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TWO NONTRIVIAL SOLUTIONS
FOR QUASILINEAR PERIODIC EQUATIONS

EVGENIA H. PAPAGEORGIOU AND NIKOLAOS S. PAPAGEORGIOU

(Communicated by Carmen C. Chicone)

Abstract. In this paper we study a nonlinear periodic problem driven by
the ordinary scalar p-Laplacian and with a Carathéodory nonlinearity. We
establish the existence of at least two nontrivial solutions. Our approach is
variational based on the smooth critical point theory and using the “Second
Deformation Theorem”.

1. Introduction

In the last decade there has been increasing interest for periodic problems driven
by the ordinary p-Laplacian differential operator. We refer to the works of Del
Pino-Manasevich-Murua [5], Fabry-Fayyad [6], Guo [7], Dang-Oppenheimer [4]
(scalar problems), and Manasevich-Mawhin [10], Mawhin [11], Kyritsi-Matzakos-
Papageorgiou [9] (vector problems). In all these works the method of analysis is
based on degree theoretic arguments or on the theory of nonlinear operators of
monotone type and on fixed point results (see Kyritsi-Matzakos-Papageorgiou [9]).
The problem of existence of multiple periodic solutions was addressed only by Del
Pino-Manasevich-Murua [5], where the forcing term f(t, x) is continuous, the map
x → f̂(t, x) = f(t, ‖x‖p−2x) is locally Lipschitz, and if p > 2, f(t, x) 6= 0 for all
x 6= 0. Their approach is based on conditions on the interaction between the Fučik
spectrum of the ordinary p-Laplacian and the nonlinearity f .

In this paper we prove a multiplicity result for problems with a Carathéodory
nonlinearity. We assume that the equation is strongly resonant at the first (zero)
eigenvalue of the negative ordinary scalar p-Laplacian with periodic boundary con-
ditions (i.e., f(t, x) → 0 as |x| → ∞ and the potential F (t, x) =

∫ x
0 f(t, r)dr has

finite limits as |x| → ∞, i.e., the potential has a small rate of increase as |x| → ∞).
The term “strong resonance” (describing the situation just mentioned) was coined
by Bartolo-Benci-Fortunato [2]. Our approach is variational and uses smooth criti-
cal point theory (see Chang [3] and Mawhin-Willem [12]) and the so-called “second
deformation theorem” (see Chang [3], p.23).
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2. Multiplicity result

The problem under consideration is the following:

(1)
{
−(|x′(t)|p−2x′(t))′ = f(t, x(t)) a.e on T = [0, b]
x(0) = x(b), x′(0) = x′(b), 1 < p <∞.

}
Our hypotheses on the nonlinearity f are the following:

H(f). f : T × R 7−→ R is a function such that:
(i) for all x ∈ R, t 7−→ f(t, x) is measurable;
(ii) for almost all t ∈ T , the function x 7−→ f(t, x) is continuous;
(iii) for almost all t ∈ T and all x ∈ R, we have

|f(t, x)| ≤ a1(t) + c1(t)|x|r−1,

1 ≤ r < +∞ with a1, c1 ∈ Lr
′
(T ), 1

r + 1
r′ = 1;

(iv) if F (t, x) =
∫ x

0 f(t, r)dr, there exist F± ∈ L1(T ) such that F (t, x)
→ F±(t) as x→ ±∞ uniformly for almost all t ∈ T ,

∫ b
0
F±(t)dt ≤ 0;

(v) for almost all t ∈ T and all x ∈ R, F (t, x) ≤ 1
bpp |x|p;

(vi) lim inf
x→0

pF (t,x)
|x|p ≥ θ(t) uniformly for almost all t ∈ T with θ ∈ L1(T )

and
∫ b

0 θ(t)dt > 0.

We introduce the space W 1,p
per(T ) = {x ∈ W 1,p(T ) : x(0) = x(b)} and the func-

tional ϕ : W 1,p
per(T )→ R defined by ϕ(x) = 1

p‖x′‖pp−
∫ b

0
F (t, x(t))dt. It is well known

that ϕ ∈ C1(W 1,p
per(T )). Recall that if X is a Banach space and ϕ ∈ C1(X), we say

that ϕ satisfies the Palais-Smale condition at level c ((PS)c-condition for short) if
every sequence {xn}n≥1 such that ϕ(xn)→ c and ϕ′(xn)→ 0 has a strongly conver-
gent subsequence. In what follows for ϕ ∈ C1(X), we set K = {x ∈ X : ϕ′(x) = 0}
(the set of critical points of ϕ) and for c ∈ R, Kc = {x ∈ X : ϕ′(x) = 0 and
ϕ(x) = c} and ϕc = {x ∈ X : ϕ(x) ≤ c}. The so-called “second deformation
theorem” (see Chang [3], p. 23) that we shall use says the following:

