ISOMETRIC COPIES OF l^{1} AND l^{∞} IN ORLICZ SPACES EQUIPPED WITH THE ORLICZ NORM

SHUTAO CHEN, YUNAN CUI, AND HENRYK HUDZIK

(Communicated by N. Tomczak-Jaegermann)

Abstract

Criteria in order that an Orlicz space equipped with the Orlicz norm contains a linearly isometric copy (or an order linearly isometric copy) of l^{1} (or l^{∞}) are given.

1. Introduction

Let \mathbb{N}, \mathbb{R} and \mathbb{R}_{+}stand for the set of natural numbers, the set of reals and the set of nonnegative reals, respectively. Let (T, Σ, μ) be a σ-finite measure space that does not reduce to a finite number of atoms, where all atoms that appear in Σ have measure 1, and let $L^{0}=L^{0}(T, \Sigma, \mu)$ be the space of all (equivalence classes of) Σ-measurable functions defined on T.

A function $\Phi: \mathbb{R} \rightarrow[0,+\infty]$ is said to be an Orlicz function if $\Phi(0)=0$, $\Phi(u) \rightarrow \infty$ as $u \rightarrow \infty, \Phi$ is even and convex and $\lim _{u \rightarrow b(\Phi)_{-}} \Phi(u)=\Phi(b(\Phi))$, where $b(\Phi)=\sup \{u>0: \Psi(u)<\infty\}>0$. Note that the case $\Phi(b(\Phi))=\infty$ is not excluded. The function Ψ complementary to Φ in the sense of Young is defined by

$$
\Psi(u)=\sup _{v>0}\{|u| v-\Phi(v)\} .
$$

It is obvious that the Young inequality

$$
u v \leq \Phi(u)+\Psi(v)
$$

holds for all $u, v \in \mathbb{R}$ and that in the case when $b(\Phi)=\infty$ or $\Phi(b(\Phi))<\infty$ and $\Phi_{-}^{\prime}(b(\Phi))<\infty$, we have the equality

$$
u v=\Phi(u)+\Psi(v)
$$

for all $u \in[0, b(\Phi)$) (resp. $u \in[0, b(\Phi)])$ and $v \in\left[\Phi_{-}^{\prime}(u), \Phi_{+}^{\prime}(u)\right]$, where $\Phi_{-}^{\prime}(u)$ and $\Phi_{+}^{\prime}(u)$ denote the left (resp. the right) derivative of Φ at the point u. For an example of an Orlicz function Φ with $0<b(\Phi)<\infty$ and $\Phi_{-}^{\prime}(b(\Phi))=\infty$ such that the equality

$$
b(\Phi) v=\Phi(b(\Phi))+\Psi(v)
$$

holds for no $v \in \mathbb{R}_{+}$we refer to [6].

[^0]Let us define for an Orlicz function Φ another important parameter,

$$
a(\Phi)=\sup \{u \geq 0: \Phi(u)=0\}
$$

Given an Orlicz function Φ we define on L^{0} the convex modular

$$
I_{\Phi}(x)=\int_{T} \Phi(x(t)) d \mu
$$

and the Orlicz space

$$
L^{\Phi}=L^{\Phi}(T, \Sigma, \mu):=\left\{x \in L^{0}: I_{\Phi}(\lambda x)<\infty \text { for some } \lambda>0\right\}
$$

The most important norms in L^{Φ} are the following two:

$$
\|x\|_{\Phi}=\inf \left\{\lambda>0: I_{\Phi}(x / \lambda) \leq 1\right\}
$$

called the Luxemburg norm (see [1] and [7] - 12]), and

$$
\|x\|_{\Phi}^{0}=\sup \left\{\left|\int_{T} x(t) y(t) d \mu\right|: I_{\Psi}(y) \leq 1, y \in L^{0}\right\}
$$

called the Orlicz norm (see [1] and [7] - [12]). The Amemiya formula

$$
\|x\|_{\Phi}^{0}=\inf _{k>0} \frac{1}{k}\left(1+I_{\Phi}(k x)\right)
$$

for the Orlicz norm is very useful because it does not use the function Ψ complementary to Φ. For Orlicz functions Φ that are N-functions at infinity, that is, $(\Phi(u) / u) \rightarrow \infty$ as $u \rightarrow \infty$, this formula was well known from the beginning of the theory of Orlicz spaces (see [8]) and for arbitrary Orlicz functions it was proved in [6]. For any $x \in L^{\Phi}$, we define supp $x=\{t \in T: x(t) \neq 0\}$.

