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EIGENVALUE ESTIMATES FOR OPERATORS
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(Communicated by N. Tomczak-Jaegermann)

Abstract. Using abstract interpolation theory, we study eigenvalue distribu-
tion problems for operators on complex symmetric Banach sequence spaces.
More precisely, extending two well-known results due to König on the asymp-
totic eigenvalue distribution of operators on `p-spaces, we prove an eigenvalue
estimate for Riesz operators on `p-spaces with 1 < p < 2, which take values in
a p-concave symmetric Banach sequence space E ↪→ `p, as well as a dual ver-
sion, and show that each operator T on a 2-convex symmetric Banach sequence
space F , which takes values in a 2-concave symmetric Banach sequence space
E, is a Riesz operator with a sequence of eigenvalues that forms a multiplier
from F into E. Examples are presented which among others show that the
concavity and convexity assumptions are essential.

1. Introduction

As usual, we assign to every Riesz operator T on a complex Banach space X
(in particular, to every compact operator) its sequence of eigenvalues (λn(T )), ar-
ranged in order of non-decreasing magnitude, |λ1(T )| ≥ |λ2(T )| ≥ ... ≥ 0, and
each eigenvalue is counted according to its algebraic multiplicity (if T possesses
less than n eigenvalues, then λn(T ) = 0). Based on now classical inequalities due
to Grothendieck as well as Bennett and Carl, König proved the following two re-
markable eigenvalue estimates for operators in complex `p-spaces (see [10, 2.b.11]
or [11, Proposition 20]): Let 1 ≤ q < p ≤ ∞ and 1/r = 1/q − 1/p. Then every
operator T on `p with values in `q is a Riesz operator, and

(i) (λn(T )) ∈ `r,∞ , provided 1 ≤ q < p < 2 or 2 < q < p ≤ ∞; in other terms,
|λn(T )| ≤ c n1/p−1/q, where the constant c > 0 is independent of n.

(ii) (λn(T )) ∈ `r , provided 1 ≤ q ≤ 2 ≤ p ≤ ∞, q 6= p.
Recall that each such operator T is even compact whenever 1 ≤ q < p < ∞

(by Pitt’s theorem) or 1 ≤ q < 2 and p = ∞. The aim of this note is to prove
two extensions of König’s results within the setting of complex symmetric Banach
sequence spaces. More precisely, extending (i), we estimate single eigenvalues of
Riesz operators on `p with values in E (resp., on E with values in `p), E a p-concave
(resp., p-convex) symmetric Banach sequence space, 1 < p < 2 (resp., 2 < p <∞),
and, extending (ii), we show that the sequence of eigenvalues of an operator on
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F with values in E, F a 2-convex symmetric Banach sequence space and E a 2-
concave symmetric Banach sequence space different from the first one, belongs to
the space of multipliers between these spaces. Examples show that the convexity
and concavity assumptions in both results are not superfluous.

2. Preliminaries

If (an) and (bn) are real-valued sequences, we write an ≺ bn whenever there is
some c > 0 such that an ≤ c bn for all n ∈ N, and an � bn whenever an ≺ bn and
bn ≺ an.

We use standard notation and notions from Banach space theory (see e.g. [14]).
If X is a Banach space, then BX is its (closed) unit ball and E′ its dual space.
As usual, L(X,Y ) denotes the Banach space of all (bounded and linear) operators
from X into Y endowed with the operator norm.

Throughout the paper by a Banach sequence space we mean a real(!) Banach
lattice E modelled on the set of positive integers N which contains an element x
with suppx = N. If E is a Banach sequence space, then we denote by E(C) the
vector space of all complex sequences x such that |x| ∈ E which together with the
norm ‖x‖E(C) = ‖|x|‖E forms a Banach space. If we consider problems related to
eigenvalues, then we will carefully distinguish between real sequence spaces E and
their complexifications E(C), in particular, between `p and `p(C).

Any time the term complex Banach sequence space is used, it refers to the
complexification of a real Banach sequence space in the above sense. We write En
for the linear span of the first n standard unit vectors ek of a Banach sequence
space E. As usual, we denote by (x∗n) the decreasing rearrangement of a bounded
scalar sequence (xn), and define (x∗∗n ) by x∗∗n := 1

n

∑n
k=1 x

∗
k. A Banach sequence

space E is said to be symmetric provided that ‖(xn)‖E = ‖(x∗n)‖E for all x ∈ E.
It is maximal if the unit ball BE is closed in the pointwise convergence topology of
the space ω := RN of all real sequences. Recall that if E is separable, then E′ can
be identified in a natural way with the Köthe dual E× of E defined by

E× :=
{
x = (xn) ∈ ω;

∑∞
n=1|xnyn| <∞ for all y ∈ E

}
.