Theorem 1. If X is a Banach space, ϕ ∈ C1(X) satisfies the (PS)c-condition
for every c ∈ [a, d], a is the only critical value of ϕ on [a, d) and ϕ−1({a}) ∩ K
consists of isolated critical points, then there exists h ∈ C([0, 1]× ϕd \Kd, X) such
that h(t, ·)|ϕa = identity for all t ∈ T , h(0, ·) = identity and h(1, ϕd \Kd) ⊆ ϕa. In
addition ϕ(h(s, x)) ≤ ϕ(h(t, x)) for all t < s and all x ∈ ϕd \Kd.

Remark. In the terminology of Chang [3] and Mawhin-Willem [12] (p. 171), the first
part of the conclusion of Theorem 1 says that ϕa is a strong deformation retract of
ϕd \Kd.

Proposition 2. If hypotheses H(f) hold, then for every c < −
∫ b

0
F±(t)dt, ϕ sat-

isfies the (PS)c-condition.

Proof. Let {xn}n≥1 ⊆W 1,p
per(T ) be a sequence such that ϕ(xn)→ c and ϕ′(xn)→ 0.

We have ϕ′(xn) = A(xn)−N(xn) where A : W 1,p
per(T )→W 1,p

per(T )∗ is the nonlinear

operator defined by 〈A(x), y〉 =
∫ b

0 |x′(t)|p−2x′(t)y′(t)dt for all x, y ∈ W 1,p
per(T ) (by

〈·, ·〉 we denote the duality brackets for the pair (W 1,p
per(T ),W 1,p

per(T )∗) and N :
Lr(T ) → Lr

′
(T ) is the Nemitsky operator corresponding to f , i.e., N(x)(·) =

f(·, x(·)). It is easy to check that A is monotone, demicontinuous, hence maximal
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monotone (see Hu-Papageorgiou [8], p. 309) and N is continuous (Krasnoselkii’s
theorem).

We claim that the sequence {xn}n≥1 ⊆ W 1,p
per(T ) is bounded. Suppose that this

is not the case. By passing to a subsequence if necessary, we may assume that
‖xn‖ → ∞. Set yn = xn

‖xn‖ , n ≥ 1. We may assume that yn
w−→ y in W 1,p

per(T )
and yn → y in C(T ) (recall that by the Sobolev embedding theorem W 1,p

per(T )
is embedded compactly in C(T )). From the choice of the sequence {xn}n≥1 ⊆
W 1,p
per(T ), we have

(2)
|ϕ(xn)|
‖xn‖p

= |1
p
‖y′n‖pp −

∫ b

0

F (t, xn(t))
‖xn‖p

|dt ≤ M1

‖xn‖p

for some M1 > 0 and all n ≥ 1.
Because of hypothesis H(f)(iv), we can find M2 > 0 such that for almost all

t ∈ T , we have that

|F (t, x)| ≤ |F+(t)|+ 1 if x ≥M2 and |F (t, x)| ≤ |F−(t)|+ 1 if x ≤ −M2.

From the mean value theorem we know that for almost all t ∈ T and all x ∈ R we
can find λ = λ(t, x) ∈ (0, 1) such that F (t, x) = f(t, λx)x. Then using hypothesis
H(f)(iii), we see that for almost all t ∈ T and all x ∈ (−M2,M2) we have |F (t, x)| ≤
a2(t) with a2 ∈ Lr

′
(T ). So finally for almost all t ∈ T and all x ∈ R, we have

|F (t, x)| ≤ a3(t) with a3 ∈ L1(T ). Therefore |
∫ b

0
F (t,xn(t))
‖xn‖p dt| ≤

∫ b
0

a3(t)
‖xn‖p dt → 0

as n → ∞. Hence if we pass to the limit in (2), we obtain 1
p‖y′‖pp = 0 and so

y = ξ ∈ R. If ξ = 0, then y′n → 0 in Lp(T ) and so yn → 0 in W 1,p
per(T ), a

contradiction since ‖yn‖ = 1 for all n ≥ 1. So ξ 6= 0 and without any loss of
generality we may assume that ξ > 0 (the analysis is similar if instead we assume
that ξ < 0). From the choice of the sequence {xn}n≥1 ⊆ W 1,p

per(T ), we know that
there exists n0 ≥ 1 such that for all n ≥ n0, we have |ϕ(xn) − c| ≤ ε, hence
ϕ(xn) ≤ c+ ε and so −

