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ISOMETRIC COPIES OF l1 AND l∞ IN ORLICZ SPACES
EQUIPPED WITH THE ORLICZ NORM

SHUTAO CHEN, YUNAN CUI, AND HENRYK HUDZIK

(Communicated by N. Tomczak-Jaegermann)

Abstract. Criteria in order that an Orlicz space equipped with the Orlicz
norm contains a linearly isometric copy (or an order linearly isometric copy)
of l1 (or l∞) are given.

1. Introduction

Let N, R and R+ stand for the set of natural numbers, the set of reals and the
set of nonnegative reals, respectively. Let (T,Σ, µ) be a σ-finite measure space that
does not reduce to a finite number of atoms, where all atoms that appear in Σ
have measure 1, and let L0 = L0(T,Σ, µ) be the space of all (equivalence classes
of) Σ-measurable functions defined on T .

A function Φ : R → [0,+∞] is said to be an Orlicz function if Φ(0) = 0,
Φ(u)→∞ as u→∞, Φ is even and convex and limu→b(Φ)− Φ(u) = Φ(b(Φ)), where
b(Φ) = sup{u > 0 : Ψ(u) < ∞} > 0. Note that the case Φ(b(Φ)) = ∞ is not
excluded. The function Ψ complementary to Φ in the sense of Young is defined by

Ψ(u) = sup
v>0
{|u|v − Φ(v)}.

It is obvious that the Young inequality

uv ≤ Φ(u) + Ψ(v)

holds for all u, v ∈ R and that in the case when b(Φ) = ∞ or Φ(b(Φ)) < ∞ and
Φ
′

−(b(Φ)) <∞, we have the equality

uv = Φ(u) + Ψ(v)

for all u ∈ [0, b(Φ)) (resp. u ∈ [0, b(Φ)]) and v ∈ [Φ
′

−(u),Φ
′

+(u)], where Φ
′

−(u)
and Φ

′

+(u) denote the left (resp. the right) derivative of Φ at the point u. For an
example of an Orlicz function Φ with 0 < b(Φ) <∞ and Φ

′

−(b(Φ)) =∞ such that
the equality

b(Φ)v = Φ(b(Φ)) + Ψ(v)
holds for no v ∈ R+ we refer to [6].
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Let us define for an Orlicz function Φ another important parameter,

a(Φ) = sup{u ≥ 0 : Φ(u) = 0}.
Given an Orlicz function Φ we define on L0 the convex modular

IΦ(x) =
∫
T

Φ(x(t))dµ

and the Orlicz space

LΦ = LΦ(T,Σ, µ) := {x ∈ L0 : IΦ(λx) <∞ for some λ > 0}.
The most important norms in LΦ are the following two:

‖x‖Φ = inf{λ > 0 : IΦ(x/λ) ≤ 1},
called the Luxemburg norm (see [1] and [7] - [12]), and

‖x‖0Φ = sup{|
∫
T

x(t)y(t)dµ| : IΨ(y) ≤ 1, y ∈ L0},

called the Orlicz norm (see [1] and [7] - [12]). The Amemiya formula

‖x‖0Φ = inf
k>0

1
k

(1 + IΦ(kx))

for the Orlicz norm is very useful because it does not use the function Ψ com-
plementary to Φ. For Orlicz functions Φ that are N -functions at infinity, that is,
(Φ(u)/u)→ ∞ as u→ ∞, this formula was well known from the beginning of the
theory of Orlicz spaces (see [8]) and for arbitrary Orlicz functions it was proved in
[6]. For any x ∈ LΦ, we define supp x = {t ∈ T : x(t) 6= 0}.

It is well known that for any Orlicz function the quotient Φ(u)/u is nondecreasing
on R+. So the limit (finite or infinite) A(Φ) = limu→∞(Φ(u)/u) always exists. Let
us define the function RΦ(u) = A(Φ)|u| −Φ(u). As we will see below, this function
will be of great importance.

We say that an Orlicz function Φ satisfies the 42-condition at zero (at infinity)
[on R+] if there are positive constants K ≥ 2 and u0 with 0 < Φ(u0) <∞ such that
the inequality Φ(2u) ≤ KΦ(u) holds for all u ∈ [0, u0] (u ∈ [u0,∞)) [u ∈ R+]. We
then write Φ ∈ 42(0) (Φ ∈ 42(∞)) [Φ ∈ 42] for short. It is obvious that Φ ∈ 42

⇐⇒ Φ ∈ 42(0) and Φ ∈ 42(∞). Moreover, b(Φ) = ∞ whenever Φ ∈ 42(∞) and
a(Φ) = 0 whenever Φ ∈ 42(0).