Note also that E× is always a maximal Banach sequence space under the norm
‖x‖ := sup{Σ∞n=1|xnyn|; ‖y‖E ≤ 1} (symmetric, provided that E is) and (E×)× =
E with equality of norms if and only if E is maximal.

The fundamental function of a symmetric Banach sequence space E is defined
by

λE(n) := ‖
∑n
i=1ei‖E , n ∈ N.

Recall that a Banach sequence space E is p-convex, 1 ≤ p ≤ ∞, and q-concave,
1 ≤ q ≤ ∞, if there is a constant C > 0 such that for each choice of finitely many
x1, ..., xn ∈ E, ∥∥∥( n∑

k=1

|xk|p
)1/p∥∥∥

E
≤ C

( n∑
k=1

‖xk‖pE
)1/p

and ( n∑
k=1

‖xk‖qE
)1/q

≤ C
∥∥∥( n∑

k=1

|xk|q
)1/q∥∥∥

E
,

respectively, and the best constant C > 0 is denoted by M(p)(E) and M(q)(E),
respectively; see [14] for all information needed on these notions. Notice that a
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p-concave Banach sequence space, 1 < p <∞, is automatically both maximal and
separable since it cannot contain a copy of c0.

As usual, we denote by SE the unitary ideal of all compact operators T : `2(C)→
`2(C) for which the sequence (sn(T )) of singular numbers belongs to E. Together
with the norm ‖(sn(T ))‖E this space forms a Banach space.

For two Banach sequence spaces F and E the space of multipliers M(F,E) from
F into E consists of all real sequences x such that the associated multiplication
operator (yn) 7→ (xn yn) is defined and bounded from F into E. Note that M(F,E)
equipped with the norm

‖x‖M(F,E) := sup{‖xy‖E ; y ∈ BF }

is a Banach sequence space (symmetric provided F and E are). If E is maximal,
then M(F,E) is maximal, and moreover

(2.1) M(F,E) = M((F×)×, E) = M(E×, F×).

For a (symmetric) Banach sequence space F denote by Fa the order continuous
part of F , i.e., the (symmetric) separable Banach sequence space formed by the
closure of the span of all basis sequences ek. It is well-known that F×a = F×, and
hence for any maximal Banach sequence space E by (2.1)

(2.2) M(Fa, E) = M((F×a )×, E) = M(F,E).

For information on Banach operator ideals, Riesz operators and their eigenvalue
distribution, and s-numbers we refer to [18], [3], [7], [10] and [16]. Recall the
definition of the k-th approximation number ak(T ) of an operator T : X → Y
between Banach spaces X and Y ,

ak(T ) := inf{‖T − S‖; S ∈ L(X,Y ), rank(S) < k},

and its k-th Weyl number xk(T ),

xk(T ) := sup{ak(TS); ‖S : `2 → X‖ ≤ 1}.

For basic results and notation from interpolation theory we refer e.g. to [1]. We
recall that a mapping F from the category of all couples of Banach spaces into the
category of all Banach spaces is said to be an interpolation functor if for any couple
(X0, X1), the Banach space F(X0, X1) is intermediate with respect to (X0, X1)
(i.e., X0 ∩X1 ↪→ F(X0, X1) ↪→ X0 +X1), and T : F(X0, X1) → F(Y0, Y1) for all
T : (X0, X1)→ (Y0, Y1). Here as usual the notation T : (X0, X1)→ (Y0, Y1) means
that T : X0 +X1 → Y0 +Y1 is a linear operator such that for j = 0, 1 the restriction
of T to the space Xj is a bounded operator from Xj into Yj . If additionally

‖T : F(X0, X1)→ F(Y0, Y1)‖ ≤ max{‖T : X0 → Y0‖, ‖T : X1 → Y1‖}

holds, then F is called an exact interpolation functor. An intermediate space
X of the couple X̄ = (X0, X1) is called an interpolation space if T : X̄ → X̄
implies T : X → X . In what follows, we will use the well-known fact that for any
interpolation space X with respect to X̄ there is an exact interpolation functor F
such that X = F(X̄) up to equivalent norms.
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3. Summing identity maps

Here we collect and improve some results from [5] needed for the proofs of the
main results in Section 4. The first result is from [5, 6.1].