∫ b
0
F (t, xn(t))dt ≤ c+ ε. Note that xn(t)→ +∞ uniformly

in t ∈ T and so F (t, xn(t)) → F+(t) uniformly for almost all t ∈ T (hypothesis
H(f)(iv)). Therefore −

∫ b
0
F+(t)dt ≤ c + ε. Let ε ↓ 0 to obtain −

∫ b
0
F+(t)dt ≤ c,

a contradiction to the choice of c. Similarly we reach a contradiction if we assume
that ξ < 0.

Therefore we have proved that {xn}n≥1 ⊆ W 1,p
per(T ) is bounded and so we may

assume that xn
w−→ x in W 1,p

per(T ) and xn → x in C(T ). From the choice of the
sequence {xn}n≥1 ⊆W 1,p

per(T ) we have

(3) 〈A(xn), xn − x〉 −
∫ b

0

f(t, xn(t))(xn(t)− x(t))dt ≤ εn‖xn − x‖ with εn ↓ 0.

Note that by virtue of hypothesis H(f)(iii) and the dominated convergence the-
orem, we have that

∫ b
0
f(t, xn(t))(xn(t)− x(t))dt → 0. So from (3) we obtain that

lim sup〈A(xn), xn − x〉 ≤ 0. But A being maximal monotone, it is generalized
pseudomonotone (see Hu-Papageorgiou [8], p. 365) and so 〈A(xn), xn〉 → 〈A(x), x〉,
hence ‖x′n‖p → ‖x′‖p. Also x′n

w−→ x′ in Lp(T ) and since the latter is uniformly
convex, by the Kadec-Klee property we have x′n → x′ in Lp(T ). Therefore xn → x
in W 1,p

per(T ). �

Now we are ready for the multiplicity result.
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Theorem 3. If hypotheses H(f) hold, then there exist two nontrivial solutions
x1, x2 ∈ C1(T ) of (1) such that |x′i(·)|p−2x′i(·) ∈ W 1,τ

per (T ) with τ = min{q, r′} and
i = 1, 2.

Proof. Note that because of hypotheses H(f)(iii) and (iv), ϕ is bounded below.
Also hypothesis H(f)(vi) implies that given ε > 0, we can find δ(ε) > 0 such that
for almost all t ∈ T and all |x| ≤ δ, we have

(4) (θ(t) − ε)|x|p ≤ pF (t, x).

For every ξ ∈ R, we have

ϕ(ξ) = −
∫ b

0

F (t, ξ)dt ≤ |ξ|
p

p

∫ b

0

(ε− θ(t))dt =
|ξ|pεb
p
− |ξ|

p

p

∫ b

0

θ(t)dt.

From the properties of θ (see hypothesis H(f)(vi)), we see that if ε > 0 is small,
ϕ(ξ) < 0. So we infer that inf[ϕ(x) : x ∈ W 1,p

per(T )] = m0 < 0 ≤ −
∫ b

0
F±(t)dt (see

hypothesis H(f)(iv)). According to Proposition 2, ϕ satisfies the (PS)m0 -condition.
Thus we can find x1 ∈ W 1,p

per(T ) such that

ϕ(x1) = m0 < 0 = ϕ(0), hence ϕ′(x1) = 0 and x1 6= 0.

Suppose that x1 and 0 are the only critical points of ϕ. From the above argument
we know that given ε > 0, we can find r1 > 0 such that if |ξ| ≤ r1, we have

ϕ(ξ) ≤ |ξ|
p

p
(εb−

∫ b

0

θ(t)dt).

If ε > 0 is small, we have that η = εb−
∫ b

0 θ(t)dt < 0 and so

(5) ϕ(ξ) ≤ |ξ|
p

p
η < 0.

Consider the direct sum decomposition W 1,p
per(T ) = R ⊕ V with V = {v ∈

W 1,p
per(T ) :

∫ b
0 v(t)dt = 0}. By virtue of hypothesis H(f)(v), for every v ∈ V ,

we have
ϕ(v) ≥ 1

p
‖v′‖pp −

1
pbp
‖v‖pp.

