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THERE IS NO SEPARABLE UNIVERSAL II1-FACTOR

NARUTAKA OZAWA

(Communicated by David R. Larson)

Abstract. Gromov constructed uncountably many pairwise nonisomorphic
discrete groups with Kazhdan’s property (T). We will show that no separable
II1-factor can contain all these groups in its unitary group. In particular, no
separable II1-factor can contain all separable II1-factors in it. We also show
that the full group C∗-algebras of some of these groups fail the lifting property.

1. Results

We recall that a discrete group Γ is said to have Kazhdan’s property (T) if the
trivial representation is isolated in the dual Γ̂ of Γ, equipped with the Fell topology.
This is equivalent to saying that there exist a finite subset E of generators in Γ and
a decreasing function f : R+ → R+ with limε→0 f(ε) = 0 such that the following
is true: if π is a unitary representation of Γ on a Hilbert space H and ξ ∈ H is
a unit vector with ε = maxs∈E ‖π(s)ξ − ξ‖, then there is a vector η ∈ H with
‖ξ − η‖ < f(ε) (in particular, η 6= 0 when ε is small enough) such that π(s)η = η
for all s ∈ Γ. We refer the reader to [HV] and [V] for the information of Kazhdan’s
property (T). We recall that a discrete group Γ is said to be quasifinite if all of
its proper subgroups are finite, and it is said to be of infinite conjugacy classes
(abbreviated to ICC) if all nontrivial conjugacy classes in Γ are infinite. We note
that a discrete group Γ is ICC if and only if its group von Neumann algebra LΓ
is a factor. We also observe that a group which is quasifinite and ICC has to be
simple.

Gromov (Corollary 5.5.E in [G]) claimed that any torsion-free noncyclic hy-
perbolic group has a quotient group all of whose proper subgroups are cyclic of
prescribed orders (cf. Theorem 3.4 in [V]). This claim was partly confirmed by
Olshanskii (Corollary 4 in [O]). Actually, what Olshanskii proved there is that any
torsion-free noncyclic hyperbolic group has a nontrivial quasifinite quotient group.
We observe that Olshanskii’s argument gives us the following.

Theorem 1 (Gromov-Olshanskii). Any torsion-free noncyclic hyperbolic group has
uncountably many pairwise nonisomorphic quotient groups all of which are quasifi-
nite and ICC. In particular, there is a discrete group Γ with Kazhdan’s property (T)
which has uncountably many pairwise nonisomorphic quotient groups {Γα}α∈I all
of which are simple and ICC.
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Connes conjectured that a discrete group ∆ with Kazhdan’s property (T) and
the ICC property is uniquely determined by its group von Neumann algebra L∆.
The following theorem and its corollary, which was suggested by S. Popa, confirm
Connes’ conjecture for {Γα}α∈I “modulo countable sets” and solve Problem 4.4.29
in [S], Conjecture 4.5.5 in [P1] and Problem III.45 in [H]. See also Theorem 1 in
[P2] and its remarks.

Theorem 2. Let Γ and {Γα}α∈I be as in Theorem 1 and let M be a separable
II1-factor. Then, the set

{α ∈ I : the unitary group U(M) of M contains a subgroup isomorphic to Γα}
is at most countable.

Recall that two II1-factors M and N are said to be stably equivalent if there are
n ∈ N and a projection p ∈Mn(M) such that pMn(M)p is isomorphic to N .

Corollary 3. Let Γ and {Γα}α∈I be as in Theorem 1 and let M be a separable
II1-factor. Then, the set

{α ∈ I : M contains a subfactor which is stably equivalent to LΓα}
is at most countable.

In connection with Connes’ embedding problem [C], it would be interesting to
know whether all (or at least one of) the Γα’s are embeddable into the unitary group
U(Rω) of the ultrapowerRω of hyperfinite II1-factors. Since each Γα arises as a limit
of hyperbolic groups, we observe that if all hyperbolic groups are embeddable into
U(Rω), then so is Γα. We remark that whether all hyperbolic groups are residually
finite (and thus embeddable into U(Rω)) is one of the major open problems in
geometric group theory.

Let us consider the category of unital C∗-algebras and unital completely positive
maps. A C∗-algebra A is said to be complementary universal for a class C of C∗-
algebras if for every member B of C, there are unital completely positive maps
ψ : B → A and ϕ : A→ B such that ϕψ = idB. It follows from Kirchberg’s theorem
[K2] that any separable C∗-algebra not of type I is complementary universal for
the class of separable nuclear C∗-algebras. The full group C∗-algebra C∗F∞ of the
free group F∞ on countably many generators is complementary universal for the
class of separable C∗-algebras with the lifting property (abbreviated to LP). See
[K1] for information on the LP. It is not known whether there exists a separable
complementary universal C∗-algebra for the class of separable exact C∗-algebras.

Theorem 4. Let Γ and {Γα}α∈I be as in Theorem 1 and let C = {C∗Γα : α ∈ I}
or C = {C∗redΓα : α ∈ I}. Then, there is no separable complementary universal
C∗-algebra for C.

From the above discussion, we immediately obtain the following corollary.

Corollary 5. The full group C∗-algebra C∗Γα of Γα fails the LP for some α ∈ I.