It is well known that for any Orlicz function the quotient $\Phi(u) / u$ is nondecreasing on \mathbb{R}_{+}. So the limit (finite or infinite) $A(\Phi)=\lim _{u \rightarrow \infty}(\Phi(u) / u)$ always exists. Let us define the function $R_{\Phi}(u)=A(\Phi)|u|-\Phi(u)$. As we will see below, this function will be of great importance.

We say that an Orlicz function Φ satisfies the \triangle_{2}-condition at zero (at infinity) [on \mathbb{R}_{+}] if there are positive constants $K \geq 2$ and u_{0} with $0<\Phi\left(u_{0}\right)<\infty$ such that the inequality $\Phi(2 u) \leq K \Phi(u)$ holds for all $u \in\left[0, u_{0}\right]\left(u \in\left[u_{0}, \infty\right)\right)\left[u \in \mathbb{R}_{+}\right]$. We then write $\Phi \in \triangle_{2}(0)\left(\Phi \in \triangle_{2}(\infty)\right)\left[\Phi \in \triangle_{2}\right]$ for short. It is obvious that $\Phi \in \triangle_{2}$ $\Longleftrightarrow \Phi \in \triangle_{2}(0)$ and $\Phi \in \triangle_{2}(\infty)$. Moreover, $b(\Phi)=\infty$ whenever $\Phi \in \triangle_{2}(\infty)$ and $a(\Phi)=0$ whenever $\Phi \in \triangle_{2}(0)$.

An Orlicz space L^{Φ} equipped with the Orlicz norm $\|\cdot\|_{\Phi}^{0}$ will be denoted by L_{0}^{Φ}. The unit ball and the unit sphere of L_{0}^{Φ} will be denoted by $B\left(L_{0}^{\Phi}\right)$ and $S\left(L_{0}^{\Phi}\right)$, respectively. For any $x \in L_{0}^{\Phi} \backslash\{0\}$ we denote by $K(x)$ the set of these $k>0$ such that $\|x\|_{\Phi}^{0}=\frac{1}{k}\left(1+I_{\Phi}(k x)\right)$. In the case when $\|x\|_{\Phi}^{0}=\lim _{k \rightarrow \infty} \frac{1}{k}\left(1+I_{\Phi}(k x)\right)$, we write $\infty \in K(x)$. If $A(\Phi)<\infty$, then it can happen that $K(x)=\emptyset$.

Since in the case when $a(\Phi)=0$ the Orlicz space L_{0}^{Φ} is strictly monotone (it does not matter if Φ satisfies or not the suitable \triangle_{2}-condition; see [5], L_{0}^{Φ} cannot contain an order isometric copy of l^{∞} (in contrast to the case when the Luxemburg norm is considered). However, as we will see below in the case when $a(\Phi)=0, L_{0}^{\Phi}$ can contain an order isometric copy of l^{∞}.

In this paper we present criteria for the existence in Orlicz spaces L_{0}^{Φ} equipped with the Orlicz norm a linearly isometric copy or an order linearly isometric copy of X, where X is equal to l^{∞} or l^{1}. Such criteria are important when we are looking for criteria of other important topological and geometrical properties of L_{0}^{Φ}. Our results on l^{∞}-copies do not follow from [4] although they are connected
with those results. In the special case of Orlicz spaces our results are more precise. The results of [13] are also connected with our Theorems 1 and 2. A class of Orlicz spaces isomorphic or isomorphically isometric to l^{∞} is distinguished in [13].

2. Results

We start with criteria for the existence of an order linearly isometric copy of l^{∞} in L_{0}^{Φ}.

Theorem 1. Let Φ be an Orlicz function with $b(\Phi)=\infty$. Then L_{0}^{Φ} contains an order linearly isometric copy of l^{∞} if and only if μ is infinite and $a(\Phi)>0$.

