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THE APPROXIMATION ORDER OF POLYSPLINES

OGNYAN KOUNCHEV AND HERMANN RENDER

(Communicated by David Sharp)

ABSTRACT. We show that the scaling spaces defined by the polysplines of
order p provide approximation order 2p. For that purpose we refine the results
on one-dimensional approximation order by L-splines obtained by de Boor,
DeVore, and Ron (1994).

1. INTRODUCTION

In the last decade the approximation order of shift-invariant subspaces of the
space L? (R™) of all square-integrable functions on the euclidean space R™ has been
investigated extensively, e.g., in the survey paper [10] approximately 100 references
are given. The problem can be formulated in a rather general way: suppose that
(Vi)pes is a family of subspaces of L? (R™) (not necessarily shift-invariant) where
I is a subset of (0, 00) having 0 as an accumulation point. One has to estimate the
rates of decay of the approximation error

(1) E (£, Vi) i= it {1 = sll yogun) 5 € Vi }

for h tending to 0. If W is a subspace of L? (R™) endowed with a norm |||y, we
say that (Vi) c; provides approzimation order m with respect to the norm |||y, if
there exists a constant cy such that for every f € W and for every h €

(2) E(f, Vi) <cw A" fllw -
Usually W is the potential space Wa™ (R™) for m € (0, 00) defined as the subspace
of those f € L? (R™) such that

(3) 1 ey o= @) [0+ 16)™ Fe&)

In this note we want to prove that cardinal polysplines of order p provide approxi-
mation order 2p.

The motivation for the present work comes from the fact that polysplines are
useful for solving multivariate interpolation problems [4], [5], [6] and they are of
importance for the multivariate Wavelet Analysis; cf. the monograph [9]. Recall
that a function S : R™ \ {0} — C is called a cardinal polysplind} (on annuli) of

L2(R™)
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1 The first author introduced polysplines in 1991 in a more general setting with arbitrary
interfaces; see [3] and [9].
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order p if S is (2p — 2)-times continuously differentiable and the restriction of S to
each open annulus {x € R" : ¢! < |z| < e/*'} is a polyharmonic functior of order
p for I € Z. The reason for calling such polysplines “cardinal” is found in Theorem
3, where it is seen that after expanding S in a Fourier—Laplace series of spherical
harmonics, the coefficients Sk ; (logr) are cardinal L-splines in the usual sense of
the word; cf. Micchelli’s paper of 1976 [§].

Introducing a parameter h > 0, by P, we denote the set of all functions S :
R™\ {0} — C which are (2p — 2)-times continuously differentiable and whose re-
striction to each open annulus Ay, ; := {m eR":eM < |z| < eh(H‘l)} is a polyhar-
monic function of order p for I € Z. Then the scaling spaces of polysplines of order
p, in short PV}, are defined as the L2-closure of P, N L? (R™),h > 0.

The main result is the following:

Theorem 1. The sequence (PVy),~, provides approximation order 2p where p
denotes the order of the polysplines. More precisely, there exists a constant C > 0
such that for all h with 0 < h <1 and f € L? (R") the following inequality holds:

1
2

n

inf{”f—g”Lz(Rn) tg € PVh} <C-h?. </

Note that in place of the norm (B]) we have a semi-—norm on the right-hand side
which is zero on the polyharmonic functions of order p.

The paper is organized as follows: in Section 2 we discuss the approximation
order of cardinal L-splines by using important results from [2]. In Section 3 the
main result will be proven.

2
2| AP S (x)‘ dx)

2. APPROXIMATION ORDER OF CARDINAL L-SPLINES

Let us recall Theorem 4.3 in the fundamental paper [2]: Suppose that for every
h > 0, the space S, is the L? (R™)-closure of the linear space generated by the
shifts ¢p, (- —m) ,m € Z" of the function ¢, € L? (R™) (so S, is the shift-invariant
space generated by ¢p) and that V,, = {s (F) 1S € Sh} . Then the family (V4),c;
provides approximation order m with respect to the norm H'”Wzm(]Rn) defined in
@) if and only if there exists D > 0 such that for all h € I and for almost all
zeC :=[-mn]"
(4) |Ag, ()] < D (h+2|™),
where )
(A, ()2 = aimazo |91 €+ 270)

o dezn on (€ + 2”5”2

We will need a refinement of that result. For our purposes it will be useful to
consider, instead of (@), different norms. In the following we replace the function
(1+ |z|)™ by a measurable function @Q(z) with the following properties: (i) the zero

set Q71 (0) of Q is a set of Lebesgue measure zero and (ii) there exists a constant
D1 > 0 such that

(5) ‘Q (%)‘ > Dlhim forall z ¢ C = [—m,7|".

