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ON SCHOTTKY GROUPS ARISING FROM
THE HYPERGEOMETRIC EQUATION

WITH IMAGINARY EXPONENTS

TAKASHI ICHIKAWA AND MASAAKI YOSHIDA

(Communicated by Carmen C. Chicone)

Abstract. In an article by Sasaki and Yoshida (2000), we encountered Schot-
tky groups of genus 2 as monodromy groups of the hypergeometric equation
with purely imaginary exponents. In this paper we study automorphic func-
tions for these Schottky groups, and give a conjectural infinite product formula
for the elliptic modular function λ.

1. Introduction

When the three exponents of the hypergeometric differential equation are purely
imaginary, its monodromy group is a Schottky group of genus 2. We give a set of
generators of the monodromy group in Proposition 1; these are chosen so that they
reflect the symmetry of the hypergeometric equation with respect to the three expo-
nents. The main result of this paper is Proposition 2, which gives an automorphic
function with respect to the Schottky group as an absolutely convergent infinite
product. This automorphic function maps the Riemann surface of genus 2 to P1.
Its inverse map has an interesting property as stated in Proposition 3. By letting
the three purely imaginary exponents go to zero in the formula in Proposition 2,
we are led to an infinite product which would hopefully converge in some sense and
represent the elliptic modular function λ; this conjectural formula is given in the
last section.

2. Schwarz map for the hypergeometric equations

Let us consider the hypergeometric differential equation

x(1 − x)
d2u

dx2
+ {c− (a+ b+ 1)x}du

dx
− abu = 0

with purely imaginary exponents

1− c = iθ0, c− a− b = iθ1, a− b = iθ2,
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where we assume θ0, θ1, θ2 > 0 for simplicity. For (any) two linearly independent
solutions u1 and u2, the (multi-valued) map

s : C− {0, 1} 3 x 7−→ u1(x) : u2(x) ∈ P1 := C ∪ {∞}

is often called a Schwarz map (or Schwarz’s s-map).

3. The fundamental domains

We found in [SY] a domain Fx in the x-plane and a domain Fs in the s-plane so
that the restricted map

s|Fx : Fx → Fs

is conformally isomorphic and the whole s can be recovered by s|Fx through
Schwarz’s reflection principle; they are called fundamental domains for the Schwarz
map.

Let us denote by C(c, r) the circle on the s-plane with center c and radius r, and
consider the three disjoint circles on the s-plane

C1 = C(0, 1), C2 = C(0, T ), C3 = C(−C, R),

where T = eθ1π, r = e−θ0π,

C =
ξ(1− r2)
ξ2 − r2

, R =
r(1 − ξ2)
ξ2 − r2

, ξ =
(

cosh θ2π + cosh(θ0 − θ1)π
cosh θ2π + cosh(θ0 + θ1)π

) 1
2

.

Since ξ, as a function of θ2 ≥ 0, increases monotonically to 1, and

1 > ξ|θ2=0 =
Tr + 1
T + r

> r,

we have

C− R− 1 = (1− r)(1 − ξ)/(ξ + r) > 0,

T − C− R =
(T + r)ξ − (Tr + 1)

ξ − r > 0,

and so
−T < −C− R < −C + R < −1 < 1 < T.

The domain, in the upper half-plane, bounded by C1, C2, C3 and the real axis can
serve as a fundamental domain Fs, and has the shape of a two-arched bridge as in
Figure 1. The fundamental domain Fx also has the shape of a two-arched bridge
as in Figure 1, and is bounded by three real segments and three curves, which are
not (part of) circles.

4. The monodromy group

Thanks to these fundamental domains and Schwarz’s reflection principle applied
along their sides, the monodromy group of the differential equation can be described
as follows.

The reflection with respect to the circle C(c, r) (c : real) is given by

ϕ(c, r) : s 7−→ r2

s̄− c + c.
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Figure 1. The fundamental domains Fx and Fs

Let Λ̃ be the group generated by the three reflections ϕ1, ϕ2, ϕ3 with respect to the
circles C1, C2, C3, respectively. The monodromy group Λθ of the hypergeometric
equation is the subgroup of Λ̃, of index 2, consisting of the even words of ϕ1, ϕ2, ϕ3.

On the other hand, for the circle C(c, r), we define the fractional linear transfor-
mation of order 2 which fixes the two intersection points of the circle and the real
axis:

γ(c, r) : s 7−→ r2

s− c + c.