Proof. Sufficiency. Assume that $b(\Phi)=\infty, a(\Phi)>0$ and μ is infinite. Divide T into a sequence $\left(T_{n}\right)_{n=1}^{\infty}$ of pairwise disjoint sets such that $\mu\left(T_{n}\right)=\infty$ for any $n \in \mathbb{N}$. Define $x_{n}=a(\Phi) \chi_{T_{n}}(n \in \mathbb{N})$. Then

$$
\begin{aligned}
1+I_{\Phi}\left(x_{n}\right) & =1 \\
\frac{1}{k}\left(1+I_{\Phi}\left(k x_{n}\right)\right) & =\frac{1}{k}>1 \quad(\forall k \in(0,1), n \in \mathbb{N}) \\
\frac{1}{k}\left(1+I_{\Phi}\left(k x_{n}\right)\right) & =\infty(\forall k>1, \quad n \in \mathbb{N})
\end{aligned}
$$

Therefore, $\left\|x_{n}\right\|_{\Phi}^{0}=1$ for any $n \in \mathbb{N}$. Moreover, in the same way we can prove that $\left\|\sum_{n=1}^{\infty} x_{n}\right\|_{\Phi}^{0}=1$. Hence it follows that the operator

$$
P y=\sum_{n=1}^{\infty} y_{n} x_{n} \quad\left(\forall y=\left(y_{n}\right) \in l^{\infty}\right)
$$

which is obviously linear and positive, is an order isometry of l^{∞} onto the closed subspace $P\left(l^{\infty}\right)$ of $L_{0}^{\Phi}($ cf [4]).

Necessity. Note that the inequality $a(\Phi)>0$ is necessary, since if $a(\Phi)=0$, then L_{0}^{Φ} is strictly monotone (see [5]). Since strict monotonicity is preserved by linear order isometries and l^{∞} is not strictly monotone, L_{0}^{Φ} cannot contain an order linearly isometric copy of l^{∞} if $a(\Phi)=0$. Therefore, we may assume in the remaining part of the proof of necessity that $a(\Phi)>0$.

In order to prove the necessity of the condition $\mu(T)=\infty$, assume to the contrary that $\mu(T)<\infty, a(\Phi)>0$ and L_{0}^{Φ} contains an order linearly isometric copy of l^{∞}. Since any order linear isometry preserves the orthogonality of elements (see 4), there is in L_{0}^{Φ} a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ such that $x_{n} \geq 0,\left\|x_{n}\right\|_{\Phi}^{0}=1$ for all $n \in \mathbb{N}$ and $\left\|\sum_{n=1}^{\infty} x_{n}\right\|_{\Phi}^{0}=1$. It is enough to take $e_{n}=(0, \ldots, 0,1,0, \ldots) \in l^{\infty}$ and $x_{n}=P e_{n}$, where P is a linear order isometry of l^{∞} onto the closed subspace $P\left(l^{\infty}\right)$ of L_{0}^{Φ}. Then the equality $\left\|x_{n}\right\|_{\Phi}^{0}=1$ for any $n \in \mathbb{N}$ is obvious. To prove the equality

$$
\left\|\sum_{n=1}^{\infty} x_{n}\right\|_{\Phi}^{0}=1
$$

note first that

$$
\left\|\sum_{n=1}^{k} x_{n}\right\|_{\Phi}^{0}=\left\|\sum_{n=1}^{k} P e_{n}\right\|_{\Phi}^{0}=\left\|P\left(\sum_{n=1}^{k} e_{n}\right)\right\|_{\Phi}^{0}=\left\|\sum_{n=1}^{k} e_{n}\right\|_{\infty}=1
$$

for any $k \in \mathbb{N}$.

Since L_{0}^{Φ} has the Fatou property (see [6]), we get $\sum_{n=1}^{\infty} x_{n} \in L_{0}^{\Phi}$ and

$$
\left\|\sum_{n=1}^{\infty} x_{n}\right\|_{\Phi}^{0}=\lim _{k \rightarrow \infty}\left\|\sum_{n=1}^{k} x_{n}\right\|_{\Phi}^{0}=1
$$

