoring out a copy of F 2 Z[G], we obtain an extension
0—J— (Z[G] @ Z[G])/F —7Z — 0.

Put S = (Z|G] @ Z[G])/F; clearly S is torsion free and so is a Z[G]-lattice. As
we have noted, since F is free, it is relatively injective, and the exact sequence
0 - F — Z|G] ® Z[G] — S — 0 of Z|G]-lattices splits. Thus Z[G] ® Z[G] =
SeF =S Z[G]. O

If G is a finite group and n is a positive integer, we denote by (I,n) the (two-
sided) ideal of Z[G] consisting of elements of augmentation divisible by n; that is,
(I,n) = e *(n) where € : Z[G] — Z is the augmentation map, and (n) C Z is the
ideal generated by n. The modules (I,n) are called Swan modules. (I,n) occurs
in an extension £(n) = (0 — I(G) — (I,n) — Z — 0) which, by Yoneda Theory,
corresponds to an extension class or ‘k-invariant’ k(€(n)) € Ext'(Z,1(G)) = Z/|G],
in such a way that k(£(n)) corresponds to [n] € Z/|G|. The dual module I*(G)
may be identified with the quotient ring Z[G]/(X) where ¥ = }_ 5 g, so there is
a natural surjective ring homomorphism n : I*(G) — Z/|G|. The following are
known ([8]):

(A) &(m) is congruent to £(n) if and only if m = n (mod|G|);
(B) (I, n) is projective if and only if [n] € (Z/|G|)";

(C) (I,m) = (I,n) if and only if there exists a unit u € I*(G) such that n(u)m =
n.

We say that G has the weak cancellation property when for each [n] € (Z/|G|)"
either (I,n) is free or (I,n) is not stably free.

Proposition 2.3. Let G be a finite group with the weak cancellation property, and
let £ =0 —J — S — Z — 0) be an extension in which S is a stably free
Z[G]-module of Z[|G]-rank = 1. If S is not free, then J 2 I(G).

Proof. Let £ = (0 — J — S — Z — 0) be an extension with S projective. Suppose
that ¢ : J — I(G) is an isomorphism. Write ¢.(€) = (0 = I(G) = T — Z — 0).
By functoriality, T = S. Put r = k(¢«(£)). Then S = T = (I,r), and since S
is projective, r is coprime to |G|. Now suppose that S is stably free. Then (I,r)
is also stably free. But G has the weak cancellation property, so that (I,r) is free,
and hence S is also free. Thus we have shown that if J = I(G) and S is stably
free, then S = Z[G]. In the contrapositive, if S is stably free and S % Z[G], then
J 2I(G). O

Corollary 2.4. Let G be a finite group with the weak cancellation property. Then
G is 1-straight < G has the cancellation property for free modules.

A root module J of £4(Z) is said to be ezotic when J 2 I(G). Swan [8] shows
that for n > 5, the quaternion groups Q(2") have the weak cancellation property
but not the cancellation property for free modules; thus they possess exotic root
modules.
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3. ALGEBRAIC 2-COMPLEXES

Let E= (0 —» J — Ey — E; — Ey — Z — 0) be an algebraic 2-complex over
Z[G]; by analogy with the geometric case, we think of J as being an ‘algebraic
274 homotopy group’ and write J = mo(E). Clearly J € Q3(Z). We denote by
Alg.(J) the class of algebraic 2-complexes over Z[G] for which 7y = J; moreover
we denote by Alg. the set of homotopy types of algebraic 2-complexes over Z[G],
and by Hg the category whose objects are finite 2-dimensional cell complexes K
with 1 (K) = G and whose morphisms are cellular homotopy classes of cellular
maps. If K € Hg, the cellular chain complex

C(K) = (0 — ma(K) — Co(K) — C1(K) — Co(K) — Z — 0)

defines an object in Alg.(m2(K)) and gives a mapping C : Hg — Alg. which
preserves homotopy type. There is a stabilization process within Hqg, namely X +—
X Vv S2, and we impose the structure of a directed graph on the objects of Hg by
drawing an arrow X — X V S2. It is straightforward to see that H¢ is a tree; this
observation is originally due to Dyer and Sieradski [2]. Likewise, a tree structure
is introduced into Alg, by means of the algebraic analogue of this stabilization
process, namely

0— J — Fy - Fi— Fy— Z— 0

l ! I I |
0—- J@ZG — FReZG - h— Fh— Z—- 0

In his thesis [I] (see also [4]), Browning proved the following Stability Theorem,
which generalizes the Swan-Jacobinski Theorem to this setting:

Theorem 3.1 (Browning). Let G be a finite group, and let J € Qs(Z). Then for
any E,&" € Algo(JDZ[G]), there exists a weak homotopy equivalence h : € — E'.

In particular, Alg,(J) consists of a single element provided J € Q3(Z) is not
algebraically minimal, and so Alg is actually a fork. For each module J € Q3(Z),
the congruence classes of elements in Ext3(Z, J) are parametrized by the group
Ext%[G] (Z,Q3(Z)) =2 Z/|G|. A fortiori, when J is algebraically minimal, the number
of weak homotopy types of elements in Alg.(J) is finite. Furthermore, since the
number of isomorphism types of algebraically minimal modules is also finite, we see
that:

Corollary 3.2. Let G be a finite group. Then Algq, the tree of chain homotopy
types of algebraic 2-complexes, is a fork with a finite number of prongs.

The functor ‘algebraic 7o’ defines a morphism of directed graphs
o : Algs — Q3(Z).