Let Γθ (θ = (θ0, θ1, θ2)) be the group generated by the three involutions γ1, γ2, γ3

with respect to the circles C1, C2, C3, respectively. The monodromy group Λθ is the
subgroup of Γθ, of index 2, consisting of the even words of γ1, γ2, γ3. Let Ω(⊂ P1)
be the domain of discontinuity of Γθ and the Schottky group Λθ.

The presentation above has some problems. Though the hypergeometric differ-
ential equation is symmetric with respect to θ0, θ1, θ2, the three circles C1, C2, C3

are not so; for example, if we let θ2 → 0, then the circles C2 and C3 kiss, and if we
let θ1 → 0, then C3 tends to a point and C1 and C2 coincide. Moreover, since the
two circles C1 and C2 are concentric, the infinite product in the next section does
not converge. So we make a linear fractional change of the coordinate s as

s 7−→ (3 + T 2)s+ 1 + 3T 2

4(s+ T 2)
.

Then the diameters of the three circles on the real axis are given as

C1 : [s4, s5], C2 : [s1, s6], C3 : [s2, s3],

(see Figure 2) where

s1 = − (1− T )2

4T
, s2 = − (T − 1)3 − (3 + T 2)(T − C− R)

4(T 2 − T + T − C− R)
,

s3 = − (1 + T 2)(C − R− 1)
4(T 2 − 1− (C− R− 1))

+
1
2
, s4 =

1
2
,

s5 = 1, s6 =
(1 + T )2

4T
.
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Figure 2. The circles C1, C2, C3

Note that we have s1 < · · · < s6. Now it is easy to see

Proposition 1. If θ1 = 0, then C1 and C2 kiss; if θ2 = 0, then C2 and C3 kiss;
and if θ0 = 0, then C3 and C1 kiss.

Proof. If θ1 = 0, then T = 1, and so s5 = s6; if θ2 = 0, then T − C− R = 0, and so
s1 = s2; if θ0 = 0, then r = 1, C− R − 1 = 0, and so s3 = s4. �

5. Schottky automorphic functions

From now on, we regard that the groups defined above are represented with
respect to this new coordinate s. The following proposition and Corollary 1 are
shown in [GP], IX, §2, for Schottky groups over nonarchimedean local fields which
are called Whittaker groups.

Proposition 2. For p, q ∈ Ω with Γθ · p 6= Γθ · q, the infinite product

fθ(p, q; s) :=
∏
γ∈Γθ

s− γ(p)
s− γ(q)

converges uniformly on any compact subset of Ω−Γθ·q and defines a Γθ-automorphic
function, which induces an isomorphism

fθ(p, q) : Ω/Γθ → P1, p 7→ 0, q 7→ ∞, ∞ 7→ 1.

Proof. The Schottky group Λθ of rank 2 has a fundamental domain bounded by
the circles C2, C3 and their reflections with respect to the circle C1; hence Λθ is
circle decomposable in the sense of [BBEIM], 5.2. Then by a result of Schottky [S],∑
γ∈Λθ

|γ′(z)| is convergent for any z ∈ Ω. For g =
(
a b
c d

)
∈ SL2(C), we have

|g(p)− g(q)| =
∣∣∣∣ p− q
(cp+ d)(cq + d)

∣∣∣∣ ≤ |p− q|2
(|g′(p)|+ |g′(q)|) ;
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hence if p, q ∈ Ω, then the infinite products∏
γ∈Λθ

s− γ(p)
s− γ(q)

=
∏
γ∈Λθ

(
1− γ(p)− γ(q)

s− γ(q)

)
,

fθ(p, q; s) =
∏
γ∈Λθ

(
s− γ(p)
s− γ(q)

· s− γ(γ1(p))
s− γ(γ1(q))

)
are convergent absolutely and uniformly on any compact subset of Ω−Γθ · q. Since

ρ(s)− ρ(γ(p))
ρ(s)− ρ(γ(q))

(
s− γ(p)
s− γ(q)

)−1

is independent of s, there is a map ψ : Γθ → C× such that

fθ(p, q; ρ(s)) = ψ(ρ)fθ(p, q; s) (ρ ∈ Γθ).

Then from the fact that ψ is a group homomorphism and that Γθ is generated by
the elements γi of order 2, Im(ψ) is contained in {±1}, hence is independent of
p, q ∈ Ω. Since Ω is connected, Im(ψ) is, in fact, {1} which implies that fθ(p, q; s)
gives a meromorphic function on Ω/Γθ having only one pole at Γθ · q and this pole
is of order 1. Therefore, fθ(p, q; s) induces an isomorphism Ω/Γθ ∼= P1. �

Corollary 1. The curve Ω/Λθ of genus two is represented as the double cover of
the line branching at the six points fθ(p, q; sj), where s1, . . . , s6 are fixed points of
γ1, γ2, γ3, which are the intersection points of the circles C1, C2, C3 and the real
axis.