Since $\mu(T)<\infty$ and $\operatorname{supp} x_{n} \cap \operatorname{supp} x_{m}=\emptyset$ for $n \neq m$, we get $\mu\left(\operatorname{supp} x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. By the assumption that all atoms that appear in T have measure 1 and Σ does not reduce to a finite number of atoms, there is no loss of generality in assuming that T is nonatomic. Therefore, we may assume that $\Phi \notin \triangle_{2}(\infty)$, because otherwise L_{0}^{Φ} is order continuous and so L_{0}^{Φ} cannot even contain an order linearly isomorphic copy of l^{∞}. In consequence we get that $A:=A(\Phi)=\infty$. This implies that $K(x) \neq \emptyset$ for any $x \in L_{0}^{\Phi} \backslash\{0\}$ (see [3]). We claim that
(1) for any $c>0$ and $m \in \mathbb{N}$ there is $n \in \mathbb{N}$

$$
\text { such that } n>m \text { and } \mu\left\{t \in T: x_{n}(t)>c\right\}>0
$$

Otherwise, there are $c>0$ and $m \in \mathbb{N}$ such that $x_{n}(t) \leq c \mu$-a.e. in T for all $n \in \mathbb{N}, n>m$. Since $\mu(T)<\infty, b(\Phi)=\infty$ and $\mu\left(\operatorname{supp} x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, we conclude that $I_{\Phi}\left(\lambda x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ for any $\lambda>0$. Consequently, for any $k>1$ taking $n \rightarrow \infty$, we get

$$
1=\left\|x_{n}\right\|_{\Phi}^{0} \leq \frac{1}{k}\left(1+I_{\Phi}\left(k x_{n}\right)\right) \rightarrow \frac{1}{k}<1
$$

a contradiction. So, the proof of the claim is finished.
Let $n \in \mathbb{N}$ be such that

$$
\mu\left\{t \in T: x_{n}(t)>a(\Phi)\right\}>0
$$

and choose an arbitrary $k \in K\left(x_{1}+x_{n}\right)$. Since $\left\|x_{1}+x_{n}\right\|_{\Phi}^{0}=1$, we have $k \geq 1$, whence $\mu(A)>0$ for $A=\left\{t \in T: k x_{n}(t)>a(\Phi)\right\}$. Therefore,

$$
\begin{aligned}
\left\|x_{1}+x_{n}\right\|_{\Phi}^{0} & =\frac{1}{k}\left(1+I_{\Phi}\left(k\left(x_{1}+x_{n}\right)\right)\right) \\
& >\frac{1}{k}\left(1+I_{\Phi}\left(k x_{1}\right)\right) \geq\left\|x_{1}\right\|_{\Phi}^{0} \\
& =1
\end{aligned}
$$

a contradiction, which finishes the proof.
Theorem 2. Let Φ be an Orlicz function with $b(\Phi)<\infty$. Then L_{0}^{Φ} contains an order linearly isomertric copy of l^{∞} if and only if $a(\Phi)>0$ and either (a) $\mu(T)=\infty$ or (b) $\mu(T)<\infty$ and $a(\Phi)=b(\Phi)$.

Proof. If $a(\Phi)>0, b(\Phi)<\infty$ and $\mu(T)=\infty$, we can repeat the appropriate part of the proof of Theorem 1 to prove the sufficiency.

Assume now that $b(\Phi)<\infty, a(\Phi)>0, a(\Phi)=b(\Phi)$ and $\mu(T)<\infty$. Then $L_{0}^{\Phi}=L^{\infty}$ and $\|x\|_{\Phi}^{0}=\frac{1}{a(\Phi)}\|x\|_{\infty}$ for any $x \in L_{0}^{\Phi}$, where $\|x\|_{\infty}:=\operatorname{esssup}_{t \in T}|x(t)|$.

Therefore, L_{0}^{Φ} is order linearly isometric to $\left(L^{\infty},\| \|_{\infty}\right)$, so it contains an order linearly isometric copy of l^{∞}.

Necessity. If $a(\Phi)=0$, then L_{0}^{Φ} is strictly monotone; so it cannot contain an order linearly isometric copy of l^{∞}. So, under the assumptions that $\mu(T)<\infty, a(\Phi)>0$ and $b(\Phi)<\infty$, we need to prove the necessity of the condition $a(\Phi)=b(\Phi)$. Assume to the contrary that $a(\Phi)<b(\Phi)$ and L_{0}^{Φ} contains an order linearly isometric copy of l^{∞}. Then there is a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ in $S\left(L_{0}^{\Phi}\right)$ of disjointly supported elements
such that $\left\|\sum_{n=1}^{\infty} x_{n}\right\|_{\Phi}^{0}=1$ (see the proof of the necessity part of Theorem 1). Therefore, we have $\mu\left(\operatorname{supp} x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ and $K(x) \neq \emptyset$ for any $x \in L_{0}^{\Phi} \backslash\{0\}$. Let $m, n \in \mathbb{N}, m \neq m$, and $k_{m, n} \in K\left(x_{m}+x_{n}\right)$. Then