2 Recall that a function f defined on an open set U in the euclidean space R™ is polyharmonic
of order p if f is 2p-times continuously differentiable and AP f (z) = 0 for all z € U where A is
the Laplace operator and AP its p-th iterate.
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Suppose further that there exists a constant Dy > 0 such that for all z € C and for
all0 < h <1

(6) [Ag,, (ha)| < h™D2|Q (2)].

An analysis of the proof in [2] shows that then the following inequality holds (for
us the constants D; and Dy defined in the formula will be very important!)

Lo(R")

(7) E(f,Vn) < <D2 (27T)5+W

: ) @)

We recall some facts about L-splines: Let L be a linear differential operator with
constant coefficients of order N + 1, say

N+1 d
(8) L=M=]] (%—Aj) where A := (A1, ..., Ans1) -
j=1

Then a function u : R — R is called a cardinal L-spline on the mesh hZ (h > 0)
if w is (N — 1)-times continuously differentiable and if for every [ € Z there exists
fieUr ={feC>®(R):Lf=0}such that u(t) = f; (¢t) for all t € (Ih, (I +1)h).
The set of all cardinal L-splines for the operator L = M on hZ will be denoted by
Shz (A). The scaling spaces V3, (A) are defined by

9) Vi (A) = L*(R)-closure of Spz (A) N L* (R).
Let QA be the basic spline which can be defined by its Fourier transform by
~ IG5 (e —e)

(10) N T

Theorem 2. Let N € N be fixed. Then there exists a constant D > 0 such that for
all A= (\1,..., A\ne1) € RN*L and for all f € Ly (R) the following inequality holds:

(1) EB(£,Vi(W) < VD ||Py ) Fie)|

Lo(R)

where the polynomial Py (z) = H;\:El(zx — ).

Remark 3. Note that if we used the usual Sobolev norm (3), then we would not be
able to obtain the sharp constant D of inequality (II); the last is the main virtue
of Theorem [2|

Proof. By the above we have to check (Bl) and (@). Note that for @ := Px we have
the estimate

12 P (X 2_N+1 )2 A2 > 2N+ 1
(12) 2 (5) =IL(() +%) == s
]:
for all |z| > 7 and for all A > 0. Hence it suffices to show that
1
(13) Ag, (RO <RV Py (O Y —— s
Q€Z,a#£0 (m|al)
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—~ 2
The trivial inequality (A, (€)? < Lacta ‘%ig)(?r%a)l and the estimate

— 2
|@(€+277a)|2 - ‘Qh/\ (€+27T04)‘ _N+1 )

i€ — b,
@n (&) \@3(5)\2 14 i€+ 2ma) =y
yield
NA1 N+1
A, WO <M TT(E+25) >0 1 .
Jj=1 a€Z,a#0 j=1 hf + 271—04 + h2>\?

Since (h¢ 4 2ma)® + h2X\2 > (h€ + 27a)? > (27 |al — |hé|)* we obtain for 0 < h < 1
and [¢] < 7 the estimate 27 |a| — |h¢] > 7 || (since o # 0) arriving at (3)). O

3. THE APPROXIMATION ORDER OF POLYSPLINES

Let S"~! = {z € R";|z| = 1} be the unit sphere. Each z € R™ will be written
in spherical coordinates z = 70 with » > 0 and # € S~ !. Recall that a function
Y : S*! — Cis a spherical harmonic of degree k € Ny if there exists a homogeneous
harmonic polynomial P (z) of degree k such that P (§) =Y () for all € S*~ 1. The
set ) of all spherical harmonics of degree exactly k is a linear space of dimension
aj = dim 9, = (”+;§_1) — (”',:ff) We denote by Yj,; with I = 1,2, ..., a; a basis
for $)j,. For a detailed account we refer to Stein and Weiss [12].

Let u : (R1,R2) — C be infinitely differentiable and Yy, € $;. Then it is well
known that A (u (r) Yy (0)) = Y (0) Lxyu (1) where we have put
d? n-1d k(k+n-2)

T @ 2 '

By iteration we have APy =Y} (0) - [L(k)}p u (r) . For convenience, we write
A+ (kvp) = {kvk + 27 7k + 2p— 2} )
A_(k,p)={-k—n+2,—-k—n+4,..,—k—n+2p}.