An Orlicz space LΦequipped with the Orlicz norm ‖ · ‖0Φ will be denoted by LΦ
0 .

The unit ball and the unit sphere of LΦ
0 will be denoted by B(LΦ

0 ) and S(LΦ
0 ),

respectively. For any x ∈ LΦ
0 \ {0} we denote by K(x) the set of these k > 0 such

that ‖x‖0Φ = 1
k (1 + IΦ(kx)). In the case when ‖x‖0Φ = limk→∞

1
k (1 + IΦ(kx)), we

write ∞ ∈ K(x). If A(Φ) <∞, then it can happen that K(x) = ∅.
Since in the case when a(Φ) = 0 the Orlicz space LΦ

0 is strictly monotone (it
does not matter if Φ satisfies or not the suitable 42-condition; see [5]), LΦ

0 cannot
contain an order isometric copy of l∞ ( in contrast to the case when the Luxemburg
norm is considered). However, as we will see below in the case when a(Φ) = 0, LΦ

0

can contain an order isometric copy of l∞.
In this paper we present criteria for the existence in Orlicz spaces LΦ

0 equipped
with the Orlicz norm a linearly isometric copy or an order linearly isometric copy
of X , where X is equal to l∞ or l1. Such criteria are important when we are
looking for criteria of other important topological and geometrical properties of
LΦ

0 . Our results on l∞-copies do not follow from [4] although they are connected
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with those results. In the special case of Orlicz spaces our results are more precise.
The results of [13] are also connected with our Theorems 1 and 2. A class of Orlicz
spaces isomorphic or isomorphically isometric to l∞ is distinguished in [13].

2. Results

We start with criteria for the existence of an order linearly isometric copy of l∞

in LΦ
0 .

Theorem 1. Let Φ be an Orlicz function with b(Φ) = ∞. Then LΦ
0 contains an

order linearly isometric copy of l∞ if and only if µ is infinite and a(Φ) > 0.

Proof. Sufficiency. Assume that b(Φ) = ∞, a(Φ) > 0 and µ is infinite. Divide
T into a sequence (Tn)∞n=1 of pairwise disjoint sets such that µ(Tn) = ∞ for any
n ∈ N. Define xn = a(Φ)χTn (n ∈ N). Then

1 + IΦ(xn) = 1,
1
k

(1 + IΦ(kxn)) =
1
k
> 1 (∀k ∈ (0, 1), n ∈ N),

1
k

(1 + IΦ(kxn)) = ∞ (∀k > 1, n ∈ N).

Therefore, ‖xn‖0Φ = 1 for any n ∈ N. Moreover, in the same way we can prove
that ‖

∑∞
n=1 xn‖0Φ = 1. Hence it follows that the operator

Py =
∞∑
n=1

ynxn (∀y = (yn) ∈ l∞),

which is obviously linear and positive, is an order isometry of l∞ onto the closed
subspace P (l∞) of LΦ

0 (cf [4]).
Necessity. Note that the inequality a(Φ) > 0 is necessary, since if a(Φ) = 0,

then LΦ
0 is strictly monotone (see [5]). Since strict monotonicity is preserved by

linear order isometries and l∞ is not strictly monotone, LΦ
0 cannot contain an

order linearly isometric copy of l∞ if a(Φ) = 0. Therefore, we may assume in the
remaining part of the proof of necessity that a(Φ) > 0.

In order to prove the necessity of the condition µ(T ) =∞, assume to the contrary
that µ(T ) <∞, a(Φ) > 0 and LΦ

0 contains an order linearly isometric copy of l∞.
Since any order linear isometry preserves the orthogonality of elements (see [4]),
there is in LΦ

0 a sequence (xn)∞n=1 such that xn ≥ 0, ‖xn‖0Φ = 1 for all n ∈ N and
‖
∑∞
n=1 xn‖0Φ = 1. It is enough to take en = (0, ..., 0, 1, 0, ...) ∈ l∞ and xn = Pen,

where P is a linear order isometry of l∞ onto the closed subspace P (l∞) of LΦ
0 .