$$
\begin{equation*}
1=\frac{1}{k_{m, n}}\left(1+I_{\Phi}\left(k_{m, n} x_{m}\right)\right)+\frac{1}{k_{m, n}} I_{\Phi}\left(k_{m, n} x_{n}\right) . \tag{2}
\end{equation*}
$$

Since $\frac{1}{k_{m, n}}\left(1+I_{\Phi}\left(k_{m, n} x_{m}\right)\right) \geq 1$, equality (1) yields

$$
\begin{equation*}
\frac{1}{k_{m, n}}\left(1+I_{\Phi}\left(k_{m, n} x_{m}\right)\right)=1 \text { and } I_{\Phi}\left(k_{m, n} x_{n}\right)=0 \tag{3}
\end{equation*}
$$

In the same way we can get

$$
\begin{equation*}
\frac{1}{k_{m, n}}\left(1+I_{\Phi}\left(k_{m, n} x_{n}\right)\right)=1 \text { and } I_{\Phi}\left(k_{m, n} x_{m}\right)=0 . \tag{4}
\end{equation*}
$$

By (21), (3) and (4), we get $k_{m, n}=1$ for all $m, n \in \mathbb{N}, m \neq n$, and $\left|x_{n}\right| \leq a(\Phi)$ μ-a.e. in T for any $n \in \mathbb{N}$.

For any $k>1$ satisfying $k a(\Phi)<b(\Phi)$, since $\mu\left(\operatorname{supp} x_{n}\right) \rightarrow 0$, we get $I_{\Phi}\left(k x_{n}\right) \rightarrow$ 0 , and consequently

$$
1=\left\|x_{n}\right\|_{\Phi}^{0} \leq \frac{1}{k}\left(1+I_{\Phi}\left(k x_{n}\right)\right) \rightarrow \frac{1}{k}<1 \quad \text { as } \quad n \rightarrow \infty
$$

a contradiction. This proves the necessity of the equality $a(\Phi)=b(\Phi)$ whenever $\mu(T)<\infty$.

Theorems 1 and 2 can be summarized into the following result.
Theorem 3. Let Φ be an Orlicz function. Then we have:
(i) if $\mu(T)=\infty$, then L_{0}^{Φ} contains an order linearly isometric copy of l^{∞} if and only if $a(\Phi)>0$;
(ii) if $\mu(T)<\infty$, then L_{0}^{Φ} contains an order linearly isometric copy of l^{∞} if and only if $a(\Phi)>0, b(\Phi)<\infty$ and $a(\Phi)=b(\Phi)$, that is, L_{0}^{∞} is order linearly isometric to $\left(L^{\infty},\| \|_{\infty}\right)$.

In the next theorem we will use the function $R(u)=A|u|-\Phi(u)$, where $A=$ $A(\Phi)=\lim _{u \rightarrow \infty}(\Phi(u) / u)$.

Theorem 4. For any Orlicz function Φ with $a(\Phi)=0$ and $b(\Phi)=+\infty$ and any nonatomic σ-finite measure space (T, Σ, μ), the following assertions are equivalent:
(1) L_{0}^{Φ} has a subspace order linearly isometric to l^{1};
(2) L_{0}^{Φ} has a subspace linearly isometric to l^{1};
(3) There exists a nonzero $x \in L_{0}^{\Phi}$ such that $K(x)=\emptyset$;
(4) The function $R(u)$ is upper bounded.