Proposition 3.1. Let E ↪→ `2 be a 2-concave symmetric Banach sequence space
which does not coincide with `2, and T ∈ L(`2(C)) be an operator with values in
E(C). Then T ∈ SM(`2,E). In particular, (|λn(T )|) ∈M(`2, E).

The following definition is a natural extension of the notion of absolutely (r, p)-
summing operators: For 1 ≤ p < ∞ let E be a Banach sequence space such that
`p ↪→ E. Then an operator T : X → Y between Banach spaces X and Y is called
(E, p)-summing (for short, T ∈ ΠE,p) if there exists a constant C > 0 such that for
all x1, . . . , xn ∈ X

‖(‖Txi‖Y )ni=1‖E ≤ C cEp sup
x′∈BX′

(
n∑
i=1

|〈x′, xi〉|p
)1/p

,

where cEp = ‖`p ↪→ E‖. We write πE,p(T ) for the smallest constant C with the
above property. If ‖en‖E = 1 for all n, then we obtain the Banach operator
ideal (ΠE,p, πE,p) and, for E = `r (r ≥ p), the well-known ideal (Πr,p, πr,p) of
all absolutely (r, p)-summing operators.

The second proposition is a straightforward extension of a well-known result due
to König [10, 2.a.3] and can be found in [6, Proposition 2].

Proposition 3.2. Let E be a symmetric Banach sequence space such that `2 ↪→ E.
Then for each T ∈ ΠE,2 and all k,

xk(T ) ≤ λE(k)−1πE,2(T ).

The last proposition needed extends the classical result for `p-spaces due to
Bennett and Carl as well as the main result in [5], where the case p = 2 is proven.

Proposition 3.3. For 1 ≤ p ≤ 2 let E be a p-concave symmetric Banach sequence
space. Then the identity map id : E ↪→ `p is (M(`p, E), 2)-summing. Moreover, the
inclusion id : E(C) ↪→ `p(C) is also (M(`p, E), 2)-summing.

The proof of this result is based on abstract interpolation theory and follows
closely the proof for the case p = 2 given in [5, Section 4]. For the convenience of
the reader we sketch some relevant details. A minor modification of the proof of
[5, 4.3] yields the following generalization thereof.

Lemma 3.4. For 1 < p < ∞ let E be a p-concave symmetric Banach sequence
space. Then M(`p, E) is an interpolation space with respect to (`p′ , `∞).

The second lemma extends [5, 4.5].

Lemma 3.5. For 1 < p ≤ 2 and a p-concave symmetric Banach sequence space E
let F be an exact interpolation functor such that M(`p, E) ↪→ F(`p′ , `∞). Then for
some c > 0,

(3.1) sup
m,n
‖id : L(`m2 , En) ↪→ F(L(`m2 , `

n
1 ),L(`m2 , `

n
p ))‖ ≤

√
2 cM(p)(E).

Again, the proof follows by an analysis of the proof of [5, 4.5]: Let T ∈ L(`m2 , En).
By a variant of the Maurey–Rosenthal Factorization Theorem (see [2, 4.2] and also
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[15]) there exist an operator R ∈ L(`m2 , `
n
p ) and λ ∈ Rn such that T = Mλ ◦R and

‖R‖ ‖λ‖M(`np ,En) ≤
√

2 M(p)(E) ‖T ‖. Proceed as in the case p = 2 to obtain with
c := ‖id : M(`p, E) ↪→ F(`2, `∞)‖ for all n,m

‖T ‖F(L(`m2 ,`
n
1 ),L(`m2 ,`

n
p )) ≤

√
2 cM(p)(E) ‖T ‖L(`m2 ,En),

the required inequality. �

Proof of Proposition 3.3. According to Lemma 3.4 let F be an interpolation functor
with M(`p, E) = F(`p′ , `∞). We consider the mapping

Φm,n : (L(`m2 , `
n
1 ),L(`m2 , `

n
p ))→ (`mp′ (`

n
p ), `m∞(`np ))

defined by Φm,n(S) := (Sei)m1 . By Kwapień [12] the identity map id : `1 ↪→ `p is
absolutely (p′, 2)-summing, hence there exists a constant C > 0 independent of n
such that

sup
m
‖Φm,n : L(`m2 , `

n
1 )→ `mp′ (`

n
p )‖ = πp′,2(id : `n1 ↪→ `np ) ≤ C,

and trivially

sup
m
‖Φm,n : L(`m2 , `

n
p )→ `m∞(`np )‖ = ‖id : `np ↪→ `np‖ = 1.