(14) Ly =

The space of solutions of the equation L (k) f(r) = 0 which are C* for r > 0 is

generated by a simple basis: for j € A, (k,p) UA_ (k, p) the function 7 is clearly
a solution, while for j € Ay (k,p) N A_(k,p) we obtain a second solution 77 logr.
It will be convenient to make a transform of the variable r to v = logr. Then a
solution of the form 77 will be transformed to /¥ and a solution of the form 7 log r
is transformed to ve’?. We see immediately that all solutions to the equation
L’(’k)f (r) = 0 are transformed to solutions of the equation My )g(v) = 0 where

Mk is defined by (8) with respect to the vector
(15) Ap = (k,k+2,..,k+2(p—-1),—(k+n)+2,..,—(k+n)+2p).

The dependence on the parameter p and n will be suppressed throughout the paper.
A proof of the following can be found in [6] and [9, Theorem 9.7].

Theorem 4. Let S : R™\ {0} — R be a polyspline of order p. Then the Laplace-
Fourier coefficient Si; : R — R defined by

(16) Sk,l (U) = - S (e”@) Yk,l (9) do

is a cardinal L-spline with respect to the linear differential operator My y;).
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We want to characterize the L? (R™)-closure PVj,. It is a temptation to assume
that for S € PV}, the Fourier-Laplace coefficient defined through formula (8] will
be in Vj, (Ag), i.e., in the closure of Spz (Ax) N Lo (R). This is not true since the
transformation rule will give us an additional weight for f € Lq (R™):

(o]
(17) / |f (@) dx = / / \f (r6)|* L dfdr.
n 0 §n—1
Fortunately, this problem can be easily solved; see e.g. [7].

Theorem 5. Define Ay, = (%, - %) + Ak. Then for each k € Ng,l = 1,..., a, the

following map, defined on P, N L* (R™) by
(18) S s Sk (v) = e2" S (€"0) Yy, (0) db,
Snfl

maps onto Spz, (A_k) N L3R, dv), and, by continuity, it can be extended to a map
from PV}, onto Vj, (A_k) . Furthermore, PV}, is isomorphic to

Vi= P V().

keNo,l=1,...,ak

Proof of Theorem 1. Let f € L?(R") and g € PVj,. Then by the transformation
rule (I7),

(19) I = ol = [ [ 1700) =~ gr0)

Let fr; and gr; be the Laplace-Fourier coefficients of f and g respectively as
defined in ([I6). Note that v — Tri(e¥) = e3Vgx,; (e¥) is in V, (Ak). Since
Yy:1 (8) constitutes an orthonormal basis, we obtain

oo  ag

(20) £ = 0l = o0 [ (€)= s () ™o,

k=01=1""

Minimizing the expression g — ||f — g||2L2 (R) for g € PV}, is equivalent to mini-
mizing the expression

> Do v |2
/ €2’ fru(e”) = gri(e”)| dv

— 00

foreach k € N, [ =1,...,a, , where gi; € V}, (A_k) . Theorem B applied to A = Ay
(hence N + 1 = 2p) shows that there exists a constant C), > 0 which only depends
on p (and not on the values \; in Ay) such that

—

(21) E (e%vka (ev) , Vi (A_k)) < h2p . Cp PH . e%vfk’l (6’”)

Lo(R)

Write G; (v) := €2V fi; (¢?) . A simple computation (using Parseval’s identity and
the fact that differentiation becomes multiplication via Fourier transform) shows
that
e T MGy ()2
— ||Px- = s v)|” dv.
2w H A k’lHLQ(R) /_OO ‘ A t ( )|



460 OGNYAN KOUNCHEV AND HERMANN RENDER

A calculation shows that My (e2¥fr;(e”)) = e2Ma, (f(e")). Then @20) and
1) yield

oo ag
Loy v 2
E(f,PVi)* < h* - 2xC) 3" | e Ma, (f ()|, oy
k=0 1=1
The next theorem applied to the case p = ¢ finishes the proof. (I
2
Theorem 6. Let p,q € Ny and define ||f(1:)|§p = f‘|x|2q,A?’f (x)‘ dx for

f € La(R™). Then

oo apg 2
=20 "G M, (fi (ev))‘ dv

k=0 I=1

1S ()]

where fi,(r) are the Laplace-Fourier coefficients of f defined as in equality (10]).
Proof. Assume that f(r0) = fi¢ (r) Yi,e (0). Since AP f (x) = L, fr,e (1) Y0 (0), we

obtain .
F@l= [
r@i,= [

The integration over 8 only gives a factor 1. Now we change the variable r = ¢¥ and
apply the identity (L% fr1) (€”) = e 2"PMa, (fru(€")); see e.g. Theorem 10.34 in
[9). Then

2
TQQLZ()k)fk’g (r) Yie (0)‘ " tdrdf.

U — 2 v 2 nv
@I, = [ lee s, ()] e

Finally, we see that for arbitrary f € L? (R™) the result follows via the orthogonal
decomposition of f in spherical harmonics. O
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