Proof. The implication $\mathbf{1} \Rightarrow \mathbf{2}$ is obvious. Let us now prove the implication $\mathbf{2} \Rightarrow$ 3. If $K(x) \neq \emptyset$ for all nonzero x in L_{0}^{Φ}, then L_{0}^{Φ} is non-square by the proof of Theorem 3.26 in [1]. Therefore, assertion 2 is not true if assertion $\mathbf{3}$ is not true, which finishes the proof of the implication $\mathbf{2} \Rightarrow \mathbf{3}$. Assume that assertion $\mathbf{3}$ holds and $R(u)$ is not upper bounded. Let

$$
f(k):=\frac{1}{k}\left(1+\int_{T} \Phi(k x(t)) d \mu\right)=A \int_{T}|x(t)| d \mu+\frac{1}{k}\left(1-\int_{T} R(k x(t)) d \mu\right)
$$

for $k>0$. Assertion 3 implies that $\|x\|_{\Phi}^{0}=A \int_{T}|x(t)| d \mu$ (see [1] and [2]). Since R is not upper bounded, we conclude that

$$
\begin{equation*}
\frac{1}{k}\left(1-\int_{T} R(k x(t)) d \mu\right)<0 \tag{5}
\end{equation*}
$$

for $k>0$ large enough. Therefore (5) implies that

$$
\|x\|_{\Phi}^{0} \leq f(k)<A \int_{T}|x(t)| d \mu=\|x\|_{\Phi}^{0}
$$

for $k>0$ large enough, a contradiction.
4 \Rightarrow 1. Let $\sup \left\{R(u): u \in \mathbb{R}_{+}\right\}=: c<\infty$. Pick pairwise disjoint subsets E_{n} $(n=1,2, \ldots)$ of T such that $\mu\left(E_{n}\right)>0$ and $c \sum_{n=1}^{\infty} \mu\left(E_{n}\right)<1$. Choose $a_{n}>0$ such that $\left\|a_{n} \chi_{E_{n}}\right\|_{\Phi}^{0}=1$. Define $x_{n}=a_{n} \chi_{E_{n}}$. Then for any $\left(b_{n}\right)_{n=1}^{\infty} \in l^{1}$ and any $\varepsilon>0$, pick $k>0$ such that

$$
\left\|\sum_{n=1}^{\infty} b_{n} x_{n}\right\|_{\Phi}^{0}>\frac{1}{k}\left(1+I_{\Phi}\left(k \sum_{n=1}^{\infty} b_{n} x_{n}\right)\right)-\varepsilon
$$

Then

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|b_{n}\right| & \geq\left\|\sum_{n=1}^{\infty} b_{n} x_{n}\right\|_{\Phi}^{0} \\
& >\frac{1}{k}\left(1+\sum_{n=1}^{\infty} \Phi\left(k b_{n} a_{n}\right) \mu\left(E_{n}\right)\right)-\varepsilon \\
& =A \sum_{n=1}^{\infty}\left|b_{n} a_{n}\right| \mu\left(E_{n}\right)+\frac{1}{k}\left(1-\sum_{n=1}^{\infty} R\left(k\left|b_{n}\right| a_{n}\right) \mu\left(E_{n}\right)\right)-\varepsilon \\
& \geq A \sum_{n=1}^{\infty}\left|b_{n} a_{n}\right| \mu\left(E_{n}\right)+\frac{1}{k}\left(1-c \sum_{n=1}^{\infty} \mu\left(E_{n}\right)\right)-\varepsilon \\
& \geq A \sum_{n=1}^{\infty}\left|b_{n} a_{n}\right| \mu\left(E_{n}\right)-\varepsilon
\end{aligned}
$$

Combining this with the fact that

$$
\begin{aligned}
\left\|x_{n}\right\|_{\Phi}^{0} & \leq \lim _{k \rightarrow \infty} \frac{1}{k}\left(1+I_{\Phi}\left(k x_{n}\right)\right) \\
& =\lim _{k \rightarrow \infty} \frac{1}{k}\left(1+\Phi\left(k a_{n}\right) \mu\left(E_{n}\right)\right) \\
& =A a_{n} \mu\left(E_{n}\right)
\end{aligned}
$$

we get

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|b_{n}\right| & \geq A \sum_{n=1}^{\infty}\left|b_{n}\right|\left|a_{n}\right| \mu\left(E_{n}\right) \\
& \geq \sum_{n=1}^{\infty}\left|b_{n}\right|\left\|x_{n}\right\|_{\Phi}^{0}=\sum_{n=1}^{\infty}\left|b_{n}\right|
\end{aligned}
$$

This shows that the map $P: l^{1} \rightarrow L_{0}^{\Phi}$ defined by $P\left(\left(b_{n}\right)_{n=1}^{\infty}\right)=\sum_{n=1}^{\infty} b_{n} x_{n}$ is a linear isometry. Since the map P is positive, it is an order isometry.