Then by the interpolation property we obtain that

Φm,n : F(L(`m2 , `
n
1 ),L(`m2 , `

n
p ))→ F(`mp′ (`

n
p ), `m∞(`np ))

has norm ≤ C. Now by the preceding lemma and the fact that with constants
independent of n,m

M(`mp , Em)(`np ) = F(`mp′ , `
m
∞)(`np ) = F(`mp′ (`

n
p ), `m∞(`np ))

(for the latter equality, see e.g. [5, 4.4]), for some c > 0 and all n,m

‖Φm,n : L(`m2 , En)→M(`mp , Em)(`np )‖ ≤
√

2C cM(p)(E).

Hence, since supm ‖Φm,n‖ = πM(`p,E),2(id : En ↪→ `np ), we see that

πM(`p,E),2(id : En ↪→ `np ) ≤
√

2C cM(p)(E),

and since
⋃
nEn is dense in E, this implies (id : E ↪→ `p) ∈ ΠM(`p,E),2. The

second statement in Proposition 3.3 is then a straightforward consequence of the
first one. �

4. Estimation of eigenvalues

In this section we present the main results of our paper.

Theorem 4.1. Let E be a symmetric Banach sequence space.
(i) If E is p-concave, 1 < p < 2, then for every Riesz operator T on `p(C) with

values in E(C),

|λn(T )| ≺ n1/p

λE(n)
.

(ii) If E is p-convex, 2 < p < ∞, then for every Riesz operator T on E(C) with
values in `p(C),

|λn(T )| ≺ λE(n)
n1/p

.
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Proof. (i) Without loss of generality assume that M(p)(E) = 1 (see [14, 1.d.8]), and
let T ∈ L(`p(C)) be a Riesz operator with values in E(C), E a p-concave symmetric
Banach sequence space with 1 < p < 2. Theorem 3.3 and factorization through
E(C) show that T ∈ ΠM(`p,E),2(`p(C)). Hence by Lemma 3.2, for all k

(4.1) xk(T ) ≤ πM(`p,E),2(T )λ−1
M(`p,E)(k).

By [4, 3.5] we have λM(`p,E)(k) = λE(k)/k1/p. Define the sequence µ = (µn) by

µn :=
(( n1/p

λE(n)
)∗∗)−1

=
( 1
n

n∑
k=1

k1/p

λE(k)

)−1

,

and let mµ be the associated maximal and symmetric Marcinkiewicz sequence space
of all real sequences y such that

‖y‖mµ := sup
n≥1

µn y
∗∗
n <∞.

Then (4.1) implies that (xn(T )) ∈ mµ, and hence by Weyl’s inequality [10, 2.a.8]
we finally obtain (|λn(T )|) ∈ mµ, i.e.,

|λn(T )| ≺ 1
n

n∑
k=1

k1/p

λE(k)
.

Since the function k 7→ k/λE(k) is almost non-decreasing (see [13, 3.a.6]) and∑n
k=1 k

α � nα+1 for α > −1, we easily get that

1
n

n∑
k=1

k1/p

λE(k)
� n1/p

λE(n)
.

(ii) follows by duality from (i) and the fact (see, again, [13, 3.a.6]) that λE×(n) =
n/λE(n). �

Note that the above statements hold true for any bounded operator T whenever
E is even q-concave for some q < p (resp., q-convex for some q > p). Indeed,
for (i), this is a consequence of Pitt’s Theorem and the fact that a q-concave
symmetric Banach sequence space is continuously embedded into `q; hence, ev-
ery operator on `p(C) with values in E(C), E a q-concave Banach sequence space
with 1 ≤ q < p <∞, is compact, so is a Riesz operator. Thus (i) applies, since
q-concavity implies p-concavity (see [14, 1.d.5]). For (ii), use duality arguments
again.

Apparently, the preceding proof also works for the case p = 2. However, in this
case, we are able to prove the following, somewhat stronger statement:

Theorem 4.2. Let E and F be symmetric Banach sequence spaces, E 6= F , such
that E is 2-concave and F is 2-convex. Then every operator T on F (C) with values
in E(C) is a Riesz operator and (|λn(T )|) ∈M(F,E).