Then the equality ‖xn‖0Φ = 1 for any n ∈ N is obvious. To prove the equality

‖
∞∑
n=1

xn‖0Φ = 1,

note first that

‖
k∑

n=1

xn‖0Φ = ‖
k∑

n=1

Pen‖0Φ = ‖P (
k∑

n=1

en)‖0Φ = ‖
k∑

n=1

en‖∞ = 1

for any k ∈ N.
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Since LΦ
0 has the Fatou property (see [6]), we get

∑∞
n=1 xn ∈ LΦ

0 and

‖
∞∑
n=1

xn‖0Φ = lim
k→∞

‖
k∑

n=1

xn‖0Φ = 1.

Since µ(T ) < ∞ and supp xn∩ supp xm = ∅ for n 6= m, we get µ(supp xn) → 0
as n → ∞. By the assumption that all atoms that appear in T have measure 1
and Σ does not reduce to a finite number of atoms, there is no loss of generality
in assuming that T is nonatomic. Therefore, we may assume that Φ /∈ 42(∞),
because otherwise LΦ

0 is order continuous and so LΦ
0 cannot even contain an order

linearly isomorphic copy of l∞. In consequence we get that A := A(Φ) =∞. This
implies that K(x) 6= ∅ for any x ∈ LΦ

0 \ {0} (see [3]). We claim that

(1) for any c > 0 and m ∈ N there is n ∈ N
such that n > m and µ{t ∈ T : xn(t) > c} > 0.

Otherwise, there are c > 0 and m ∈ N such that xn(t) ≤ c µ-a.e. in T for all
n ∈ N, n > m. Since µ(T ) < ∞, b(Φ) = ∞ and µ(supp xn) → 0 as n → ∞, we
conclude that IΦ(λxn)→ 0 as n →∞ for any λ > 0. Consequently, for any k > 1
taking n→∞, we get

1 = ‖xn‖0Φ ≤
1
k

(1 + IΦ(kxn))→ 1
k
< 1,

a contradiction. So, the proof of the claim is finished.
Let n ∈ N be such that

µ{t ∈ T : xn(t) > a(Φ)} > 0

and choose an arbitrary k ∈ K(x1 + xn). Since ‖x1 + xn‖0Φ = 1, we have k ≥ 1,
whence µ(A) > 0 for A = {t ∈ T : kxn(t) > a(Φ)}. Therefore,

‖x1 + xn‖0Φ =
1
k

(1 + IΦ(k(x1 + xn)))

>
1
k

(1 + IΦ(kx1)) ≥ ‖x1‖0Φ
= 1,

a contradiction, which finishes the proof. �
Theorem 2. Let Φ be an Orlicz function with b(Φ) < ∞. Then LΦ

0 contains an
order linearly isomertric copy of l∞ if and only if a(Φ) > 0 and either (a) µ(T ) =∞
or (b) µ(T ) <∞ and a(Φ) = b(Φ).

Proof. If a(Φ) > 0, b(Φ) < ∞ and µ(T ) = ∞, we can repeat the appropriate part
of the proof of Theorem 1 to prove the sufficiency.

Assume now that b(Φ) < ∞, a(Φ) > 0, a(Φ) = b(Φ) and µ(T ) < ∞. Then
LΦ

0 = L∞ and ‖x‖0Φ = 1
a(Φ)‖x‖∞ for any x ∈ LΦ

0 , where ‖x‖∞ := esssupt∈T |x(t)|.
Therefore, LΦ

0 is order linearly isometric to (L∞, ‖ ‖∞), so it contains an order
linearly isometric copy of l∞. �
Necessity. If a(Φ) = 0, then LΦ

0 is strictly monotone; so it cannot contain an order
linearly isometric copy of l∞. So, under the assumptions that µ(T ) <∞, a(Φ) > 0
and b(Φ) <∞, we need to prove the necessity of the condition a(Φ) = b(Φ). Assume
to the contrary that a(Φ) < b(Φ) and LΦ

0 contains an order linearly isometric copy
of l∞. Then there is a sequence (xn)∞n=1 in S(LΦ

0 ) of disjointly supported elements
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such that ‖
∑∞
n=1 xn‖0Φ = 1 (see the proof of the necessity part of Theorem 1).

Therefore, we have µ(supp xn)→ 0 as n→∞ and K(x) 6= ∅ for any x ∈ LΦ
0 \ {0}.

Let m,n ∈ N, m 6= m, and km,n ∈ K(xm + xn). Then

1 =
1

km,n
(1 + IΦ(km,nxm)) +

1
km,n

IΦ(km,nxn).(2)

Since 1
km,n

(1 + IΦ(km,nxm)) ≥ 1, equality (1) yields

1
km,n

(1 + IΦ(km,nxm)) = 1 and IΦ(km,nxn) = 0.(3)

In the same way we can get

1
km,n

(1 + IΦ(km,nxn)) = 1 and IΦ(km,nxm) = 0.(4)

By (2), (3) and (4), we get km,n = 1 for all m,n ∈ N, m 6= n, and |xn| ≤ a(Φ)
µ-a.e. in T for any n ∈ N.