Theorem 5. Let Φ be an Orlicz function and the measure space be nonatomic and σ-finite. Then the following are equivalent:
(1) The space L_{0}^{Φ} contains an order isometric copy of l^{1};
(2) There exists a nonzero $x \in L_{0}^{\Phi}$ such that $K(x)=\emptyset$;
(3) The function $R(u)$ is upper bounded.

Proof. The implications $\mathbf{2} \Rightarrow \mathbf{3} \Rightarrow \mathbf{1}$ can be proved in the same way as in Theorem 4.
$\mathbf{1} \Rightarrow \mathbf{2}$. Assume that $\mathbf{2}$ does not hold. Then $K(x) \neq \emptyset$ for any $x \in L_{0}^{\Phi} \backslash\{0\}$. Take any $x, y \in S\left(L_{0}^{\Phi}\right)$ with $\operatorname{supp} x \cap \operatorname{supp} y=\emptyset$. Let $k \in K(x), h \in K(y)$. We may assume, without loss of generality, that $k \leq h$. Then

$$
\begin{aligned}
2 & =\|x\|_{\Phi}^{0}+\|y\|_{\Phi}^{0}=\frac{1}{k}\left(1+I_{\Phi}(k x)\right)+\frac{1}{h}\left(1+I_{\Phi}(h y)\right) \\
& \geq \frac{1}{k}\left(1+I_{\Phi}(k x)\right)+\frac{1}{h}+\frac{1}{k} I_{\Phi}(k y) \\
& \geq \frac{1}{k}\left(1+I_{\Phi}(k(x+y))\right)+\frac{1}{h} \geq\|x+y\|_{\Phi}^{0}+\frac{1}{h}
\end{aligned}
$$

whence $\|x+y\|_{\Phi}^{0} \leq 2-\frac{1}{h}<2$. This yields that 1 cannot hold. Indeed, otherwise, by the fact that order isometry preserves disjointness of supports of functions (up to a set of measure zero), see [4], taking $e_{1}=(1,0,0, \ldots), e_{2}=(0,1,0, \ldots)$ in l^{1} and an order linear isometry P of l^{1} onto a closed subspace of L_{0}^{Φ}, we get $\mu(\operatorname{supp} P x \cap \operatorname{supp} P y)=0$ and $P x, P y \in S\left(L_{0}^{\Phi}\right)$. Therefore, we have by the above

$$
2=\left\|e_{1}+e_{2}\right\|_{l^{1}}=\|P x+P y\|_{\Phi}^{0}<2
$$

a contradiction which finishes the proof of the implication $\mathbf{1} \Rightarrow \mathbf{2}$ as well as the proof of the theorem.

Remark 1. The condition $\lim _{u \rightarrow \infty}(\Phi(u) / u)=A<\infty$ need not imply that L_{0}^{Φ} contains a linearly isometric copy of l^{1}, i.e. $A=A(\Phi)<\infty$ need not imply that $R(u)$ is bounded.

To show this, define for example the function $\Phi(u)=A(u+c)-K(u+c)^{\alpha}$ for $u \geq 0$ and $\Phi(-u)=\Phi(u)$, where $A>0, K>0,0<\alpha<1$, and $c=(K / A)^{1 /(1-\alpha)}$. It is obvious that $\lim _{u \rightarrow \infty}(\Phi(u) / u)=A$. Moreover,

$$
R(u)=A u-\Phi(u)=K(u+c)^{\alpha}-A c
$$

whence we get $\sup \{R(u): u \geq 0\}=\infty$.
Remark 2. It should be worth noting that the function $\Phi(u)=|u|-1+e^{-|u|}$ is strictly convex but, by Theorem $5, L_{0}^{\Phi}$ contains an order linearly isometric copy of l^{1}. This contrasts nicely with what happens if Φ were an N-function, where the strict convexity of L_{0}^{Φ} and Φ go hand-in-hand for nonatomic measure spaces (see Milnes theorem, that is, Theorem 6 on page 274 in [12]).