Proof. Assume first that additionally F is separable. For the case F = `2 see Propo-
sition 3.1, and for the proof of the case E = `2 denote the inclusion `2(C) ↪→ F (C)
by I2. Then if T0 denotes the operator T considered as an operator with range
space `2(C), we have T = I2T0. Hence by Pietsch’s principle of related operators
[16, 3.3.4], we see that R := T0I2 and T have the same nonzero eigenvalues with
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the same multiplicities. But then the conclusion follows by duality from the first
case (use (2.1) and the fact that F× is 2-concave, [14, 1.d.4]):

(|λn(T )|) = (|λn(R)|) = (|λn(R′)|) ∈M(`2, F×) = M(F, `2).

Now we assume that both spaces are different from `2. Denote by I1 the
inclusion E(C) ↪→ `2(C) and again by I2 the inclusion `2(C) ↪→ F (C). Define
T0 : F (C)→ E(C) by T0x := Tx for x ∈ F (C). Again we conclude from the
Pietsch principle of related operators that the operator T : F (C)→ F (C) is Riesz
if and only if I1T0I2 is Riesz, and both operators have the same eigenvalue se-
quences. Since E is a 2-concave symmetric Banach sequence space, it is separable,
therefore the ek’s form a basis which, in particular, implies that E(C) has the
bounded approximation property. By Pisier’s factorization theorem [17, 4.1], the
operator T0 factors through `2(C), say T0 = SR. Then by Proposition 3.1 we have
I1S ∈ SM(`2,E) and I ′2R

′ ∈ SM(`2,F×), which implies RI2 ∈ SM(F,`2). Now the
general fact that BA ∈ SM(F,E) whenever B ∈ SM(`2,E) and A ∈ SM(F,`2) (simply
imitate the first part of the proof of [7, 6.3]) implies that I1T0I2 ∈ SM(F,E). Finally,
since M(F,E) is symmetric and maximal, we conclude by Weyl’s inequality [10,
2.a.8] that (|λn(T )|) ∈ M(F,E). This finishes the proof for separable F . Let us
finally assume that F is an arbitrary symmetric 2-convex Banach sequence space.
As in the preliminaries let Fa be the order continuous part of F . Clearly, we have
continuous inclusions E(C) ↪→ Fa(C) ↪→ F (C). Denote the first inclusion by i, the
second one by j, and as above let T0 be the restriction of T to E(C). Then iT0j
and T are related operators, so that by (2.2) and the separable case

(|λn(T )|) = (|λn(iT0j)|) ∈M(Fa, E) = M(F,E).

This completes the proof of the theorem. �

Now we show that the convexity and concavity assumptions in the preceding two
theorems are in fact essential. To see this, fix 1 < p < ∞ and take any symmet-
ric Banach sequence space E strictly contained in `p, but such that the inclusion
map E ↪→ `p is not strictly singular, i.e., it is an isomorphism on some infinite-
dimensional subspace of E (for Orlicz sequence spaces E of this type we refer to [8]
and [9]; see also [14, 4.c.3]). Recall the well-known fact that any separable `p-space
is complementably minimal (i.e., each of its infinite-dimensional subspaces contains
a subspace which is isomorphic to `p and complemented in `p). Since the inclusion
map I : E(C) ↪→ `p(C) is not strictly singular, there exists an infinite-dimensional
subspace X ⊂ E isomorphic to `p(C) which is closed in both spaces `p(C) and
E(C), and which is moreover complemented in `p(C). Let P : `p(C) → X be a
projection, U : X → `p(C) an isomorphism, and S : `p(C) → `p(C) any operator.
Then we conclude from the Pietsch principle of related operators that the operator
T : `p(C) → `p(C) defined by T := IU−1SUP is Riesz if and only if S is Riesz,
and both operators have the same eigenvalue sequences. Clearly, T takes values in
E(C). Now observe that if we take for S a diagonal operator induced by a sequence
(σn) ∈ c0(C) with (|σn|) being strictly decreasing, then we have (λn(T )) = (σn).
Hence, in this situation, there are Riesz operators T : `p(C)→ `p(C) which take
their values in E(C), but which have a sequence of eigenvalues tending to zero as
slowly as wanted. Taking 1 < p ≤ 2, we easily conclude by the above argument
that the assumptions on concavity and convexity (by duality) in Theorem 4.1 and
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Theorem 4.2 are essential in general. Furthermore, taking diagonal operators, one
can see that the space of multipliers M(F,E) in Theorem 4.2 is best possible.