For any k > 1 satisfying ka(Φ) < b(Φ), since µ(supp xn)→ 0, we get IΦ(kxn)→
0, and consequently

1 = ‖xn‖0Φ ≤
1
k

(1 + IΦ(kxn))→ 1
k
< 1 as n→∞,

a contradiction. This proves the necessity of the equality a(Φ) = b(Φ) whenever
µ(T ) <∞. �

Theorems 1 and 2 can be summarized into the following result.

Theorem 3. Let Φ be an Orlicz function. Then we have:
(i) if µ(T ) = ∞, then LΦ

0 contains an order linearly isometric copy of l∞ if and
only if a(Φ) > 0;

(ii) if µ(T ) <∞, then LΦ
0 contains an order linearly isometric copy of l∞ if and

only if a(Φ) > 0, b(Φ) <∞ and a(Φ) = b(Φ), that is, L∞0 is order linearly isometric
to (L∞, ‖ ‖∞).

In the next theorem we will use the function R(u) = A|u| − Φ(u), where A =
A(Φ) = limu→∞(Φ(u)/u).

Theorem 4. For any Orlicz function Φ with a(Φ) = 0 and b(Φ) = +∞ and any
nonatomic σ-finite measure space (T,Σ, µ), the following assertions are equivalent:

(1) LΦ
0 has a subspace order linearly isometric to l1;

(2) LΦ
0 has a subspace linearly isometric to l1;

(3) There exists a nonzero x ∈ LΦ
0 such that K(x) = ∅;

(4) The function R(u) is upper bounded.

Proof. The implication 1 ⇒ 2 is obvious. Let us now prove the implication 2 ⇒
3. If K(x) 6= ∅ for all nonzero x in LΦ

0 , then LΦ
0 is non-square by the proof of

Theorem 3.26 in [1]. Therefore, assertion 2 is not true if assertion 3 is not true,
which finishes the proof of the implication 2 ⇒ 3. Assume that assertion 3 holds
and R(u) is not upper bounded. Let

f(k) :=
1
k

(1 +
∫
T

Φ(kx(t))dµ) = A

∫
T

|x(t)|dµ +
1
k

(1−
∫
T

R(kx(t))dµ)
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for k > 0. Assertion 3 implies that ‖x‖0Φ = A
∫
T
|x(t)|dµ (see [1] and [2]). Since R

is not upper bounded, we conclude that

1
k

(1−
∫
T

R(kx(t))dµ) < 0(5)

for k > 0 large enough. Therefore (5) implies that

‖x‖0Φ ≤ f(k) < A

∫
T

|x(t)|dµ = ‖x‖0Φ

for k > 0 large enough, a contradiction.

4 ⇒ 1. Let sup{R(u) : u ∈ R+} =: c < ∞. Pick pairwise disjoint subsets En
(n = 1, 2, ...) of T such that µ(En) > 0 and c

∑∞
n=1 µ(En) < 1. Choose an > 0 such

that ‖anχEn‖0Φ = 1. Define xn = anχEn . Then for any (bn)∞n=1 ∈ l1 and any ε > 0,
pick k > 0 such that

‖
∞∑
n=1

bnxn‖0Φ >
1
k

(1 + IΦ(k
∞∑
n=1

bnxn))− ε.

Then
∞∑
n=1

|bn| ≥ ‖
∞∑
n=1

bnxn‖0Φ

>
1
k

(1 +
∞∑
n=1

Φ(kbnan)µ(En))− ε

= A
∞∑
n=1

|bnan|µ(En) +
1
k

(1−
∞∑
n=1

R(k|bn|an)µ(En))− ε

≥ A

∞∑
n=1

|bnan|µ(En) +
1
k

(1− c
∞∑
n=1

µ(En))− ε

≥ A

∞∑
n=1

|bnan|µ(En)− ε.

Combining this with the fact that

‖xn‖0Φ ≤ lim
k→∞

1
k

(1 + IΦ(kxn))

= lim
k→∞

1
k

(1 + Φ(kan)µ(En))

= Aanµ(En),

we get
∞∑
n=1

|bn| ≥ A

∞∑
n=1

|bn||an|µ(En)

≥
∞∑
n=1

|bn|‖xn‖0Φ =
∞∑
n=1

|bn|.