2. Proofs

Proof of Theorem 1. Since there exists a torsion-free noncyclic hyperbolic group
with Kazhdan’s property (T) (e.g., a co-compact lattice in Sp(n, 1) or in F4(−20)),
the second part is a straight consequence of the first. We just indicate how to
modify the proof of Corollary 3 in [O] to obtain the first part of our Theorem
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1. So, we stick by the notation used in [O]. Let G = {g1, g2, . . .} be a torsion-free
noncyclic hyperbolic group. It follows that G is ICC since the set E(G) of all x ∈ G
whose conjugacy class is finite is a finite subgroup in G (cf. Proposition 1 in [O]).
Recall that the quasifinite quotient group G′ was the inductive limit of a sequence
of epimorphisms G = G0 → G1 → G2 → · · · . By the construction, every E(Gi)
is trivial, or equivalently every Gi is ICC. Hence, manipulating the construction,
for every i and j ≤ i, we can carry at least i mutually distinct elements from the
conjugacy class of gj in Gi injectively into G′ unless gj = 1 in Gi. This ensures
the ICC property of G′. In the construction, there has to be infinitely many i’s
such that gi is torsion-free in G2i−2. For such i, we may choose an arbitrarily large
number for the order of gi in G2i−1 which will be equal to that in G′. Combined
with a diagonal argument, this implies that there are uncountably many normal
subgroups in G all of whose corresponding quotient groups are quasifinite and ICC.
Theorem 1 now follows from this result and Lemma III.42 in [H]. �

Proof of Theorem 2. To prove the theorem by reductio ad absurdum, suppose that

I0 = {α ∈ I : U(M) contains a subgroup isomorphic to Γα}

is uncountable. For each α ∈ I0, let uα : Γ→ U(M) be a nontrivial homomorphism
which factors through Γα. We fix a standard representation of M on H with a
unit cyclic separating trace vector ξ in H. It follows that there are δ > 0 and an
uncountable subset I1 of I0 such that maxs∈Γ ‖uα(s)ξ − ξ‖ > δ for all α ∈ I1.

Let a finite subset E of generators in Γ and a function f be as in the above
definition of Kazhdan’s property (T). Take ε > 0 small enough so that 2f(ε) < δ.
Since H is separable and I1 is uncountable, there are distinct α and β in I1 such
that maxs∈E ‖uα(s)ξ−uβ(s)ξ‖ < ε. We consider the unitary representation π : Γ 3
s 7→ uα(s)Juβ(s)J ∈ B(H), where J is the canonical conjugation on H associated
with M and ξ. Then, we have maxs∈E ‖π(s)ξ − ξ‖ < ε. It follows from Kazhdan’s
property (T) of Γ that there is a vector η ∈ H with ‖ξ − η‖ < f(ε) such that
π(s)η = η for all s ∈ Γ. Let ∆ = {s ∈ Γ : uα(s)η = η}. It is easy to see that ∆ is a
subgroup of Γ and that ∆ contains the normal subgroups keruα and keruβ. Since
Γα and Γβ are simple and keruα and keruβ are distinct, we actually have ∆ = Γ.
It follows that maxs∈Γ ‖uα(s)ξ − ξ‖ < 2f(ε) < δ, which is absurd. �

Proof of Corollary 3. It is not difficult to see that if LΓα is isomorphic to a (not
necessarily unital) subfactor of M , then Γα is isomorphic to a subgroup of U(M).
Therefore, it follows from Theorem 2 that

{α ∈ I : Mn(M) contains a (not necessarily unital) subfactor isomorphic to LΓα}

is at most countable for every n ∈ N, and the conclusion follows. �

Proof of Theorem 4. We only deal with the case where C = {C∗Γα : α ∈ I}. To
prove the theorem by reductio ad absurdum, suppose that there is a separable
C∗-algebra A which is complementary universal for C. We fix unital completely
positive maps ψα : C∗Γα → A and ϕα : A → C∗Γα such that ϕαψα = idC∗Γα .
Let E ⊂ Γ be a finite set of generators of Γ containing 1 and let uα(s) be the
unitary element in C∗Γα corresponding to s ∈ Γ. Let ε > 0 be arbitrary. Since
A is separable and I is uncountable, there are distinct α and β in I such that
maxs∈E ‖ψα(uα(s)) − ψβ(uβ(s))‖ < ε. It follows that denoting the left regular
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representation of Γα by λα, we have

‖ 1
|E|

∑
s∈E

λα(uα(s))⊗ uβ(s)‖C∗redΓα⊗maxC∗Γβ

≥ ‖ 1
|E|

∑
s∈E

λα(uα(s))⊗ ϕαψβ(uβ(s))‖C∗redΓα⊗maxC∗Γα

≥ ‖ 1
|E|

∑
s∈E

λα(uα(s))⊗ uα(s)‖C∗redΓα⊗maxC∗Γα − ε

= 1− ε.
Since Γ has Kazhdan’s property (T), if we choose ε > 0 sufficiently small, this
implies that the trivial representation of Γ is weakly contained in C∗redΓα⊗maxC

∗Γβ
(cf. Proposition 4.9 in [V]). Reasoning in the same way as the proof of Theorem 2,
one can show that the trivial representation is weakly contained in C∗redΓα. This is
absurd. �
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