Remark 3. It is well known that l^{∞} contains a linearly isometric copy of any separable Banach space X. Namely if $\left(x_{n}\right)_{n=1}^{\infty}$ is the sequence which is dense in X and $\left(x_{n}^{\star}\right)_{n=1}^{\infty} \subset S\left(X^{\star}\right)$ is such that $x_{n}^{\star}\left(x_{n}\right)=\left\|x_{n}\right\|$ for any $n \in \mathbb{N}$, then the isometry $P: X \rightarrow l^{\infty}$ is defined by $P x=\left(x_{n}^{\star}(x)\right)_{n=1}^{\infty} \in l^{\infty}$ for any $x \in X$.

From Theorems 3 and 4 and Remark 3, we get the following.
Corollary 1. There are Orlicz spaces L_{0}^{Φ} containing a linearly isometric copy of l^{1} but not containing an order linearly isometric copy of l^{1}.

Indeed, if $a(\Phi)=b(\Phi)$, then by Theorem 3 and Remark $3, L_{0}^{\Phi}$ contains a linearly isometric copy of l^{1}. However, the equality $a(\Phi)=b(\Phi)$ yields $a(\Phi)>0$ and $b(\Phi)<\infty$, whence $K(x) \neq \emptyset$ for any $x \in L_{0}^{\Phi} \backslash\{0\}$. Consequently, by Theorem 5 , L_{0}^{Φ} does not contain an order linearly isometric copy of L_{0}^{Φ}. This phenomena is possible only in Banach lattices X which are not strictly monotone. Otherwise (see [14]), if X contains a linearly isometric copy of l^{1}, then it also contains an order linearly isometric copy of l^{1}.

References

[1] S. T. Chen, Geometry of Orlicz Spaces, Dissertationes Math. 356 (1996), 1-204. MR 97i:46051
[2] Y. A. Cui, H. Hudzik, M. Nowak and R. Płuciennik, Some geometric properties in Orlicz sequence spaces equipped with the Orlicz norm, J. Convex Analysis 6(1) (1999), 91-113. MR 2000j:46037
[3] R. Grza̧ślewicz and H. Hudzik, Smooth points of Orlicz spaces equipped with Luxemburg norm, Math. Nachr. 155 (1992), 31-45. MR 94k:46057
[4] H. Hudzik, Banach lattices with order isomertric copies of l^{∞}, Indag. Math. 9 (4) (1998), 521-527. MR 2000d:46025
[5] H. Hudzik and W. Kurc, Monotonicity properties of Musielak-Orlicz spaces and dominated best approximation in Banach lattices, J. Approx. Theory 95 (1998), 353-368. MR 99k:46044
[6] H. Hudzik and L. Maligranda, Amemiya norm equals Orlicz norm in general, Indag. Mathem. 11 (4) (2000), 573-585.
[7] A. Kamińska, Flat Orlicz-Musielak sequence spaces, Bull. Acad. Polon. Sci. Math. 30 (1982), no. 7-8, 347-352. MR 84h:46013
[8] M. A. Krasnoselskiĭ and Ya. B. Rutickiǐ, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd., Groningen 1961 (translation). MR 23:A4016
[9] W. A. J. Luxemburg, Banach Function Spaces, Thesis, Technische Hogeschoolte Delft, 1955. MR 17:285a
[10] L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Math. 5, Univ. Estadual de Campinas, Campinas, SP, Brasil 1989.
[11] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, SpringerVerlag, Berlin, 1983. MR 85m:46028
[12] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, Inc., New York, Basel, Hong Kong, 1991. MR 92e:46059
[13] M. Wisła, On a class of Orlicz sequence spaces isomorphic to l^{∞}, to appear.
[14] M. Wójtowicz, Contractive projections onto isometric copies of $L^{1}(\nu)$ in strictly monotone Banach lattices, to appear.

Department of Mathematics, Harbin Normal University, Harbin, People's Republic of China

E-mail address: schen@public.hr.hl.cn
Department of Mathematics, Harbin University of Science and Technology, Harbin, People's Republic of China

E-mail address: cuiya@yahoo.com
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland

E-mail address: hudzik@amu.edu.pl

[^0]: Received by the editors February 26, 2002 and, in revised form, March 20, 2002 and October 8, 2002.

 2000 Mathematics Subject Classification. Primary 46B20, 46E30.
 Key words and phrases. Orlicz space, Orlicz norm, order linearly isometric copy of l^{1}, linearly isometric copy of l^{1}, order linearly isometric copy of l^{∞}.