This shows that the map P : l1 → LΦ
0 defined by P ((bn)∞n=1) =

∑∞
n=1 bnxn is a

linear isometry. Since the map P is positive, it is an order isometry.
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Theorem 5. Let Φ be an Orlicz function and the measure space be nonatomic and
σ-finite. Then the following are equivalent:

(1) The space LΦ
0 contains an order isometric copy of l1;

(2) There exists a nonzero x ∈ LΦ
0 such that K(x) = ∅;

(3) The function R(u) is upper bounded.

Proof. The implications 2 ⇒ 3 ⇒ 1 can be proved in the same way as in Theorem
4.

1 ⇒ 2. Assume that 2 does not hold. Then K(x) 6= ∅ for any x ∈ LΦ
0 \ {0}.

Take any x, y ∈ S(LΦ
0 ) with supp x ∩ supp y = ∅. Let k ∈ K(x), h ∈ K(y). We

may assume, without loss of generality, that k ≤ h. Then

2 = ‖x‖0Φ + ‖y‖0Φ =
1
k

(1 + IΦ(kx)) +
1
h

(1 + IΦ(hy))

≥ 1
k

(1 + IΦ(kx)) +
1
h

+
1
k
IΦ(ky)

≥ 1
k

(1 + IΦ(k(x+ y))) +
1
h
≥ ‖x+ y‖0Φ +

1
h
,

whence ‖x+ y‖0Φ ≤ 2 − 1
h < 2. This yields that 1 cannot hold. Indeed, otherwise,

by the fact that order isometry preserves disjointness of supports of functions (up
to a set of measure zero), see [4], taking e1 = (1, 0, 0, ...), e2 = (0, 1, 0, ...) in
l1 and an order linear isometry P of l1 onto a closed subspace of LΦ

0 , we get
µ(suppPx ∩ suppPy) = 0 and Px, Py ∈ S(LΦ

0 ). Therefore, we have by the above

2 = ‖e1 + e2‖l1 = ‖Px+ Py‖0Φ < 2,

a contradiction which finishes the proof of the implication 1 ⇒ 2 as well as the
proof of the theorem. �
Remark 1. The condition limu→∞(Φ(u)/u) = A < ∞ need not imply that LΦ

0

contains a linearly isometric copy of l1, i.e. A = A(Φ) < ∞ need not imply that
R(u) is bounded.

To show this, define for example the function Φ(u) = A(u + c)−K(u + c)α for
u ≥ 0 and Φ(−u) = Φ(u), where A > 0, K > 0, 0 < α < 1, and c = (K/A)1/(1−α).
It is obvious that limu→∞(Φ(u)/u) = A. Moreover,

R(u) = Au− Φ(u) = K(u+ c)α −Ac,
whence we get sup{R(u) : u ≥ 0} =∞.
Remark 2. It should be worth noting that the function Φ(u) = |u| − 1 + e−|u| is
strictly convex but, by Theorem 5, LΦ

0 contains an order linearly isometric copy of
l1. This contrasts nicely with what happens if Φ were an N-function, where the
strict convexity of LΦ

0 and Φ go hand-in-hand for nonatomic measure spaces (see
Milnes theorem, that is, Theorem 6 on page 274 in [12]).

Remark 3. It is well known that l∞ contains a linearly isometric copy of any sepa-
rable Banach space X . Namely if (xn)∞n=1 is the sequence which is dense in X and
(x?n)∞n=1 ⊂ S(X?) is such that x?n(xn) = ‖xn‖ for any n ∈ N, then the isometry
P : X → l∞ is defined by Px = (x?n(x))∞n=1 ∈ l∞ for any x ∈ X .

From Theorems 3 and 4 and Remark 3, we get the following.

Corollary 1. There are Orlicz spaces LΦ
0 containing a linearly isometric copy of

l1 but not containing an order linearly isometric copy of l1.
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Indeed, if a(Φ) = b(Φ), then by Theorem 3 and Remark 3, LΦ
0 contains a linearly

isometric copy of l1. However, the equality a(Φ) = b(Φ) yields a(Φ) > 0 and
b(Φ) < ∞, whence K(x) 6= ∅ for any x ∈ LΦ

0 \ {0}. Consequently, by Theorem 5,
LΦ

0 does not contain an order linearly isometric copy of LΦ
0 . This phenomena is

possible only in Banach lattices X which are not strictly monotone. Otherwise (see
[14]), if X contains a linearly isometric copy of l1, then it also contains an order
linearly isometric copy of l1.
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