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MAXIMAL OPERATORS ON SPACES
OF HOMOGENEOUS TYPE

GLADIS PRADOLINI AND OSCAR SALINAS

(Communicated by Andreas Seeger)

Abstract. We avoid the assumption given in the work of C. Pérez and R.
Wheeden (2001) to prove boundedness properties of certain maximal functions
in a general setting of the spaces of homogeneous type with infinite measure.
In addition, an example shows that the result can be false if the space has
finite measure.

1. Introduction and preliminaries

In [PW], C. Pérez and R. Wheeden prove some weighted inequalities for po-
tential operators related to a wide class of differential operators called generalized
laplacians. This was made in the setting of spaces of homogeneous type. One
of the main tools in their proofs is a theorem (Theorem 5.1 in [PW]) about the
boundedness properties of a certain maximal function. This theorem was proved
by them under the assumption that every annuli is not empty, which implies, for
instance, that the space has infinite measure and no atoms (i.e. points with pos-
itive measure). In this work we prove that the last assumption can be removed.
In particular, we prove that the result is valid in any space of homogeneous type
having infinite measure (that is, that the spaces can have atoms). In addition, we
give an example showing that the result can be false if the measure of the whole
space is finite.

We begin with some definitions.
Let X be a set. A function d : X ×X → R+ ∪ {0} is called a quasi-distance on

X if the following conditions are satisfied:
i) for every x and y in X , d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y,
ii) for every x and y in X , d(x, y) = d(y, x),
iii) there exists a constant K such that d(x, y) ≤ K(d(x, z) + d(z, y)) for every

x, y and z in X .
Let µ be a positive measure on the σ-algebra of subsets of X generated by the
d-balls B(x, r) = {y : d(x, y) < r}, with x ∈ X and r > 0. We assume that µ
satisfies a doubling condition, that is, there exists a constant A such that

(1.1) 0 < µ(B(x, 2Kr)) ≤ Aµ(B(x, r)) <∞
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holds for every ball B ⊂ X . A structure (X, d, µ), with d and µ as above, is
called a space of homogeneous type. The balls B(x, r) are not necessarily open,
but by a result of Maćıas and Segovia ([MS]), given a quasi-distance d on X ,
it is always possible to find a continuous quasi-distance d′ on X such that d′ is
equivalent to d (in the sense that there exist two constants C1 and C2 such that
C1d

′(x, y) ≤ d(x, y) ≤ C2d
′(x, y) for all x, y ∈ X). Then, from this and noting

that the problem considered here is invariant by changing equivalent quasi-metrics,
we can always assume that the quasi-metric d is continuous.

Now, we summarize a few facts about Orlicz spaces. Recall that a function
φ : [0,∞)→ [0,∞) is called a doubling Young function if it is continuous, convex,
increasing and satisfying φ(0) = 0 and φ(t) → ∞ as t → ∞, and if it satisfies
φ(2t) ≤ Cφ(t). In order to introduce the above-mentioned maximal operator, we
set

‖f‖φ,B = inf{λ > 0 :
1

µ(B)

∫
B

φ(|f(y)|/λ) dµ ≤ 1}.

With this notation the natural maximal operator associated to the Young function
φ is defined as

(1.2) Mφf(x) = sup
B:x∈B

‖f‖φ,B,

where the supremum is taken over all balls containing x.
Given a Young function φ, φ̃ will denote the complementary Young function

associated to φ, and it has the property that, for all t > 0,

t ≤ φ−1(t)φ̃−1(t) ≤ 2t.

(1.3) Definition. Let 1 < p < ∞. We say that a doubling Young function φ
satisfies the Bp condition if there is a positive constant c such that∫ ∞

c

φ(t)
tp

dt

t
∼=
∫ ∞
c

(
tp
′

φ̃(t)

)p−1
dt

t
<∞.

Now we are able to state our main result.

(1.4) Theorem. Let 1 < p < ∞, let φ be a doubling Young function and let
(X, d, µ) be a space of homogeneous type with µ(X) = ∞. Then the following
statements are equivalent:

i) φ ∈ Bp.
ii) There exists a constant C such that∫

X

Mφf(x)pdµ(x) ≤ C
∫
X

|f(x)|pdµ(x)

for all nonnegative functions f .
iii) There exists a constant C such that∫

X

Mφf(x)pw(x)dµ(x) ≤ C
∫
X

|f(x)|pMw(x)dµ(x)

for all nonnegative functions f and all weights w, where M is the Hardy-
Littlewood maximal operator.
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iv) There exists a constant C such that

(1.5)
∫
X

Mf(x)p
w(x)

(Mφ̃(u1/p)(x))p
dµ(x) ≤ C

∫
X

|f(x)|pMw(x)
u(x)

dµ(x)

for all nonnegative functions f and all weights w and u.