From the Wirtinger inequality (see Mawhin-Willem [12], p. 8), we have ‖v‖pp ≤
b‖v‖p∞ ≤ bp‖v′‖pp and so

ϕ(v) ≥ 1
p
‖v′‖pp −

1
p
‖v′‖pp = 0, i.e., inf

V
ϕ = 0.

From the previous considerations (see (5)), we know that

(6) µ = sup
Br∩R

ϕ < 0.

Here Br = {x ∈ W 1,p
per(T ) : ‖x‖ < r}. Let Γ = {γ ∈ C(B̄r ∩ R,W 1,p

per(T )) :
γ|∂B̄r∩R = identity}. If h is the homotopy postulated by Theorem 1, we define the
map γ0 : B̄r ∩R→W 1,p

per(T ) by

γ0(x) =

{
x1 if ‖x‖ < r

2 ,

h(2(r−|x|)
r , rx‖x‖) if ‖x‖ ≥ r

2 .

Recall that we have assumed that {x1, 0} are the only critical points of ϕ. Then
x1 is the only minimizer of ϕ and so from Theorem 1, it follows that h(1, y) = x1
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for all y ∈ ϕ0 \ {0}. Hence we infer that for |x| = r
2 , we have h(2(r−|x|)

r , rx‖x‖ ) =
h(1, 2x) = x1, which proves the continuity of γ0. In addition, from Theorem 1,
h(0, ·) = identity and so γ0|∂B̄r∩R = identity. Thus it follows that γ0 ∈ Γ. More-
over, since h is ϕ-decreasing (see Theorem 1), for all x ∈ ϕ0 \{0} and all t, s ∈ [0, 1]
with t < s, we have ϕ(h(s, x)) ≤ ϕ(h(t, x)). From this and (6), we see that

(7) ϕ(γ0(x)) < 0 for all x ∈ B̄r ∩R.
From Struwe [13] (p. 116), we know that the sets ∂B̄r ∩ R and V link. So we

have that γ(B̄r ∩R) ∩ V 6= 0 for all γ ∈ Γ, hence sup[ϕ(γ(x)) : x ∈ B̄r ∩R] ≥ 0 for
all γ ∈ Γ (recall that inf

V
ϕ = 0) and so

(8) sup[ϕ(γ0(x)) : x ∈ B̄r ∩ R] = ϕ(γ0(x∗)) ≥ 0 for some x∗ ∈ B̄r ∩R.
From (7) and (8), we have a contradiction. Therefore ϕ has another critical point

x2 6= x1, x2 6= 0. Now let y = xk, k = 1, 2. We have ϕ′(y) = 0 and so

(9) A(y) = N(y);

hence 〈A(y), ψ〉 =
∫ b

0
f(t, y(t))ψ(t)dt for all ψ ∈ C∞0 (0, b).

Note that |y′(·)|p−2y′(·) ∈ W−1,q(T ) = W 1,p
0 (T )∗ (see Adams [1], p. 50). So from

the definition of distributional derivative we have 〈−(|y′|p−2y′)′, ψ〉0 = 〈N(y), ψ〉0,
with 〈·, ·〉0 denoting the duality brackets for the pair (W 1,p

0 )(T ),W−1,q(T )). Since
C∞0 (0, b) is dense in W 1,p

0 (T ), we have

(10) −(|y′(t)|p−2y′(t))′ = f(t, y(t)) a.e. on T, y(0) = y(b).

So |y′(·)|p−2y′(·) ∈ W 1,r(T ) with r = min{q, r′}, hence |y′(·)|p−2y′(·) ∈ C(T ),
from which we have y′ ∈ C(T ). Therefore y ∈ C1(T ). Also from (9), for every
u ∈ W 1,p

per(T ) we have∫ b

0

|y′(t)|p−2y′(t)u′(t)dt =
∫ b

0

f(t, y(t))u(t)dt

⇒ |y′(b)|p−2y′(b)u(b)− |y′(0)|p−2y′(0)u(0)

−
∫ b

0

(|y′(t)|p−2y′(t))′u(t)dt =
∫ b

0

f(t, y(t))u(t)dt integration by parts

⇒ |y′(0)|p−2y′(0)u(0) = |y′(b)|p−2y′(b)u(b) for all u ∈ W 1,p
per(T ) (see (10))

⇒ |y′(0)|p−2y′(0) = |y′(b)|p−2y′(b)⇒ y′(0) = y′(b).

Therefore x1, x2 ∈ C1(T ) are the two distinct nontrivial solutions of (1) with
|x′i(·)|p−2x′i(·) ∈W 1,r

per(T ). �
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