Remark 1. If we choose other p′, q′, then fθ(p′, q′; s) and fθ(p, q; s) are related linear
fractionally with coefficients independent of s.

Corollary 2. If we take p and q reals, then fθ(p, q) maps the fundamental domain
Fs conformally onto the upper half-plane.

Proof. Since f = fθ(p, q) is real, the three real segments on the boundary ∂Fs of Fs
are mapped on the real axis. Let us see that the hemicircles on ∂Fs are also mapped
on the real axis. Suppose f is invariant under the involution s 7→ r2/(s − c) + c.
The image of a point s = c+ reiφ on the circle C(c, r) is given as follows:

f(s) = f(r2/(s− c) + c) = f(c+ re−iφ) = f(s).

�

6. Fuchsian equations with six singular points

For real p, q, put

t1 = fθ(p, q; s1) < · · · < t6 = fθ(p, q; s6),

where s1 < · · · < s6 are as above. According to the theory of Schwarzian derivatives
there is a unique second-order linear differential equation

Eθ :
d2v

dt2
+Rθ(t)v = 0

with regular singular points at t = tj of exponent 1/2 such that the ratio of two
suitable linearly independent solutions (the Schwarz’s s-map for Eθ) is the inverse



452 TAKASHI ICHIKAWA AND MASAAKI YOSHIDA

x2 x3 x4 x5 x6 x1 s s1 s2 s3 s4 s5 s6

x-space s-space

t-space

↙ fθ

t1 t2 t3 t4 t5 t6

Figure 3. Local monodromies

function of t = fθ(p, q; s). The coefficient Rθ(t) can be, assuming s6 =∞, expressed
as

Rθ(t) = Pθ(t)/
5∏
1

(t− tj)2,

where Pθ(t) is a polynomial of degree eight. Among the nine coefficients of Pθ(t),
six are determined by the local condition (exponent is 1/2). The remaining three
are not determined by local data (in this sense, these are classically called the
accessory parameters), are functions of θ = (θ1, θ2, θ3). Though the authors have
no idea what kind of functions they are, we can tell the very specific monodromy
behavior of this equation. Let us take a point p on the upper half t-space, and
a path ρj starting from p, going straight near to tj , turning once around tj , and
traveling straight back to p.

Proposition 3. Let Mj be the projective local monodromy of the equation Eθ along
the loop ρj (j = 1, . . . , 6). Then we have

M3 ◦M2 = M5 ◦M4 = M1 ◦M6 = id.

This proposition can be readily shown if we trace these loops and their inverse
images under fθ in Figure 3.
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7. A conjectural formula for the λ function

We recall Jacobi’s theta functions

ϑ00(v, τ) =
∞∑

n=−∞
qn

2
z2n =

∞∏
n=1

(1 − q2n)(1 − q2n−1z2)(1 − q2n−1z−2),

ϑ01(v, τ) = ϑ00(v +
1
2
, τ),

and theta constants

ϑ00(τ) = ϑ00(0, τ), ϑ01(τ) = ϑ01(0, τ),

where q = eπiτ , z = eπiv, and the elliptic modular function, the λ function

λ(τ) =
(
ϑ01(τ)
ϑ00(τ)

)4

, τ ∈ H,

which gives an isomorphism

H/Γ(2) −→ P1 − {0, 1,∞}, 0 7→ 0, 1 7→ ∞, ∞ 7→ 1,

where H is the upper half-plane {τ ∈ C | =(τ) > 0}, and Γ(2) is the principal
congruence subgroup of level 2 of the elliptic modular group.

Now we go back to the situation of §4 and §5. Letting θ1, θ2, θ3 → 0, the
generating involutions γ1, γ2, γ3 of Γθ tend to the three involutions with respect to
the three kissing circles

C(3/4, 1/4), C(1/2, 1/2), C(1/4, 1/4),

respectively; we denote by Γ0 the group generated by these three involutions. Ac-
cordingly, the group Λθ tends to the modular group Γ(2). Proposition 2 suggests
the following conjecture.

Conjecture. As θ1, θ2, θ3 → 0, the function fθ(0, 1; τ) converges uniformly on any
compact set of H to λ(τ). The infinite product∏

γ∈Γ0

τ − γ(0)
τ − γ(1)

converges, in some sense, to λ(τ).
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