(1.6) Remark. As we said in the Introduction, the equivalence between i), ii), iii)
and iv) was proved in [PW] (Theorem 1.5) but under stronger conditions on the
space. Before that, the theorem was proved in the euclidean context by C. Pérez in
[P1], and it was used in order to get sharp two weighted estimates for the Hardy-
Littlewood maximal function. For other applications to different operators from
harmonic analysis, see [P2], [P3], [P4], [CP1] and [CP2].

(1.7) Remark. It is important to note that if µ(X) < ∞, then implications i) ⇒
ii)⇒ iii)⇒ iv) still hold (the proofs require minor changes). The reciprocal are not
true. In fact, in the case X = {0, 1} with µ({0}) = µ({1}) = 1 and the euclidean
metric, it is very easy to see that φ(t) = tp verifies ii), but φ does not satisfy i).

2. Proofs

In order to prove Theorem 1.4, we need two technical lemmas. The first one
provides us with Calderón-Zygmund decomposition related to Orlicz norms. The
second contains the key estimate to avoid the hypothesis of [PW].

(2.1) Lemma. Let f be a nonnegative function belonging to L1(X). Then, given
σ > 1, for every λ ≥ ‖f‖φ,X there exists a sequence {Bi} of pairwise disjoint balls
such that, if B̃i is the dilation of Bi by σ, the following statements hold:
(2.2) ‖f‖φ,B̃i ≤ λ < ‖f‖φ,Bi.
(2.3) For every x ∈ X −

⋃
i B̃i, we get ‖f‖φ,B ≤ λ for all ball B containing x.

Proof. The proof follows a similar reasoning, with obvious changes, to the one used
by H. Aimar in [A] for the case φ(t) = t. �
(2.4) Remark. In [PW] a similar result is proved but using the fact that every
annulus is not empty.

In order to state the second lemma we define δ : X ×X → R+ ∪ {0} as

(2.5) δ(x, y) =
{
µ(B(x, d(x, y))) if x 6= y,
0 if x = y.

It is easy to see that the function δ satisfies
(i) δ(x, y) ≥ 0 and δ(x, y) = 0 if and only if x = y,
(ii) δ(x, y) ≤ Aδ(y, x) and
(iii) δ(x, y) ≤ A2(δ(x, z) + δ(y, z)) for every x, y, and z in X , where A is the

constant in (1.1).
We observe that δ(x, y) does not necessarily satisfy a symmetric condition as d.

The function δ is called the nonnecessarily symmetric quasi-distance associated to
(X, d, µ) and was introduced by R. Maćıas, C. Segovia and J. L. Torrea in [MST].
We denote by Bδ(x, r) the set {y : δ(x, y) < r}. The above conditions on δ imply
the existence of a constant D such that

(2.6) 0 < µ(Bδ(x, 2Kr)) ≤ Dµ(Bδ(x, r)) <∞.
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In [MST] it is also proved that δ has the following properties:

(i) Bδ(x, r) = {x}, if 0 < r < µ({x}),
(ii) µ(Bδ(x, r)) ≤ r, if µ({x}) ≤ r,
(iii) Bδ(x, r) = X , if µ(X) ≤ r,
(iv) A−2r ≤ µ(Bδ(x, r)), if r < µ(X).

Now, related to the δ-balls we get the following lemma (see [BS], too).

(2.7) Lemma. Assuming µ(X) = ∞, there exist two constants Co and C1, de-
pending only on the constants of the space (X, d, µ), such that

µ(Bδ(z, CoR)−Bδ(z,R)) ≥ C1R

for every z in X and every R > µ({z})/2A2, where A is the constant in (1.1).

