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MINIMAL DEGREES WHICH ARE Xj BUT NOT A}
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ABSTRACT. We give a short proof of the existence of minimal Turing degrees
which are £9 but not AJ.

Manaster [8] proved that there are minimal Turing degrees which are A, o but
not 3,41 for every n. A natural question then was whether there are ones which
are ¥, 42 but not A, ;2. For n > 0 we noticed long ago (as did Carl Jockusch) that
there is a simple solution using Lachlan 1-trees [7]. Take such a function f:w — 3
recursive in 0” with D = {n | f(n) = 2} infinite such that every function obtained
by replacing each of the values 2 by either 0 or 1 (independently) gives a function of
minimal degree. If D is listed in increasing order as d; and C' € ¥, 19 — A, 42, then
the function g which equals f on D and C(i) on d; is of the desired degree when
n > 2. The problem for n = 2 remained open. We present here a similarly simple
solution for n = 2. After we found this proof and inquired about the status of
the problem, S. B. Cooper informed us that he and Yue Yang had already recently
found a direct (recursive in 0') construction of such a degree. Our proof should be
noticeably simpler since it basically consists of pointing out how to combine two
known types of tree constructions from different settings.

There are two common notions of trees on 2<%, the set of binary sequences
of finite length ordered by inclusion. One (common in, for example, the study
or IIY classes as in Jockusch and Soare [5] and [6]) defines a tree T as a subset
of 2<¥ closed downward (i.e., under initial segments). The other (common in
minimal degree constructions as in Lerman [9]) defines a “tree” F as a function
from 2<% to 2<% that preserves both order (C) and nonorder (Z). We will take
the former definition as our basic one here. Typically the objects of interest are
the paths (infinite by definition) on the trees: [T] = {f :w — 2 | Va(f [z € T)}
and [F]={f:w—-2|Fg:w—=2)(f=U{new| F(g | n)})} Wewil
augment the latter definition of “tree” by the requirement that the function preserve
lexicographic order as well. This is innocuous in terms of the paths in the tree. We
refer to such a function as an f-tree. If x is a Turing degree, we say an (f-)tree is
an x-(f-)tree if it is computable in x as a (function) set.

We note that for each x-f-tree F' there is an x-tree Tr (indeed one uniformly
recursive in F') with the same paths: Tr = {o | I7(|7| = |o|& o C F(7))}. (The
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relation in the other direction is more complicated since, for example, [F] is always
a nonempty perfect set while 7" may have terminal nodes and so isolated paths.)
We also remark that the fact (Jockusch and Soare [6]) that the leftmost path in
a recursive tree T' is of r.e. degree relativizes in a strong way. If f is the leftmost
path in an x-tree T, then f (and not just f ® x) is of r.e. degree in x. The proof
is essentially the same as in the unrelativized case as long as one realizes that
the ¢ € 2<% not in T and lexicographically to the left of f can be enumerated
recursively in x along with the ones which are nodes in 7: We enumerate o once
we verify recursively in x that we have found a level n of the full binary tree 2<%
at which no node above or to the left of o has a successor on T'. As f is clearly of
the same degree as the set of all o € 2<% which are lexicographically to its left, the
degree of f isr.e. in x.

Consider now an x-tree S and an x-f-tree F'. We define the S-subtree of F' as
the tree S(F) = {0 € 2<% | (37)(|7| < |o|& o C F(r)& T € S)}. For example,
if S'is 2<%, then S(F) = Tr. Note that S(F) is also an x-tree and [S(F')] C [F]
(hence the terminology subtree). Every path g € [S] corresponds to one |J F(g [ n)
in [S(F)] and vice versa. Moreover, if f € [S(F)], then the g € 2<% such that
f=UF(g | n)is a path in S which is recursive in £V x. It is obviously a path
in S by the definition of S(F'). To compute g(n) assume we have g [ n = 7 and
F(r) = f | m. Exactly one of F(7°0), F(7"1) is an initial segment of f and so
provides the next value of g.

To prove our main result we now need two trees. We first let S be a 0'-tree
with infinite paths but none recursive in 0’. The existence of a tree S as required is
well known. For example, the tree S of f € 2<% which are DNRO/, i.e., diagonally
nonrecursive relative to 0: S = {o | (Ve < |0|)(ﬂ(g02:|0|(e) l=o(e)))}. Next we
need a 0’-f-tree F' all of whose paths are of minimal degree. The existence of such
an f-tree is perhaps not well known, but one is easily defined by using the Sacks
construction of a minimal degree below 0’. The construction appears in Sasso [10].
He asserts only that every path in his tree is either of minimal degree or recursive.
An application of Posner’s trick as in Exercise 5.8 of Soare [I1] would show that
none of them are actually recursive. Alternatively, his claim for F' suffices for our
application. These two trees now give us the desired minimal degree.

Theorem 1. There is a minimal degree £ which is X9 but not AS.

Proof. The (lexicographically) leftmost path f in S(F) is a function of minimal
degree (or possibly recursive if relying only on Sasso’s stated theorem) since it is a
path in F. As it is leftmost in the 0’-tree S(F), it is of degree r.e. in 0, i.e., of X9
degree, by our remarks above. Finally, the g such that f = [JF(g | n) is a path
in S and so not recursive in 0’. It is, however, recursive in f V 0’ and so f is not
recursive in 0/, i.e., f is not A (and so of minimal degree). O

We have also used the idea of combining trees in this way in the setting of
w-branching trees to show that (with a quite liberal definition) there is no hyper-
arithmetic w-branching f-tree of minimal degrees and to solve some problems of
Jockusch [4] and Friedman [1], [2] about the Turing degrees of paths in O. These
results will appear in Goncharov, Knight, Harizanov and Shore [3].
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