Proposition 3.3. For any finite group G, the mapping w2 : Algs — Q3(Z) is
surjective.

Proof. Suppose that J € Q3(M); then there exists a module D such that for some
n,m >0, J@® Z[G™ = D @ Z[G]", and such that D occurs in an exact sequence

0— D — Z[G] — Z[G)° — Z[G]* — Z — 0.
Thus J @ Z[G]™ occurs in an exact sequence

0— J@Z[G™ — Z[G]" — Z[G)? — Z[G]* — Z — 0.
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We split this last sequence as follows:
) 0—JBZIG" — Z[G]"™" — K — 0;
(I1) 0— K — Z[G)’ — Z|G]* - Z — 0.
Dividing through (I) by Z[G]™ gives an extension
(I11) 0— J — Z[G]"/Z[G]™ — K — 0.
From the form of (II), since K is torsion free over Z, then Z[G]"T"/Z[G]™ is
also. As in the proof of (2.2), Z[G]™ is injective relative to F(Z[G]), so that
S = Z[G]"t"JZ]G]™ is stably free over Z[G]. Splicing (II) with (III) gives an
extension
0—J—S—ZG” - Z[G* - Z — 0.

If S is free over Z[G] we may take E to be this last sequence. If S is not free
over Z[G], then S @ Z[G]¢ = Z|G]? so that we may take E to be the obvious exact
sequence of the form

0—J— Z[G]* - Z[G)P+¢ — Z|G]* — Z — 0,
and this completes the proof. [l

4. A CANDIDATE FOR THE FAILURE OF THE D(2)-PROPERTY

The modules (I,7) over a variety of finite groups have been extensively studied
by Swan. In particular, he shows ([8] Theorem (17.7)) that over the quaternion
group Q(2") for n > 3 there only two isomorphism classes amongst the modules
(I,7); when r = 1 (mod 8), (I,r) is free; by contrast, for r = £3 (mod 8) the
modules (I,7) constitute a single isomorphism class, which is nonfree, and which
generates the projective class group Ko(Z[Q(2")]) = Z/2Z. Tt follows easily that:

Theorem 4.1 (Swan). For any n > 3, the quaternion group Q(2™) of order 2" has
the weak cancellation property.

Extending Vigneras’ work [9], Swan has also shown ([8], Theorem I):

Theorem 4.2 (Swan-Vigneras). Z[Q(2")] has the cancellation property for free
modules only for the two values n = 3,4; for all n > 5 there exist stably free
modules over Z[Q(2™)] which are not free.

For m > 2, Q(4m) has free period 4, as is clear from the complete resolution
025 2Q 2 z[Q? 3 22 2 Z[Q) S Z — 0 where ¢* is the dual of the
augmentation map, 91 = (z — 1,y — 1),

1+z+.. . +2m ! yr + 1 z—1
0y = and 03 =
—(y+1) z—1 1—yx
In consequence we get:
Proposition 4.3. For all m > 2, I*(Q(4m)) belongs to the minimal level of Q3(Z).

Proof. It is straightforward to see that Im(J3) = I*(Q) so that, since Ker(ds) =
Im(33), the above resolution truncates to give an algebraic 2-complex of the form

0—T(Q) — Z[Q* & Z[Q]> & Z[Q] S Z — 0.
Minimality follows since rkz(I*(Q)) < |Q|. O
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From (2.4), (4.1), (4.2) and (4.3) it follows that:

Corollary 4.4. Let Q = Q(2") denote the generalised quaternion group of order
2™ then the following statements are equivalent:

(i) Q is 1-straight;

(i) Q is 3-straight;

(iii) n = 3,4.

The above corrects an over-optimistic opinion in [5] (p. 245, lines 7-9).

When n > 5, the fork Algg .y has at least two prongs, by Corollary 4.4(ii).
Thus over Q(2"), the minimal level of Q23(Z) contains at least two distinct isomor-
phism classes, one of them being I*(Q(2")). The algebraic 2-complex obtained by
truncating the complete resolution is simply the Cayley complex of the presentation
Q(4m). In particular, it is geometrically realisable. Let J € Algg,n) be an exotic
root module, and let X, be an algebraic 2-complex such that 7o (X.) = J. Clearly
X, £ C(Q(27)), since J 22 I*(Q(2™)) = m2(Q(2")). Thus we obtain:

Theorem A. For each n > 5 there exists a minimal algebraic 2-complex X, (n)
over Q(2"™) such that X.(n) is not chain homotopy equivalent to C.(Q(2")), the
Cayley complex of the standard presentation.

It is well known [3] and easy to prove that if G = (z1,...,24 | Wi,..., W, ) is
a presentation of the finite group G, then g < r. The number e(G) =r —g > 0 is
called the excess of G; the presentation G is balanced when e(G) = 0, and is minimal
when e(G) < e(P) for any other finite presentation P of G.

In the example over Q(2") considered above, it is not clear whether the minimal
algebraic 2-complex y.(n) is realisable as C,(G) for some (necessarily balanced)
presentation G of Q(2"). It follows from the main result of [6], however, that if
X«(n) is not realisable, then the D(2)-property fails for Q(2"); that is:

Theorem B. For eachn > 5, either Q(2™) possesses a balanced presentation which
is homotopically distinct from the standard presentation or else the D(2)-property

fails for Q(2™).

We note that if P, Q are nonminimal finite presentations of the finite group G
with e(P) = e(Q), then by Browning’s Theorem Xp ~ Xgo.
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