Proof. From the properties of the δ-balls it is not difficult to see that Bδ(z, 4A4R)−
Bδ(z, 2A2R) 6= ∅ for every z in X and every R verifying R > µ({z})/2A2. So, given
z and R in that condition, we can take a point xo in that annulus. Then, considering
the δ-ball Bo = Bδ(xo, R), we get

2A2R < δ(z, xo) ≤ A2(δ(z, y) + δ(xo, y))
≤ A2(δ(z, y) +R)

for every y ∈ Bo. From this, we obtain

(2.8) δ(z, y) ≥
(

2A2 −A2

A2

)
R = R.

On the other hand

δ(z, y) ≤ A2(δ(z, xo) + δ(y, xo))
≤ A2(4A4R+Aδ(x0, y))
≤ A2(4A4 +A)R,

for every y ∈ Bo. Then, from these estimates and (2.8), taking Co = A2(4A4 +A),
we have

Bδ(xo, R) ⊂ Bδ(z, CoR)−Bδ(z,R).

Finally, property (iv) above allows us to obtain

µ(Bδ(z, CoR)−Bδ(z,R)) ≥ R

A2
,

so, taking C1 = 1/A2, we get our desired result. �

Now, we can proceed with the proof of our main result.

Proof of Theorem 1.4. The proofs that i) and iii) imply, respectively, ii) and iv)
follow the same reasoning applied in the proof of Theorem (5.1) of [PW]. In ad-
dition, assuming ii), the proof that iii) holds can be obtained following again the
same reasoning used in [PW] but applying Lemma 2.1 above instead of Lemma 5.2
there.
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Now we are going to prove that iv) implies i). If w = 1, from the hypotheses we
obtain ∫

X

Mf(x)p

(Mφ̃(u1/p)(x))p
dµ(x) ≤ C

∫
X

|f(x)|p
u(x)

dµ(x).

Let us take a ball Bo = B(z,R) with z ∈ X and let f = u = χBo . Then from the
above inequality we have

(2.9)
∫
X

Mf(x)p

Mφ̃(f)(x)p
dµ(x) ≤ C.

On the other hand, it is easy to check that

Mφ̃(f)(x) = sup
x∈B

1

φ̃−1

(
µ(B)

µ(B ∩Bo)

) .

Let x ∈ X such that d(x, z) > ηR, η > 1 large enough. Then it is clear that there
exists a positive constant C such that

(2.10) Mφ̃(f)(x) ∼=
1

φ̃−1(Cµ(B(x, d(x, z))))
.

In a similar way it can be proved that

M(χB0)(x) ∼=
1

µ(B(x, d(x, z)))
.

Now, we choose α > 1 such that µ(B(z, αηR)) > µ(B(z, ηR)) (the choice is
possible because µ(X) = ∞). Let Ω be the set Ω = {x : µ(B(z, d(z, x))) ≥
µ(B(z, αηR))}. It is clear that Ω ⊂ {x/d(z, x) > ηR}. Then, from the above
estimates we have

C ≥
∫

Ω

Mf(x)p

Mφ̃f(x)p
dµ(x)

≥
∫

Ω

φ̃−1(Cµ(B(x, d(x, z))))p

µ(B(x, d(x, z)))p
dµ(x)

≥
∫

Ω

φ̃−1(Cµ(B(z, d(x, z))))p

µ(B(z, d(x, z)))p
dµ(x).
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Then, taking Ro = µ(B(z, αηR)), from Lemma 2.7 we get

C ≥
∫

Ω

φ̃−1(Cµ(B(z, d(x, z))))p

µ(B(z, d(x, z)))p
dµ(x)

=
∞∑
j=0

∫
CjoRo≤µ(B(z,d(x,z)))<Cj+1

o Ro

φ̃−1(Cµ(B(z, d(x, z))))p

µ(B(z, d(x, z)))p
dµ(x)

≥
∞∑
j=0

(
φ̃−1(CCjoRo)
Cj+1
o Ro

)p
µ(Bδ(z, Cj+1

o Ro)−Bδ(z, CjoRo))

≥ C1

(
C

Co

)p ∞∑
j=0

CjoRo

(φ−1(CCjoRo))p

≥ C2

∞∑
j=0

∫ CCj+1
o Ro

CCjoRo

t

(φ−1(t))p
dt

t

= C2

∫ ∞
Cµ(B(z,αηR))

t

(φ−1(t))p
dt

t

∼=
∫ ∞
c

φ(t)
tp

dt

t
,

that is, φ ∈ Bp. This completes the proof. �
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mática Aplicada del Litoral (IMAL), Güemes 3450, 3000 Santa Fe, Argentina
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