Clearly, both theorems apply to operators acting on classical complex Banach
symmetric sequence spaces including Orlicz sequence spaces `ϕ, or Lorentz sequence
spaces d(p, w), and in particular `p,q. In fact, for these spaces there is a nice
description of p-convexity and q-concavity in terms of the parameters generating
these spaces (for details see, e.g., [4] and the references therein). To give an example,
we present the following statement where part (i) is the analogue of König’s result
(ii) from the introduction for Lorentz sequence spaces.

Corollary 4.3. (i) Assume that 1 < q < 2 < p < ∞ and 1 ≤ w ≤ 2 ≤ v ≤ ∞, or
p = v = 2 (resp., q = w = 2) and q, w (resp., p, v) as before. Then every operator
T on `p,v(C) with values in `q,w(C), is a Riesz operator for which (|λn(T )|) ∈ `r,s,
where 1/r = 1/q − 1/p and 1/s = 1/w − 1/v.

(ii) Let E be a 2-convex (resp., 2-concave) symmetric Banach sequence space.
Then every operator T on E(C) (resp., `∞(C)) with values in `1(C) (resp., E(C))
is a Riesz operator, and (|λn(T )|) ∈ E× (resp., (|λn(T )|) ∈ E).

Both results are immediate consequences of Theorem 4.2: note that `p,v and `q,w
in (i) are 2-convex and 2-concave, respectively. Moreover, an easy calculation in
the latter case shows that M(`p,v, `q,w) = `r,s. Since `∞ and `1 are 2-convex and
2-concave, respectively, the proof is complete.

We note that in both cases of (ii), T is a 2-summing operator. Thus, it follows
by a remarkable result of Pietsch that T is a Riesz operator and (|λn(T )|) ∈ `2.
However, by (ii) in the case when E 6= `2, this sequence belongs to the space E×

(resp., E) which is properly contained in `2.
To conclude the paper, we give an analogue of König’s result (i) from the intro-

duction for Lorentz sequence spaces, using his result for `p-spaces together with an
extrapolation method. A family of Banach spaces (Xα, ‖ · ‖Xα), α ∈ A, is called
a Banach family if there exists a Hausdorff topological vector space W such that
Xα ↪→ W , for all α ∈ A. If X := {Xα}α∈A is a Banach family, its intersection is
the Banach space (∆(X ), ‖ · ‖∆(X )) consisting of all x ∈

⋂
α∈AXα for which

‖x‖∆(X ) := sup{‖x‖Xα ; α ∈ A} <∞.
Note that any family X of symmetric Banach sequence spaces is a Banach family,
and in this case, ∆(X ) is also a symmetric Banach sequence space. For simplicity
of formulation, we include in the following statement the cases of p, q, v, w already
covered in Corollary 4.3, although the result here for those cases is slightly weaker.

Proposition 4.4. Let 1 < q < p < ∞ and 1 ≤ v, w ≤ ∞. Then every operator
T on `p,v(C) with values in `q,w(C) is a Riesz operator for which (|λn(T )|) ∈ `r,∞,
where 1/r = 1/q − 1/p.

Proof. Let T : `p,v(C) → `p,v(C) be an operator with values in `q,w(C) and
T0 : `p,v(C)→ `q,w(C) its restriction. Fix s and t such that q < t < s < p, let
i : `s(C) ↪→ `p,v(C) and j : `t(C) ↪→ `s(C) be the canonical inclusions, and the op-
erator S : `p,v(C) → `t(C) be the restriction of T0 to `t(C). Then the operator
jSi : `s(C) → `s(C) takes values in `t(C); hence by König’s results (i) and (ii)
from the Introduction, it is a Riesz operator for which (|λn(jSi)|) ∈ `u,∞, where
1/u = 1/t− 1/s. Clearly, jSi and T = ijS are related operators; hence T is also
a Riesz operator for which (|λn(T )|) ∈ `u,∞. Running over all possible choices of
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s and t as above, we get that (|λn(T )|) ∈ ∆ := ∆(X ), where X := {`u,∞}u>r.
Clearly, the fundamental function of ∆ satisfies λ∆(n) = n1/r for all n ∈ N. This
yields ∆ ↪→ `r,∞, and thus (|λn(T )|) ∈ `r,∞. �

Note that the parameters r and s in Corollary 4.3(i), as well as r and ∞ in
Proposition 4.4 in the case 1 < q < p < ∞ and 1 ≤ v ≤ w ≤ ∞, are optimal
(to see this, again take diagonal operators). However, for the remaining cases in
Propostion 4.4, except for those already covered by Corollary 4.3, nothing is known
about their optimality. It is still an open problem whether König’s result (i) from
the introduction is optimal.
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